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On the Linearity of Bayesian Interpolators for
Non-Gaussian Continuous-Time AR(1) Processes
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Abstract—Bayesian estimation problems involving Gaussian
distributions often result in linear estimation techniques. Nev-
ertheless, there are no general statements as to whether the
linearity of the Bayesian estimator is restricted to the Gaussian
case. The two common strategies for non-Gaussian models are
either finding the best linear estimator or numerically evaluating
the Bayesian estimator by Monte Carlo methods. In this paper, we
focus on Bayesian interpolation of non-Gaussian first-order auto-
regressive (AR) processes where the driving innovation can admit
any symmetric infinitely divisible distribution characterized by
the Lévy-Khintchine representation theorem. We redefine the
Bayesian estimation problem in the Fourier domain with the help
of characteristic forms. By providing analytic expressions, we
show that the optimal interpolator is linear for all symmetric α-
stable distributions. The Bayesian interpolator can be expressed
in a convolutive form where the kernel is described in terms
of exponential splines. We also show that the limiting case of
Lévy-type AR(1) processes, the system of which has a pole at
the origin, always corresponds to a linear Bayesian interpolator
made of a piecewise linear spline, irrespective of the innovation
distribution. Finally, we show the two mentioned cases to be the
only ones within the family for which the Bayesian interpolator
is linear.

Index Terms—Alpha-Stable Innovation, Autoregressive,
Bayesian Estimator, Interpolation, Ornstein-Uhlenbeck Process.

I. INTRODUCTION

Auto-Regressive (AR) processes are well-studied models
in statistics and signal processing. They are used to model
real-world signals such as speech [1], among others. These
processes can be generated by applying an all-pole filter on
white noise (innovation). The problem which is often studied
in signal processing and spectral estimation is to recover the
parameters of the model, for instance the poles of the shaping
filter, based on a finite number of measurements [2]. The
estimated parameters can be used to further predict the process
[3].

Conventional AR models are founded on Gaussian innova-
tions, and most of the results are obtained with this assump-
tion. However, there are cases in real-world applications, such
as stock-market data, where the asymptotic behavior is non-
Gaussian [4], [5]. Early investigations of the non-Gaussian
case can be found in [6]; the research work in this field is still
ongoing [7], [8].
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In many applications there is a need to estimate some
unknown values based on observations that contain related
information. In a Bayesian framework where we know the
statistics of the unknowns and observations, one may think of
the posterior mean (alternatively known as the regression of
the unknown on the observations) as the optimal estimator. In
fact, the posterior mean estimator, which is also referred to as
the Bayesian filter, minimizes the least-square error whenever
it is finite.

Bayesian filtering of AR processes is traditionally studied
in finite-dimensional state-space. In this approach, the main
goal is to estimate the state vector, which automatically yields
the desired information. The best-known example of this
technique is the Kalman filter, which is the Bayesian filter
when the innovation process is Gaussian. The Kalman filter
also works under noisy measurements, where the noise is
additive and Gaussian. Some extensions to non-Gaussian and
heavy-tailed noises are studied in [9], [10]. In this paper,
however, we exclusively focus on the noiseless scenario and
the derivation of closed form solutions for AR(1) interpolators.

The main difficulty for obtaining the Bayesian filter for non-
Gaussian innovations is that there are very few cases where an
explicit form for the posterior distribution exists. Indeed, early
works in the non-Gaussian case often started by approximating
the posterior distribution [11]. Among the notable methods
one can name the Gaussian sum filter [12] and the extended
Kalman filter [13]. Further extensions of the Bayesian filter in
cases where the process follows a dynamic generalized linear
model are investigated in [14].

Instead of evaluating the Bayesian filter for an approximate
posterior prior, which is usually a linear estimator, one can
look for the optimal linear estimator in the sense of the least-
square error. The corresponding methods are called linear
least-square estimators. The linear estimator is frequently
expressed in terms of the covariance function; the Wiener filter,
used in denoising applications, is a typical example. For the
interpolation problem, the link between interpolating splines
and optimal linear estimators for stochastic processes has been
established in [15], [16].

More recent approaches towards achieving the Bayesian
filter rely on numerical techniques [17]. The Monte Carlo
methods are among the most successful candidates [18], [19].

A. Scope

In this paper, we focus on real-valued continuous-time AR
processes of order 1 with various innovation distributions and
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investigate the problem of Bayesian interpolation between the
measurements. More precisely, we are interested in estimating
s(x0), where s is an AR(1) process from which we have
observed the samples s(x̄0), . . . , s(x̄m) with x̄0 < · · · < x̄m.
We assume x0 ∈ [x̄0, x̄m] to avoid extrapolation, and we use
the posterior mean estimator given by

ŝ(x0) = E
{
s(x0)

∣∣ {s(x̄k)}mk=0

}
.

The distinguishing property of this stochastic family is that the
AR(1) processes (not necessarily Gaussian), together with the
Lévy processes, form the set of all Markovian processes. These
processes are referred to in statistical finance as the Ornstein-
Uhlenbeck processes when the distribution is Gaussian [20],
while there are non-Gaussian generalizations as well [21].
These processes are widely adopted models for interest rates
and currency exchange rates [20]. Among other applications,
one can name derivative securities [22], electricity pricing [23],
and pairs trading [24]. The interpolation problem is motivated
by the fact that, in some financial applications, such as hedg-
ing, one needs to represent the available discrete-space data in
the form of smooth curves [25]. Besides, interpolation is also
a crucial operation in image processing, and its performance
can be improved substantially by tuning the basis functions to
some underlying AR model [26].

Due to the continuous-time definition of the process, we
can no longer apply the common finite-dimensional state-
space approaches. We adopt instead the generalized-function
approach to stochastic processes presented in [27] which
demonstrates a link between spline theory and Gaussian/sparse
stochastic processes.

B. Contribution

The problem studied in this paper is to determine, for
various innovation statistics, whether the Bayesian interpolator
is a linear function of the measurements. Our surprising
conclusion is that the linearity of the Bayesian interpolator is
not limited to Gaussian innovations. More precisely, we show
that the estimator is linear for all stable innovations. Further-
more, at each point it depends only on the two neighboring
measurements.

We explicitly derive the expression of the optimal inter-
polator. For non-stable innovations, however, we show that
the Bayesian interpolator cannot be a linear function of the
measurements, with the exception of Lévy processes. In fact,
the optimal interpolator for Lévy processes is always the linear
B-spline, irrespective of the innovation. Although it is natural
to think of extending the results to AR(n), the tools used in
this paper only address the case of AR(1).

C. Outline

The rest of the paper is organized as follows: To provide
the stochastic framework upon which our results are based,
we revisit the continuous-time AR(1) processes in Section II,
from the perspective of generalized functions as in [27]. In
Section III, we summarize our contributions in the form of
three theorems. Next, we present fundamental properties of
AR(1) processes and their benefit in deriving the Bayesian
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Discrete 
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Fig. 1. Generation of the stochastic AR(1) process s based on the excitation
white noise w. The inverse linear operator L−1 includes the possible boundary
condition.

interpolator in Sections IV and V, respectively. The proofs
of the theorems stated in Section III are provided in Section
VI. We test the performance of the interpolators for stable
innovations in Section VII, where we apply them to a few
realizations. Finally, Section VIII concludes the paper.

II. AR(1) MODEL

The model in this paper is a special case of [27] adapted for
AR(1) processes. The schematic diagram of the continuous-
time model is given in Figure 1. The process of interest s is
formed by the innovation w as

d

dx
s(x) + κs(x) = w(x), (1)

where w is a stationary white process, κ ∈ R is a constant,
and the derivative operator is interpreted in the weak sense of
generalized functions. Equation (1) suggests the filter D + κI
as the whitening operator L, where D and I stand for the
derivative and identity operators, respectively. This whitening
operator has a one-dimensional null space spanned by the
function e−κx. Therefore, the shaping operator denoted by
L−1 (inverse of the whitening operator), which transforms the
innovations into the main process, is not uniquely defined.

A. Shaping Operator

The system D + κI has a unique stable right inverse for
κ 6= 0. The stable inverse, which we use as the shaping
operator, is shift-invariant and corresponds to the impulse
response e−κxχR+0

(x) for κ > 0, and e−κxχR+0
(−x) for

κ < 0, where χR+0
(·) denotes the characteristic function of

the nonnegative real numbers (step function). In either case,
the impulse response is represented by 1

jω+κ in the Fourier
domain. The use of a linear shift-invariant operator results in
a stationary process s.

The main difficulty for κ = 0 is that the corresponding
whitening operator is D, whose shift-invariant inverse (respec-
tively, adjoint inverse operator) is not stable. Therefore, the
shaping operator L−1 cannot be a convolutive operator, which
implies that the resultant process s will not be stationary [27].
Lévy processes are special cases associated with the shaping
operator L−1 =

∫ x
0

. This choice imposes s(0) = 0, which acts
as a boundary condition. More generally, we can consider the
form

L−1{w}(x) =

∫ x

0

w(τ)dτ + 〈φ,w〉, (2)
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where φ is an anti-causal function that decreases rapidly and
〈φ,w〉 =

∫
w(τ)φ(τ)dτ in the sense of generalized functions.

The existence of φ in (2) allows for arbitrary but linear
boundary conditions. The anti-causal choice of φ shows that,
for all x > 0, the random variable L−1{w}(x) is statistically
independent of w(τ) for τ > x. This will later help us in
simplifying the estimation procedure.

Since the innovation process is white and the impulse
response of the shaping operator for (−κ) is the time-reversal
of the one for κ 6= 0, we expect to obtain the interpolation
results of (−κ) by time-reversing the results for κ. This is,
indeed, confirmed by the structure of the interpolation kernels
in Theorem 1. Thus, without loss of generality, we shall
assume κ ≥ 0 in the rest of the paper.

B. Innovation Process

To describe the family of white processes (innovations), we
need to use Gelfand’s theory of generalized random processes.
In this approach, the process is characterized by the statistics
of its inner products with a set of test functions. The set of
acceptable test functions is a function space E which usually
includes a set of functions with finite support. Let ϕ ∈ E be an
arbitrary test function and w denote the continuous-time white
process. The inner product 〈ϕ,w〉 =

∫
R ϕ(τ)w(τ)dτ defines a

random variable for which we can compute the characteristic
form. It turns out that the mapping between test functions and
characteristic forms is key in defining the process in Gelfand’s
theory. The characteristic form of a process w is defined as

∀ϕ ∈ E : P̂w(ϕ) = E
{

ej〈ϕ,w〉
}
, (3)

where E{·} stands for the expected-value operator. It is not
hard to check that P̂w(0) = 1 and P̂w is a positive-
definite functional over E . According to the Bochner-Minlos
theorem, the converse is also true: Under suitable conditions1

on E , any positive-definite functional P̂w over E such that
P̂w(0) = 1 defines a unique probability measure on the dual
space of E (existence and uniqueness of the process). Thus, the
characteristic form is an alternative way of uniquely specifying
the statistics of a stochastic process.

For the particular case of white processes, Gelfand and
Vilenkin consider the generic form

P̂w(ϕ) = e
∫
R f(ϕ(τ))dτ , (4)

where f is a scalar function. This function, which is usually
referred to as the Lévy exponent, is not arbitrary and should
satisfy some constraints. The Lévy-Khintchine representation
theorem states the necessary and sufficient conditions for the
function f to define a valid characteristic form as [28]

f(ω) = jb1ω − b22ω2

+

∫
R\{0}

(
ejaω − 1− jaω1|a|<1(a)

)
V (da), (5)

where 1|a|<1(a) = 1 for |a| < 1 and 0 otherwise, b1, b2 are
constants, and V (the Lévy measure) is a positive measure that

1Precisely, the space E needs to be nuclear. For instance, this condition is
satisfied by the Schwartz space of smooth and rapidly decreasing functions.

satisfies ∫
R\{0}

min(1, a2)V (da) <∞. (6)

Formulation (5) shows that f(0) = 0. Moreover, the white
process is uniquely characterized by the triplet (b1, b2, V ).
In this paper, we only consider innovation processes with a
symmetric distribution. This implies that b1 = 0 and V is a
symmetric measure in the sense that, for all measurable sets
I , V (I) = V (−I). With this assumption, (5) simplifies to

f(ω) = −b22ω2 −
∫
R\{0}

(1− cos(aω))V (da). (7)

Stable innovations are of particular interest to us. For these
processes, we have that f(ω) = −|σω|α, where 0 < α ≤ 2
is the stability index and σ is the shape factor (which plays
almost the same role as the standard deviation in the Gaussian
case). The characterizing triplet associated with the α-stable
innovation with 0 < α < 2 is given by (b1, b2, V ) =(0, 0, Vα),
where Vα(da) = |σ|α

|a|α+1 da. Although the function f is con-
tinuous with respect to α, the characterizing triplet for α = 2
(Gaussian innovation) does not follow the same structure as
0 < α < 2 and is given by (0, σ, 0).

C. Discrete Samples

The last thing to mention about the model is the discretiza-
tion procedure. We assume that the AR(1) process s(x) is
sampled at integers x = 0, 1, . . . ,m, which corresponds to a
finite number of uniform samples with a unit sampling period.
For the sake of simplicity, we use s[k] to denote the sample
s(x)|x=k for k = 0, 1, . . . ,m. The purpose of interpolation is
to estimate s(x) for a given x ∈ [0,m] based on the samples
{s[k]}mk=0.

III. MAIN RESULTS

Assume that s(x) for x ∈ R is a realization of a random
process from which we have only the samples s[k] = s(x)|x=k
for k ∈ Z. Now, the goal of interpolation is to estimate the
value s(x0) for every x0 ∈ R given the samples {s[k]}k∈Z.
As an example, for a bandlimited stationary process s, the
optimal Bayesian interpolator is known to take the form [29]

ŝ(x0) = E{s(x0)
∣∣ {s[k]}k∈Z} =

∑
k∈Z

aks[k], (8)

where {ak}k∈Z are constants expressed in terms of the sinc
function and the point x0. An important point is that, though
these constants depend on x0 and the statistics of the process,
they are independent of the samples. This is the reason why
interpolators of the form (8) are referred to as linear interpo-
lators, stressing their linearity with respect to the samples.

When s is not bandlimited, however, the conditional expec-
tation in (8) does not necessarily result in a linear estimator.
The Gaussian processes are well-studied examples for which
the optimal estimator is often linear. One of the distinguishing
properties of the Gaussian distribution is that it is closed
with respect to linear combinations, so that the weighted
sum of two Gaussian random variables is again a Gaussian
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random variable. Nevertheless, this property is not limited
to Gaussian distributions. It is generalizable to a family of
distributions known as α-stables [30], where α is an index
with 0 < α ≤ 2. The Gaussian distribution corresponds to
the extreme case α = 2. For the particular case of AR(1)
processes, we show in Theorem 1 that the linearity of the
Bayesian interpolator is not limited to the Gaussian statistics;
for all 0 < α ≤ 2, innovations with an α-stable distribution
result in linear interpolators.

Theorem 1. For the AR(1) process s associated with the
whitening operator D+κI for κ 6= 0 and a symmetric α-stable
innovation, the Bayesian interpolator at the point x0 > 0 is
given by

ŝ(x0) =
∑
k∈Z

s[k] β(α)
κ (x0 − k), (9)

where the interpolation kernel β(α)
κ is given by

β(α)
κ (x) =

{
e−κ(1−

α
2 )x sinh(ακ2 (1−|x|))

sinh(ακ2 )
, x ∈ [−1, 1],

0, x /∈ [−1, 1].
(10)

The condition x0 > 0 in Theorem 1 (which will also appear
in Theorems 2 and 3) is due to the possible boundary condi-
tion that will be explained in Section II-A. When boundary
conditions are disregarded, this restriction can be removed.

Theorem 1 suggests a convolutive form for the optimal
interpolator—see Appendix A for a discussion regarding the
optimality of the Bayesian interpolator for fat-tailed distribu-
tions. It depends both on the parameter κ in the whitening
operator and the stability index α. Observe that, the interpola-
tion kernel in (9) is non-zero only for one data point on either
side of x0.

For α 6= 2, the interpolation kernel β(α)
κ is asymmetric,

because of the term exp(−κ(1 − α
2 )x). The exclusion of the

choice κ = 0 in Theorem 1 is to ensure that the kernels are
well-defined. However, the kernels are convergent for either
case of κ→ 0 and α→ 0, since{

limκ→0 β
(α)
κ (x) = 1− |x|,

limα→0 β
(α)
κ (x) = e−κx(1− |x|).

(11)

Another property of the kernels is that

β
(α)
−κ(x) = β(α)

κ (−x), (12)

which again confirms that the limiting function for κ → 0
should be symmetric. We illustrate in Figure 2 some of the
interpolation kernels for κ = 2; the curves for κ = −2 can be
achieved by flipping the horizontal axis.

Remark 1. It is already known that, if X0, X1, . . . , Xm follow
a joint symmetric α-stable law, then E{X0|X1} is linear with
respect to X1, while E{X0|X1, . . . , Xn} is not necessarily
linear with respect to any of X1, . . . , Xn [30]. What Theorem
1 reveals is that the joint distribution of the samples of AR(1)
processes are special cases of joint α-stable laws that preserve
the linearity of posterior means for arbitrary dimensions.

Our next result shows that, for κ = 0, the interpolation
kernel is the same as the limiting function limκ→0 β

(α)
κ (x).
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Fig. 2. Interpolating kernel β(α)
κ for some values of κ and α. For the special

case κ = 0, the kernel is independent of α. Except when α = 2 or κ = 0,
the kernel is asymmetric.

However, the surprising result is that the statement is true for
all innovation statistics and not just α-stables.

Theorem 2. The optimal interpolator for a Lévy-type process
s associated with the whitening operator D and a finite first-
order moment is linear. Moreover, it is a B-spline of degree 1,
meaning

ŝ(x0) =
∑
k∈Z

s[k]β0(x0 − k), (13)

where

β0(x) =

{
1− |x|, x ∈ [−1, 1],
0, x /∈ [−1, 1].

(14)

Theorem 2 reveals that, when the whitening operator is
D +κI with κ = 0, the optimal interpolator is linear and does
not depend on the statistics. In other words, the linearity of
the interpolator is not a property that is completely determined
by the statistics. As is reflected in Theorem 2, some of the
mathematical tools exploited in this paper require that the
distributions have a finite first-order moment (E{|x|} ≤ ∞).

It is possible to extend the results of Theorem 1 and 2 to the
case of nonuniform samples, as given in Proposition 1. The
proof is similar to that of Theorems 1 and 2 and therefore,
omitted.

Proposition 1. Assume that an AR(1) process associated with
the whitening operator D + κI is sampled at x̄0 < · · · < x̄m,
and that we are interested in Bayesian interpolation of s(x0)
with x̄i < x0 < x̄i+1.

(i) If κ 6= 0 and the process follows a symmetric α-stable
law, then

ŝ(x0) = s(x̄i)β
(α)
κ

(
x0 − x̄i
x̄i+1 − x̄i

)
+ s(x̄i+1)β(α)

κ

(
x0 − x̄i+1

x̄i+1 − x̄i

)
. (15)

(ii) If κ = 0, then

ŝ(x0) = s(x̄i)β0

(
x0 − x̄i
x̄i+1 − x̄i

)
+ s(x̄i+1)β0

(
x0 − x̄i+1

x̄i+1 − x̄i

)
. (16)
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Our last result in Theorem 3 completes the classification of
linear regimes by demonstrating that, except for those cases
already covered in the previous theorems, we cannot expect
the linearity of the interpolator.

Theorem 3. For the AR(1) process s associated with the
whitening operator D + κI for κ 6= 0 and a non-α-stable
innovation that has finite first-order moment, the Bayesian
interpolator cannot be a linear function of the samples at all
points.

IV. PRELIMINARIES

We prefer to use the same framework for κ 6= 0 and κ = 0.
However, due to the existence of the boundary condition in
κ = 0, the process s is non-stationary, which complicates
our analysis. Hence, we work with the generalized-increment
process defined as

uT (x) = s(x)− e−κT s(x− T ), (17)

where T is a positive real. To further simplify the notations,
let

ϕT (x) = e−κx
(
χR+0

(
x
)
− χR+0

(
x− T

))
. (18)

Also, we denote by F{·} and F−1{·} the Fourier and inverse
Fourier transforms, respectively, defined as F{q}(ω) =

∫
R q(x)e−jωxdx,

F−1{q̂}(x) = 1
2π

∫
R q̂(ω)ejωxdω.

(19)

Since most of the proofs in this paper involve properties of
the generalized-increment process, we have summarized them
in Lemma 1.

Lemma 1. Let x1, x2 be nonnegative and T1, T2 be positive
real numbers. For the generalized increment processes uT1

and uT2 we have that

(i) uT1
and uT2

are stationary processes;
(ii) if (x1 − x2) /∈] − T2, T1[, then the random variables

uT1(x1) and uT2(x2) are independent;
(iii) if x1 ≥ max{T1, x2 + T1}, then uT1

(x1) and s(x2) are
independent;

(iv) if puT1 represents the probability density function of
uT1

(x1), then we have that

Fx{puT1 }(−ω) = exp

(∫ T1

0

f(ωe−κτ )dτ

)
, (20)

where f is the Lévy exponent of the innovations.

Proof. (i) First, we express the generalized increments in
terms of the innovation process. To this end, note that

uT (x) = s(x)− s(x− T )

= L−1{w}(x)− e−κTL−1{w}(x− T ). (21)

To proceed further, we study the cases κ = 0 and κ 6= 0
separately.

• For κ = 0, we rewrite (21) as

uT (x) =

∫ x

0

w(τ)dτ + 〈φ,w〉

−
(∫ x−T

0

w(τ)dτ + 〈φ,w〉
)

=

∫ x

x−T
w(τ)dτ = 〈ϕT (x− ·), w〉, (22)

where ϕT (x) = χR+0
(x)−χR+0

(x−T )and the dot notation
in ϕT (x− ·) stands for the variable over which the inner
product is defined (here, τ ).

• For κ 6= 0, the application of L−1 on w can be seen as
the convolution (in the sense of generalized functions) of
the innovation with the impulse response e−κxχR+0

(x), or,
alternatively, 〈e−κ(x−·)χR+0

(x− ·), w〉. This shows that

uT (x) = 〈e−κ(x−·)χR+0
(x− ·), w〉

−e−κT 〈e−κ(x−T−·)χR+0
(x− T − ·), w〉

= 〈ϕT (x− ·), w〉. (23)

Both (22) and (23) indicate the same result, which is that

uT (x) = 〈ϕT (x− ·), w〉 (24)

for all κ. One can verify that (24) is valid even when
there exists a boundary condition for κ 6= 0. Equation (24)
reveals that the generalized-increment process is generated by
applying a linear shift-invariant filter on the innovations. Thus,
the process is stationary.

(ii) According to (18), the support of ϕT is limited to the
interval [0, T [. Thus, the support intervals of ϕT1

(x1 − ·) and
ϕT2

(x2 − ·) are ]x1 − T1, x1] and ]x2 − T2 , x2], respectively.
The condition (x1 − x2) /∈] − T2, T1[ guarantees that the
supports of the functions ϕT1(x1 − ·) and ϕT2(x2 − ·) are
disjoint. Therefore, their inner products with a white process
are independent by definition.

(iii) According to the definition of L−1 in Section II-A,
s(x2) consists of up to two constituents.

1) The integral of the innovation process from (−∞) to x2
for κ 6= 0, or from 0 to x2 for κ = 0. This term is
statistically independent of w(τ) for τ > x2.

2) A boundary-condition term (κ = 0) formed by observing
the innovations through an anti-causal window φ. This
term is statistically independent of w(τ) for τ > 0.

In summary, s(x2) is independent of w(τ) for τ >
max{0, x2}. On the other hand, recalling (24), we know that
uT1(x1) depends on w(τ) for τ ∈]x1 − T1, x1]. Hence, the
condition x1 ≥ max{T1, x2 + T1} guarantees that uT1

(x1)
and s(x2) depend on disjoint intervals of the white process
and are consequently independent.

(iv) The Fourier transform of the pdf puT1 , known as the
characteristic function and represented as p̂uT1 , is given by

p̂uT1 (−ω) =

∫
R
puT1 (x)ejxωdx = E{ejω〈ϕT1 (x−·),w〉}

= P̂w (ϕT1
(x− ·))

= exp

(∫ T1

0

f(ωe−κτ )dτ

)
. (25)
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Corollary 1. When the innovation process follows a symmetric
α-stable distribution with f(ω) = −|σω|α, by using Lemma
1-(iv), we have that

F{puT }(ω) =

{
e−|σω|

α 1−e−ακT
ακ , κ 6= 0,

e−T |σω|
α

, κ = 0.
(26)

Corollary 2. Since the characteristic functions are Fourier
transforms of probability density functions which are abso-
lutely integrable, they are uniformly continuous. Similarly,
if the innovation is such that uT has a finite first-order
moment, the derivative of the characteristic form is uniformly
continuous, too.

Corollary 3. For κ 6= 0, by change of variables we rewrite
the equation for the characteristic function of uT in (25) as

p̂uT (−ω) = exp

(
1

κ

∫ ω

ωe−Tκ

f(τ)

τ
dτ

)
. (27)

Thus,

p̂
′

uT (ω) =
∂

∂ω
p̂uT (ω) =

f(−ω)− f(−ωe−Tκ)

κω
p̂uT (ω). (28)

This shows that, for κ 6= 0, the characteristic function is
always differentiable at ω 6= 0.

V. BAYESIAN INTERPOLATION

The Bayesian filter is usually considered as the optimal es-
timator because it minimizes the mean-square error whenever
it is finite. However, there are cases where the posterior mean
exists while the mean-square error is unbounded. Therefore,
it is no longer possible to speak about the optimality of the
Bayesian estimator with respect to the mean-square criterion.
Estimation problems involving heavy-tail distributions such
as α-stables with 1 < α < 2 are usually among these
cases. A brief discussion about the optimality of the Bayesian
interpolator is provided in Appendix A. In particular, we show
the optimality for given realizations.

In this section, we show how to benefit from the notion
of generalized increments in the interpolation problem. In
general, the Bayesian interpolator (or the posterior mean
estimator at the desired point) depends on all the samples
{s[k]}mk=0, which suggests the use of (m + 1)-dimensional
joint distributions. Nevertheless, Lemma 2 shows that we can
efficiently reduce the size of the sufficient statistics by using
generalized increments.

Lemma 2. Let x0 = n+r, where 0 ≤ n < m is an integer and
0 < r < 1 is a real number. Then, the Bayesian interpolator of
the AR(1) process at the point x0, given the samples {s[k]}mk=0,
is given by

ŝ(x0) = e−κrs[n]

+E
{
ur(n+ r)

∣∣ u1(n+ 1) = s[n+ 1]− e−κs[n]
}
. (29)

Proof. We start by the definition of the Bayesian interpolator
(posterior mean)

ŝ(n+ r) = E
{
s(n+ r)

∣∣ {s[k]}mk=0

}
= e−κrs[n] + E

{
ur(n+ r)

∣∣{s[k]}mk=0

}
.(30)

Since there is a bijection between the sets {s[k]}mk=0 and s[0]∪
{u1(k)}mk=1, the condition in the expectation of (30) can be
replaced according to

ŝ(n+ r)− e−κrs[n]

= E
{
ur(n+ r)

∣∣ s[0] ∪ {u1(k)}mk=1

}
= E

{
ur(n+ r)

∣∣u1(n+ 1) = s[n+ 1]− e−κs[n]
}
, (31)

where the validity of the second equality comes from the fact
that ur(n + r) is statistically independent of s[0] and u1(k)
for k 6= n+ 1 (Lemma 1). �

Up to this point, we have simplified the general form of
the Bayesian interpolator. However, the main challenge is that
our statistical information of the model is given in the form of
characteristic functions. Since the probability density functions
are related to the characteristic functions by means of Fourier
transforms, we need to reformulate the Bayesian interpolator
in the Fourier domain.

Lemma 3. Let f be the Lévy exponent of the innovation
process and X be a random variable with ef(ω) as its
characteristic function. If f is such that either
(i) the white innovation has a finite first-order moment

E{|X|} <∞, or
(ii) κ 6= 0 and the pdf pX of X is continuous, with
|x|1+εpX(x) being bounded for some ε > 0,

then, we have that

E
{
ur(n+ r)

∣∣u1(n+ 1) = θ
}

=

−j

∫
R p̂
′

ur

(
ωe−κ(1−r)

)
p̂u1−r (ω)ejωθdω∫

R p̂u1(ω)ejωθdω
, (32)

where p̂uT stands for the characteristic function of the random
variable uT (Fourier transform of its pdf) and p̂

′

uT denotes its
derivative in the Fourier domain.

The proof of Lemma 3 is provided in Appendix B. The
significance of this lemma is the establishment of a link
between the conditional expectation involved in the Bayesian
interpolator and the characteristic functions of the generalized
increments. Lemma 1-(iv) allows us to relate the characteristic
functions to the Lévy exponent of the innovation process.

In Lemma 4, we summarize the results of this section.
Again, for fluidity of the paper, we have postponed the proof
to Appendix C.

Lemma 4. Let 0 ≤ n < m be an integer and 0 < r < 1 be
a real number. If the white innovation satisfies at least one of
the conditions in Lemma 3, then

ŝ(n+ r) = e−κrs[n]

+ θ eκ(1−r)
∫
R µ

(f)
κ (ω; 1− r) p̂u1(ω) ejωθ dω∫

R µ
(f)
κ (ω; 0) p̂u1(ω) ejωθ dω

, (33)

where θ = s[n+ 1]− e−κs[n] and

µ(f)
κ (ω;x) =


f(−ωe−κx)−f(−ωe−κ)

κω , κ 6= 0,

(x− 1)f
′
(−ω), κ = 0,

(34)

in which f
′

is the derivative of the Lévy exponent of the
innovation process.
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VI. PROOFS

A. Proof of Theorem 1

A symmetric α-stable innovation corresponds to the Lévy
exponent f(ω) = −|σω|α. The density functions are known
to be continuous and asymptotically decaying proportionally
to |x|−(1+α) [30]. This implies that |x|1+εpx(x) is bounded
for 0 < ε ≤ α, where px is an α-stable pdf. In order to apply
Lemma 4 for stable laws, we evaluate µ(f)

κ (ω;x) from (34) as

µ(f)
κ (ω;x) =

|σω|α
κω

(
e−ακ − e−ακx

)
. (35)

Hence, the expression in Lemma 4 for the Bayesian interpo-
lator at the point x0 = n+ r, where n = bx0c and r = {x0}
(integral and fractional parts of x0, respectively), simplifies to

ŝ(n+ r) = e−κrs[n] + θ eκ(1−r)
e−ακ(1−r) − e−ακ

1− e−ακ
, (36)

which, by substituting θ with s[n+ 1]− e−κs[n], yields

ŝ(n+ r) = e−κr
1− e−ακ(1−r)

1− e−ακ︸ ︷︷ ︸
β
(α)
κ (r)

s[n]

+ eκ(1−r−α)
eακr − 1

1− e−ακ︸ ︷︷ ︸
β
(α)
κ

(
−(1−r)

) s[n+ 1]. (37)

Furthermore, the interpolator at the point x0 /∈ Z depends
on the two neighboring samples, which is consistent with
the support interval of β

(α)
κ . Finally, when x0 /∈ Z, the

Bayesian interpolator trivially reproduces the sample. This is
also confirmed by the interpolation formula as β(α)

κ (0) = 1

and β(α)
κ (k) = 0 for k ∈ Z \ {0}. �

B. Proof of Theorem 2

The choise κ = 0 reduces the whitening operator to the
differential operator D. This corresponds to the second case
of Definition (34) and leads to

µ(f)
κ (ω;x) = (x− 1)f

′
(−ω) (38)

which, by using Lemma 4, results in

ŝ(n+ r) = s[n] + (s[n+ 1]− s[n])(1− r)
= r s[n] + (1− r)s[n+ 1]. (39)

This, in fact, completes the proof. �

C. Proof of Theorem 3

We prove here the contrapositive of the statement of The-
orem 3. In other words, we assume the linearity of the
interpolator and conclude the stability of innovations. Because
of technical details involved in the proof, we divide it into a
sequence of claims.

Claim 1. The linearity of the Bayesian interpolator happens
only if there exists a continuous function gκ(r) such that, for
all ω and 0 < r < 1,

f(ωerκ) = gκ(r)f(ωeκ) + (1− gκ(r)) f(ω). (40)

Proof. Suppose the Bayesian interpolator is a linear function
of the samples. Then, by multiplying the samples by a scalar
constant, we expect the interpolated values to get scaled by
the same constant. Equivalently, the terms multiplied by the
samples in the formulation of Lemma 4 should be independent
of the sample values. Consequently,∫

R µ
(f)
κ (ω; 1− r) p̂u1

(ω) ejωθ dω∫
R µ

(f)
κ (ω; 0) p̂u1

(ω) ejωθ dω

can only depend on r and not on θ. This implies that

F−1ω {µ(f)
κ (ω; 1− r) p̂u1(ω)}(θ)

F−1ω {µ(f)
κ (ω; 0) p̂u1

(ω)}(θ)
= gκ(r). (41)

By moving the denominator to the right-hand side and taking
the Fourier transform of both sides with respect to θ, we
further simplify the condition to

µ(f)
κ (ω; 1− r) = gκ(r)µ(f)

κ (ω; 0), (42)

or

f(−ωe(r−1)κ)− f(−ωe−κ) =

gκ(r) (f(−ω)− f(−ωe−κ)) , (43)

since κ 6= 0. In addition, because of the continuity of f , the
function gκ is also continuous. By replacing ω with −ωeκ,
(43) transforms into (40). �

Claim 2. Using previous assumptions and terminology, for all
ω and 0 < r < 1, we have that

f(ωeκ)− f(ω)

f(ω)− f(ωe−κ)
=

(1− gκ(r)) (1− gκ(1− r))
gκ(r) gκ(1− r) = ξκ, (44)

where ξκ is a positive constant.

Proof. We apply Claim 1 on two instances of ω and r to
evaluate f(ωerκ) and f(ωe(r−1)κ) as

f(ωerκ) = gκ(r)f(ωeκ) + (1− gκ(r)) f(ω),

f(ωe(r−1)κ) = gκ(r)f(ω) + (1− gκ(r)) f(ωe−κ).(45)

Again applying Claim 1, we can relate the three values
f(ω), f(ωerκ), and f(ωe(r−1)κ) as

f(ω) = gκ(1− r)f(ωerκ)

+ (1− gκ(1− r)) f(ωe(r−1)κ), (46)

which yields

f(ωeκ)− f(ω)

f(ω)− f(ωe−κ)
=

(1− gκ(r)) (1− gκ(1− r))
gκ(r) gκ(1− r) (47)

by replacing the values of f(ωerκ) and f(ωe(r−1)κ) from (45).
The left-hand side of (47) can only be a function of ω while
the right-hand side can only vary with r. Thus, the fractions
are equal to a constant which we denote by ξκ. The fraction
in (47) becomes a square for r = 1

2 , which shows that ξκ is
positive. Note that, ξκ = 0 results in f(ω) being a constant
function for ω 6= 0 which is not admissible. �

Claim 3. If f is such that the estimator is linear, then the
following is valid for all ω ∈ R and m ∈ Z:

f(ωemκ) = (ξκ)mf(ω). (48)
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Proof. A direct consequence of Claim 2 is that

(ξκ)j =

j∏
i=1

f(ωeiκ)− f(ωe(i−1)κ)

f(ωe(i−1)κ)− f(ωe(i−2)κ)

=
f(ωejκ)− f(ωe(j−1)κ)

f(ω)− f(ωe−κ)
, (49)

where j is a positive integer. With a similar argument, one can
show that (49) is also valid for nonpositive values of j. We
consider two cases.

1) κ < 0: From (49) and for m ≥ 1, we know that

f(ωemκ)− f(ω) =

m∑
j=1

(
f(ωejκ)− f(ωe(j−1)κ)

)
=

(
f(ω)− f(ωe−κ)

) m∑
j=1

(ξκ)j . (50)

When m → ∞, the left-hand side of (50) remains
bounded, which suggests that 0 < ξκ < 1. Moreover,
since f is continuous, for the limiting case of m → ∞
we can write that

f(0)︸︷︷︸
0

−f(ω) =
ξκ

1− ξκ
(
f(ω)− f(ωe−κ)

)
. (51)

2) κ > 0: From (49) and for m ≤ −1, we know that

f(ω)− f(ωemκ) =

−1∑
j=m

(
f(ωe(j+1)κ)− f(ωejκ)

)
=

(
f(ω)− f(ωe−κ)

) −1∑
j=m

(ξκ)j+1. (52)

When m → −∞, the left-hand side of (52) remains
bounded, which suggests that ξκ > 1. Moreover, since
f is continuous, for the limiting case of m → −∞ we
can write that

f(ω)− f(0)︸︷︷︸
0

=
ξκ

ξκ − 1

(
f(ω)− f(ωe−κ)

)
. (53)

We excluded the possibility f(ω) = f(ωe−κ) in our
argument because it would force f to be a constant function
(Claim 1) which, in conjunction with the condition f(0) = 0,
would result in the trivial solution f ≡ 0.

We see from (51) and (53) that the final result turns out to
be

f(ω) = ξκf(ωe−κ). (54)

Since (54) is valid for all ω, it is easy to conclude the claim
by induction. �

Claim 4. If the innovation model results in a linear estimator,
then for all 0 < r < 1 we have that

f(ωerκ) = (ξκ)rf(ω). (55)

Proof. We can rewrite the statement in Claim 1 by employ-
ing Claim 3 as

f(ωerκ) =
(

1 + (ξκ − 1)gκ(r)︸ ︷︷ ︸
g̃κ(r)

)
f(ω). (56)
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Fig. 3. Realization of an AR(1) process with κ = 5 and α = 1.5, and the
function interpolated from samples at the integer points.

When 0 < r1, r2 are such that r1 + r2 < 1, we can write

g̃κ(r1 + r2)f(ω) = f(ωe(r1+r2)κ) = g̃κ(r1)f(ωer2κ)

= g̃κ(r1) g̃κ(r2) f(ω). (57)

Hence, for all 0 < r1, r2 such that r1 + r2 < 1, we have that

g̃κ(r1 + r2) = g̃κ(r1) g̃κ(r2). (58)

Due to the continuity of g̃κ inherited from gκ, we conclude
that

g̃κ(r) = cr, (59)

where 0 < r < 1 and c is a positive constant. This can be
interpreted as gκ(r) = cr−1

ξκ−1 . We can check that c = ξκ is
the only possibility that satisfies (44). Thus, g̃κ(r) = (ξκ)r in
(56), which proves the claim. �

We are now equipped to resume the proof of Theorem 3.
Let x be an arbitrary real number and assume x = n+r, where
n and r are the integral and fractional parts of x, respectively.
For any ω and by applying Claims 3 and 4, we readily obtain

f(ωexκ) = f(ωerκenκ) = (ξκ)nf(ωerκ)

= (ξκ)n(ξκ)rf(ω) = (ξκ)xf(ω). (60)

Now, for ω 6= 0 we have that

f(ω) = f
(
sgn(ω)e

log |ω|
κ κ

)
= (ξκ)

log |ω|
κ f

(
sgn(ω)

)
= −|σω|α, (61)

where {
α = log ξκ

κ ,

σ =
(
− f(±1)

) 1
α .

(62)

Note that, due to the symmetry of f , we have that f(1) =
f(−1). This value is also nonpositive because of the general
fact that, for all ω, we have that <

(
f(ω)

)
≤ f(0) [28]. Since f

admits only real values in our case, we conclude that f(ω) ≤
f(0) = 0. �
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Fig. 4. Realization of an AR(1) process with κ = 1 and α = 1.1, and the
function interpolated from samples at the integer points.

VII. SIMULATIONS

To test the performance of our interpolator for stable inno-
vations, we have applied it to MATLAB simulated data. Since
we are limited to discrete signals in computer simulations, we
have used a fine grid to represent the continuous-time stochas-
tic process. We present in Figures 3 and 4 the realizations of
two α-stable AR(1) processes with α = 1.5 and α = 1.1,
respectively, and their interpolated versions using samples at
integer points.

As is most evident in Figure 3, the curves connecting the
points deviate from straight lines and are not even piecewise
monotonic (e.g., the part corresponding to the interval [9,10]).
In fact, the statistics of the model show that, for each pair of
adjacent samples, the distribution of the values between them
is biased in favor of zero. It can be verified that the α and
κ values used in Figure 3 define an interpolation kernel β(α)

κ

which is dominated by the linear interpolator β0. Thus, the
interpolated curve connecting two adjacent samples deviates
from the straight line towards the horizontal axis. Remark 2
proved in Appendix D, explains the tendency towards zero in
more generality.

Remark 2. For κ 6= 0, let us define the average error between
the interpolation kernel β(α)

κ and the linear B-spline β0 as

∆(α)
κ =

∫ 1

−1

(
β0(x)− β(α)

κ (x)
)

dx. (63)

Then, ∆
(α)
κ has the same sign as (α− 1).

To clarify the message of Remark 2, let us consider that
all the obtained samples are equal. Thus, by interpolating the
samples using the linear B-spline, we obtain a horizontal line.
For α > 1 (respectively, α < 1), Remark 2 implies that
the interpolated curve using the Bayesian kernel, compared
to the horizontal line of the linear B-spline, is biased towards
(respectively, away from) the horizontal axis. Although the
value of the bias depends on the parameter κ, its sign is fully
determined by α.

From Figure 3, it is understood that the optimal interpolator
takes advantage of knowing the system parameters and better
follows the process than the uninformed outcome that would
be provided by a first-degree (i.e., linear) B-spline.

It is shown in [31] that α-stable priors become more com-
pressible as α decreases. This means that, in the realization
of an α-stable process, the intervals with large amplitudes are
few and narrow. As α decreases, these intervals become even
smaller while the range of amplitudes increases. Therefore, at
small α, it is likely that the samples miss these large-amplitude
intervals. This explains why a decrease from α = 1.5 in Figure
3 to α = 1.1 in Figure 4 results in a degradation of the quality
of the interpolated signal.

VIII. CONCLUSION

In this paper, we studied the interpolation of the first-order
autoregressive processes generated from stable innovations,
including non-Gaussian ones. We introduced the minimum
conditional mean-square error (MCMSE) criterion for stable
laws, which relaxes the hypothesis of a finite variance. We
applied this criterion to derive the optimal interpolator in a
general settings and found that it is linear with respect to
the samples. Moreover, it depends on the stability index that
characterizes stable innovations. In particular, for a suitable
value of this index, our analysis encompasses the classical
Gaussian case. Finally, we have extended to general stable
innovations the link between exponential-spline interpolators
and the Gaussian case.
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APPENDIX A
OPTIMALITY OF BAYESIAN INTERPOLATOR

Assume that X,Y1, . . . , Yk are dependent random variables.
We want to estimate the unobserved value of X based on
the measurements Y1 = y1, . . . , Yk = yk. The minimum
mean-square error (MMSE) estimator is the function X̂ =
ζ(y1, . . . , yk) that minimizes

EX,{Yi}{(X − X̂)2} =

E{Yi}
{
EX|{Yi}

{
(X − X̂)2

∣∣ {Yi}}︸ ︷︷ ︸
conditional mean−square error

}
. (64)

It is well-known that X̂ = E
{
X
∣∣ {Yi = yi}

}
(i.e., the

posterior mean estimator) is the desired minimizer when the
mean-square error is finite. In the following, we discuss cases
where the mean-square error is infinite while the posterior
distribution has finite variance.

The posterior-mean estimator also minimizes the conditional
mean-square error, for which the error is equal to the posterior
variance. Hence, in cases where the posterior variance is finite,
the Bayesian estimator (posterior mean) is optimal for each set
of measurements (i.e., {yi}), while the average error over all
possible sets of measurements may be unbounded.

For the interpolation problem, as explained in Section V, the
posterior distribution of s(n + r) (n integer and 0 < r < 1)
is given by

ps
(
s(n+ r)

∣∣ {s[k]}
)

= pu
(
ur(n+ r)

∣∣u1(n+ 1) = θ
)
, (65)
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where θ = s[n + 1] − e−κs[n]. The second-order moment of
the posterior distribution is in turn given by∫

R x
2 pur (x) pu1−r (θ − x e−κ(1−r))dx

pu1
(θ)

. (66)

For heavy-tail innovations, the algebraic-decay orders of pur
and pu1−r are equal. Thus, if lim|x|→∞ |x|1.5+εpur (x) = 0
for some ε > 0, the expression in (66) and, consequently, the
posterior variance, is bounded. The α-stable innovations for
α > 0.5 are examples of these cases.

In summary, the Bayesian estimator results in an unbounded
mean-square error for some heavy-tail innovation distributions,
but the estimator might still be optimal for given realizations
according to the minimum conditional mean-square error
criterion.

APPENDIX B
PROOF OF LEMMA 3

First, note that the boundedness of the first-order moment
in the case κ = 0 is to guarantee the existence of p̂

′

uT (ω)
(see Corollary 2). Then, recalling the definition of generalized
increments in (17), we have that

u1(n+ 1) = e−κ(1−r)ur(n+ r) + u1−r(n+ 1). (67)

Moreover, Lemma 1 implies that ur(n+ r) and u1−r(n+ 1)
are independent. Thus,

p
(
ur(n+ r) = x

∣∣u1(n+ 1) = θ
)

=
pur (x)pu1−r (θ − xe−κ(1−r))

pu1
(θ)

, (68)

where we use p to denote probability density functions. By
employing (67), the desired conditional expectation is rewrit-
ten as

E
{
ur(n+ r)

∣∣u1(n+ 1) = θ
}

=

∫
R x pur (x) pu1−r (θ − xe−κ(1−r)) dx

pu1(θ)

=

∫
R Fx{xpur (x)}(ω)Fx{pu1−r (θ − xe−κ(1−r))}(ω)dω

2πF−1{p̂u1
}(θ)

= jeκ(1−r)
∫
R p̂
′

ur (ω)p̂u1−r (ωeκ(1−r))ejωθe
κ(1−r)

dω∫
R p̂u1(ω)ejωθdω

= j

∫
R p̂
′

ur (ωe−κ(1−r))p̂u1−r (ω)ejωθ dω∫
R p̂u1

(ω)ejωθdω
, (69)

where we used Parseval’s theorem to obtain the second equal-
ity. To prove the validity of Parseval’s theorem in our case,
note that pur (x) and pu1−r (θ − xe−κ(1−r)) are absolutely
summable functions. For the case of Condition (i) in Lemma
3, the boundedness of the first-order moment guarantees that
xpur (x) is also absolutely integrable, and therefore, both
Fourier transforms are uniformly continuous functions and
the proof is complete. Although Condition (ii) is weaker in
the sense that p̂ur is not continuous and has a singularity at
ω = 0, it still implies that

∫
R x pur (x) pu1−r (θ−xe−κ(1−r)) dx

is finite, which is again a sufficient condition [32].

APPENDIX C
PROOF OF LEMMA 4

By using Lemma 2 and Lemma 3, we only need to prove

j

∫
R p̂
′

ur

(
ωe−κ(1−r)

)
p̂u1−r (ω)ejωθdω∫

R p̂u1(ω)ejωθdω
=

θ eκ(1−r)
∫
R µ

(f)
κ (ω; 1− r) p̂u1

(ω) ejωθ dω∫
R µ

(f)
κ (ω; 0) p̂u1

(ω) ejωθ dω
. (70)

To this end, we focus on the derivative of the characteristic
function p̂uT (ω). For κ 6= 0, Corollary 3 implies

p̂
′

uT (ω) =
f(−ω)− f(−ωe−Tκ)

κω
p̂uT (ω)

= e(1−T )κµ(f)
κ (ωe(1−T )κ; 1− T )p̂uT (ω). (71)

When κ = 0, Lemma 1 suggests that p̂uT (−ω) =
exp(Tf(ω)). Hence,

p̂
′

uT (ω) = −Tf ′(−ω)p̂uT (ω) = µ
(f)
0 (ω; 1− T )p̂uT (ω), (72)

which is the same as (71) for κ = 0. In fact, the function µ(f)
κ

is defined in such a way that it satisfies (71) for all κ.
From (71), it is easy to verify

p̂
′
ur

(ωe−κ(1−r))

p̂ur (ωe
−κ(1−r))

= eκ(1−r) µ(f)
κ (ω; 1− r),

p̂
′
u1

(ω)

p̂u1 (ω)
= µ

(f)
κ (ω; 0).

(73)

Therefore,

p̂
′

ur

(
ωe−κ(1−r)

)
p̂u1−r (ω)

= eκ(1−r)µ(f)
κ (ω; 1− r)p̂ur (ωe−κ(1−r))p̂u1−r (ω)

= eκ(1−r)µ(f)
κ (ω; 1− r)p̂u1(ω). (74)

Our next step is to rewrite the denominator of the fraction in
the left-hand side of (70) as∫

R
p̂u1

(ω)ejωθdω

=
p̂u1(ω)ejωθ

jθ

∣∣∣∞
ω=−∞︸ ︷︷ ︸

=0

−
∫
R p̂
′

u1
(ω)ejωθdω

jθ

= −
∫
R µ

(f)
κ (ω; 0)p̂u1

(ω)ejωθdω

jθ
. (75)

By combining (74) and (75) into (70), one can easily deduce
the claim of the Lemma.

APPENDIX D
PROOF OF REMARK 2

The interpolation kernel β(α)
κ can be expressed as weighted

sum of exponential functions. This helps us in finding the
closed form expression for ∆

(α)
κ as

∆(α)
κ = 1−

sinh(κ/2)
κ/2 · sinh

(
(α−1)κ/2

)
(α−1)κ/2

sinh(ακ/2)
ακ/2

. (76)

Note that sinh(x)
x = sinh(|x|)

|x| . Let θ1 and θ2 be the minimum
and maximum of the set {|κ2 | , |κ2 (α−1)|}, respectively. Then,
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we have that |ακ2 | = θ1 ± θ2, where ± reflects the sign of
(α− 1). This enables us to rewrite (76) as

∆(α)
κ = 1−

sinh(θ1)
θ1

+ sinh(θ2)
θ2

sinh(θ1±θ2)
θ1±θ2

= 1−
1
θ2
± 1

θ1
1

tanh(θ2)
± 1

tanh(θ1)

. (77)

Consider the function h1(x) = x− tanh(x). Since h1(0) =
0 and d

dxh1(x) = 1 − 1
cosh2(x)

≥ 0, the function h1(x) is
nonnegative for x ≥ 0. Thus,{

tanh(θ1) ≤ θ1
tanh(θ2) ≤ θ2

⇒
1
θ2

+ 1
θ1

1
tanh(θ2)

+ 1
tanh(θ1)

≤ 1. (78)

This confirms that ∆
(α)
κ is positive when α > 1. For α < 1, let

us consider the function h2(x) 1
tanh(x) − 1

x . Since d
dxh2(x) =

1
x2 − 1

sinh2(x)
and sinh2(x) ≤ x2 (Taylor series of sinh), h2

is an increasing function. Therefore,

1

tanh(θ2)
− 1

θ2
≤ 1

tanh(θ1)
− 1

θ1

⇒
1
θ2
− 1

θ1
1

tanh(θ2)
− 1

tanh(θ1)

≥ 1. (79)

Similarly, this confirms that ∆
(α)
κ is negative for α < 1. It is

also easy to verify from (76) that ∆
(1)
κ = 0 .
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