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Compressibility of Deterministic and Random
Infinite Sequences
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Abstract—We introduce a definition of the notion of com-
pressibility for infinite deterministic and i.i.d. random sequences
which is based on the asymptotic behavior of truncated sub-
sequences. For this purpose, we use asymptotic results regarding
the distribution of order statistics for heavy-tail distributions and
their link with α-stable laws for 1 < α < 2. In many cases, our
proposed definition of compressibility coincides with intuition.
In particular, we prove that heavy-tail (polynomial decaying)
distributions fulfill the requirements of compressibility. On the
other hand, exponential decaying distributions like Laplace and
Gaussian do not. The results are such that two compressible
distributions can be compared with each other in terms of their
degree of compressibility.

Index Terms—Compressible prior, heavy-tail distribution, or-
der statistics, stable law.

I. INTRODUCTION

THE emerging field of compressed sensing investigates the
problem of sampling and reconstructing signals (often

finite-dimensional) that have sparse or compressible (almost
sparse) representations in an orthonormal basis [1], [2], [3].
For instance, the so-called Basis-Pursuit method, which is
based on the `1 minimization, can stably recover compressible
vectors from their linear projections onto subspaces of much
lower dimensions when the projection operator satisfies some
constraints.

By definition, an n × 1 vector (a finite sequence) is called
“sparse”, more precisely, k-sparse, when it contains at most
k non-zero elements. In this case, a k-term representation of
the vector exactly describes the vector, which is of special
relevance when k � n. By extension, a vector is called
“compressible” when its k-term representation is not exact,
but only an approximation in some sense.

In the context of infinite sequences, finite-term approxima-
tions are classically studied for wavelet coefficients of the
deterministic signals in Besov spaces [4] where the sequence
of coefficients is in `p for some p and the energy (`p-norm)
of the k-term approximation error decays like k−c for some
positive c. In more recent definitions, the sequence {xi}i∈N is
called “compressible” in the sense of weak-`p norm (0 < p)
if it belongs to the weak-`p space [5], [6]. More precisely, for
some R we should have

|xi| ≤ Ri−
1
p . (1)
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Clearly, the above definition imposes a certain rate of decay
on compressible sequences.

Introducing a stochastic model for a specific class of signals
is a common approach in signal processing and it usually done
by assuming an innovations domain. Typically, the signal is
assumed to be independently and identically distributed in
a transform domain. Now, to check the compressibility of
stochastic signals, we should investigate the compressibility
of their innovation sequence which is usually a sequence of
i.i.d. random variables. Unfortunately, the definition of com-
pressibility based on (1) is not applicable because sequences of
i.i.d. random variables are excluded from `p. Moreover, they
are not even decaying at all—except for some degenerate dis-
tributions. This fact suggests that a new definition for the com-
pressibility of infinite sequences and i.i.d. sequences should
be introduced. The main benefit of studying compressible
priors is to provide the foundations for stochastic modeling
of sparse/compressible processes. Most of the conventional
stochastic signal models are based on Gaussian processes
which are definitely not sparse. In the past 5 years, significant
progress has been achieved in the relatively new field of
sparse signal processing using a predominantly deterministic
formulation. The investigation of sparse stochastic models may
lead to new and efficient algorithms for reconstruction or
denoising of the sparse signals.

The first attempts of identifying a compressible prior were
based on the Bayesian interpretation of the successful basis-
pursuit method. It was found that `1 minimization technique
coincides with the Maximum A Posteriori (MAP) estimator
[7], [8] when the observations of a Laplace-distributed signal
having independent and identically distributed coefficients in
the innovations domain are perturbed by Gaussian noise.
However, several authors have pointed out that this choice
does not meet the expectations from a compressible prior
[9], [10], [11]. Employing quantile approximations of the
expected order statistics, Cevher is the precursor for defining
and identifying compressible distributions [9]. He proposed
the following definition:

Definition 1. For a random variable x with parameters θ, let
fy(.) be the probability density function of y = |x| and Fy(.)
denote the respective cumulative probability distribution. Also,
for a given sequence length n, let yn1 ≥ yn2 ≥ . . . ynn denote
the order statistics of the i.i.d. random variables {yi}ni=1. The
distribution of x is called compressible if there exist positive
constants R(n, θ) and p(n, θ) such that

E {yni} ≈ F−1
y

(
1− i

n+ 1

)
. R(n, θ)i−

1
p(n,θ) , (2)

where E indicates expectation and . means “less than or
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approximately equal to”.

A few distributions, including the Generalized Pareto and
Student’s t, are introduced as compressible priors that fulfill
Definition 1. Nonetheless, this definition is somewhat impre-
cise. Moreover, the distributions should be examined on a
case-by-case basis. For each distribution, those samples of f−1

required in (2) should be evaluated first, and then, one should
check if such R(n, θ) and p(n, θ) exist.

In this paper, we introduce a comprehensive defini-
tion of compressibility (strong compressibility or simply s-
compressibility) for infinite sequences which ultimately leads
to some simple practical classification criteria1. The main
advantage is that this new definition is not based on the
decay of the sequence. This enables us to generalize it to
i.i.d. random sequences. Furthermore, we provide theorems
to distinguish compressible priors for the given definition of
compressibility. Using asymptotic results regarding the order
statistics, we show that the s-compressibility of a prior closely
depends on the decay of the probability density function. We
demonstrate the s-compressibility of heavy-tail (polynomial
decaying) distributions such as the Generalized Pareto and
Student’s t, while we prove that exponentially decaying dis-
tributions such as those from Laplace and Gauss are not s-
compressible. Our definition appears to be compatible with
Definition 1.

II. COMPRESSIBLE INFINITE SEQUENCES

The first idea that comes to mind for defining compressibil-
ity for an infinite sequence is to consider (1). Unfortunately, (1)
is too restrictive since it prevents any i.i.d. random sequence
to be called compressible, by lack of decay. To overcome
this shortcoming, we define the compressibility of an infinite
sequence using the asymptotic behavior of its truncated finite
sub-sequences. Intuitively, an s-compressible infinite sequence
is such that the energy of its truncated finite subs-sequences is
concentrated in only a small fraction of the samples, and this
fraction vanishes as the length of the sub-sequence increases.
In order to put this insight into a rigorous mathematical form,
we need to introduce some notations.

A. Definitions and Notations

Definition 2. Let {ai}ni=1 be a finite scalar sequence and let
{ani}ni=1 be the ordered sequence according to non-increasing
modulus values (|an1| ≥ · · · ≥ |ann|). For p > 0 and k ≤ n
define

σp
(
k; {ai}ni=1

)
=
(
|an1|p + · · ·+ |ank|p

) 1
p

. (3)

In other words, σp(k; {ai}ni=1) is the `p-(semi)norm
of the best k-term approximation of {ai}ni=1. (Note that
σp(n; {ai}ni=1) is the `p-norm of the sequence.)

1While this paper was under review, we were informed of a paper
submission with similar ideas by Gribonval, Cevher and Davis[12].

Definition 3. For a finite scalar sequence {ai}ni=1 (not all
equal to zero) and real numbers 0 ≤ r ≤ 1 and p > 0, define

κp
(
r; {ai}ni=1

)
= min

{
k
∣∣∣ σp(k; {ai}ni=1

)
σp
(
n; {ai}ni=1

) ≥ r}. (4)

In fact, κp(.) provides the minimum number of terms
required to preserve the given fraction r of the total energy
of the sequence in the `p sense. Finally, we define the s-
compressibility of infinite sequences based on the asymptotic
behavior of their truncated sub-sequences.

Definition 4. We call the sequence {ai}i∈N of real (or
complex) numbers “`p-compressible” if

∀ 0 ≤ r < 1 : lim
n→∞

κp
(
r; {ai}ni=1

)
n

= 0. (5)

In addition, the sequence {ai}i∈N is called s-compressible if
it is `p-compressible for some 0 < p.

Definition 4 implies that, in order to capture almost all the
energy of the truncated sub-sequences (with a large-enough
number of terms) of a s-compressible infinite sequence, one
only needs a negligible fraction of the terms. Note that we
focus on the energy distribution among the elements, without
imposing a decay on the sequence.

To illustrate Definition 4, let us consider the sequence ai =
1
2i for i ∈ N. For any 0 ≤ r < 1 and 0 < p, let k =

d− log2(1−rp)
p e. Then, for the k-term approximation of any sub-

sequence of length n ≥ k, we observe that

σp
(
k; {ai}ni=1

)
σp
(
n; {ai}ni=1

) =
(∑k

i=1 2−ip∑n
i=1 2−ip

) 1
p ≥

(∑k
i=1 2−ip∑∞
i=1 2−ip

) 1
p

=
(
1− 2−kp

) 1
p ≥ r, (6)

which means

κp
(
r; {ai}ni=1

)
≤ k. (7)

Therefore, since n can be increased independently of k, the
limit of n−1κp

(
r; {ai}ni=1

)
when n→∞ would be zero, and

the sequence is `p-compressible for all p. The above arguments
rely on the fact that the whole sequence has a finite energy and
that one only needs a finite number of elements to preserve
any given fraction of the total energy. This argument can be
generalized to all `p sequences, so that a sequence in `p is
also `p-compressible.

To show that the converse argument is not necessarily true,
consider ai = 1

i . Although this sequence is not in `1, we
show that it is `1-compressible. For a given r < 1, we choose
n > e

r
1−r and we set k = d(ne)re. Using lnm <

∑m
i=1

1
i <

1 + lnm, we get

σp
(
k; {ai}ni=1

)
σp
(
n; {ai}ni=1

) =

∑k
i=1

1
i∑n

i=1
1
i

≥ ln k

1 + lnn

≥ r ln(ne)

1 + lnn
= r. (8)

Thus,

κ1

(
r; {ai}ni=1

)
≤ k ≈ (ne)r, (9)
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which yields

lim
n→∞

κ1

(
r; {ai}ni=1

)
n

≤ lim
n→∞

(ne)r

n
= 0. (10)

Hence, the sequence fulfills the requirements of `1-
compressibility. The two examples above were decaying se-
quences. In Sec. IV, we shall consider some non-decaying
examples as well.

B. Results

An interesting property of Definition 4 is the embedding
of `p-compressible sequences with different ps. By using the
following lemma, we show that an `p-compressible sequence
is also `q-compressible for q ≥ p:

Lemma 1. For a sequence {ai}i and arbitrary integers k < n,
the ratio

( σp(k;{ai}ni=1)
σp(n;{ai}ni=1)

)p
is an increasing function of p.

Proof: Let q ≥ p. For indices 1 ≤ i ≤ j ≤ n, we have that

|ani| ≥ |anj | ⇒ |ani|q−p ≥ |anj |q−p

⇒ |ani|q|anj |p ≥ |ani|p|anj |q. (11)

Now, by summing these inequalities for all 1 ≤ i ≤ k and
k + 1 ≤ j ≤ n, we get

k∑
i=1

n∑
j=k+1

|ani|q|anj |p ≥
k∑
i=1

n∑
j=k+1

|ani|p|anj |q

⇒
∑k
i=1 |ani|q∑n
i=k+1 |ani|q

≥
∑k
i=1 |ani|p∑n
i=k+1 |ani|p

⇒
∑k
i=1 |ani|q∑n
i=1 |ani|q

≥
∑k
i=1 |ani|p∑n
i=1 |ani|p

, (12)

which completes the proof. �
A direct consequence of Lemma 1 is that κp(r

1
p , {ai}ni=1) is

a decreasing function of p. Hence, when the limit in Definition
4 vanishes for some p > 0, it will also vanish for all q ≥ p,
meaning that a sequence is either s-incompressible or `p-
compressible for p larger than a threshold. The minimum
(or infimum) of the positive values p for which a sequence
is `p-compressible can be regarded as a measure of how
compressible the sequence is: the lower the infimum value,
the more compressible the sequence.

III. COMPRESSIBLE I.I.D. RANDOM SEQUENCES

In order to generalize the s-compressibility definition to
i.i.d. random sequences, we need to modify Definition 3
to take statistic aspects into account. Since the sequence is
now random, we can only guarantee that the best k-term
approximation of a sub-sequence preserves the given fraction
r of the energy with probability at least δ.

A. Definitions and Notations

Definition 5. Let {xi}i∈N be an i.i.d. sequence of random
variables2 with probability density fx. For given 0 ≤ r, δ ≤ 1
and p > 0, we define

2In this paper, we use the lower-case letter f exclusively to represent the
probability density function of a random variable.

κ̃p
(
r, δ, n; fx

)
= min

{
k
∣∣∣ P(σp(k; {xi}ni=1

)
σp
(
n; {xi}ni=1

) ≥ r) ≥ δ}. (13)

Thus, κ̃p(.) is almost equivalent to κp(.) with the addition
of the probability measure. Note that there are two lower-
bounds in Definition 5: one for the energy fraction r and one
for the probability δ. Now, similarly to Definition 4, we can
define the s-compressibility of random sequences. Because the
s-compressibility only depends on the distribution fx instead
of the sequence, we define the s-compressibility in terms of
the distribution.

Definition 6. The probability density fx is called “`p-
compressible” if the sequence of i.i.d. realizations of this
distribution is almost surely `p-compressible, in the sense that

∀ 0 ≤ r, δ < 1, lim
n→∞

κ̃p
(
r, δ, n; fx

)
n

= 0. (14)

Similarly, the probability density fx is called s-compressible
if it is `p-compressible for some 0 < p.

Although we focus on the above definition in this paper, we
also propose the following distinction between sparsity (exact
representation) and compressibility (approximation):

Definition 7. The probability density fx is called “`p-sparse”
if it is `p-compressible and if, for finite but long-enough
sequences of i.i.d. realizations of fx, the whole energy (in
any sense) is almost surely concentrated in a fraction of the
terms

∀ p, 0 ≤ δ < 1, lim
n→∞

κ̃p
(
1, δ, n; fx

)
n

< 1. (15)

The only difference between s-compressible and sparse
distributions lies in the fact that the choice of r = 1 is excluded
for s-compressible distributions. One can easily verify that
none of our mentioned s-compressible examples (determin-
istic) is sparse. The additional condition in the definition
of sparsity implies that some of the elements of a sparse
i.i.d. realization necessarily vanish. This in turn implies that
`p-sparse distributions always contain a mass probability at
x = 0. Conversely, when P (x = 0) = π0 > 0, the whole
energy of an i.i.d. sequence of length n is contained with
high probability in only n(1 − p) elements. Therefore, the
limit in Definition 7 is less than one. This means that sparse
distributions are those s-compressible distributions that contain
a mass probability at x = 0. To generate a sparse i.i.d.
sequence, one can select with probability 1−π0 values drawn
from a s-compressible distribution, and select with probability
π0 the value 0.

Compared to [9], Definition 6 explains the concept of com-
pressibility more intuitively. Moreover, we are going to show
that Definition 6 leads naturally to the derivation of simple
tools for examining the s-compressibility of distributions.

In the rest of the paper, we study distributions from the
point of view of their `p-compressibility. There are two
main contributions: We first exclude a large class of distribu-
tions, namely, those with exponential decay. The well-studied
Laplace distribution is a member of this non `P -compressible
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class. Then, we introduce heavy-tail distributions (polynomial
decay) as possible s-compressible candidates.

Lemma 1 allowed us to identify an embedding property
of sequences, likewise, there is a similar embedding for s-
compressible (sparse) distributions: An `p-compressible (`p-
sparse) distribution is also `q-compressible (`q-sparse) for all
q ≥ p. Moreover, it is noteworthy to mention the following
link between the `p-compressible distributions with different
ps:

Lemma 2. The distribution of the random variable x is `p-
compressible if and only if the distribution of the random
variable y = |x|p is `1-compressible.

Proof: The statement follows from the fact that `p-norm of
a sequence of xis to the power p is equal to `1-norm of the
corresponding sequence of yis.

B. Main Results

The statement in Lemma 2 shows that we only need to
identify `1-compressible distributions in order to identify the
whole class. Hence, from now on, we only study the `1-
compressibility condition.

Theorem 1. If the probability density fx is such that, for some
0 < γ, the expectation Ex{eγ|x|} exists, then the distribution
is not `1-compressible.

Proof: Let {xi} be an i.i.d. sequence of random variables
with distribution fx and let yi = |xi|. Obviously, the yis
form an i.i.d. sequence with distribution fy(y) =

(
fx(y) +

fx(−y)
)
u(y), where u(.) is the Heaviside (unit) step function.

Also, let µy and σ2
y be the mean and variance of a random

variable with distribution fy . The existence of Ex{eγ|x|}
implies the existence of µy and σy . Moreover, let m be a large-
enough positive integer such that Ey{eγy} < emγrµy (3m)−1,
where γ is the positive value for which E {eγy} is finite,
and where 0 < r < 1 is an arbitrary ratio. To simplify the
notations, let us define the following events:

EV1 : σ1(k; {yi}mki=1) ≥ r
∑mk
i=1 yi

EV2 :
∑mk
i=1 yi ≥ mkµy − (mk)0.75σy

EV3 :
∑mk
i=1 yi < mkµy − (mk)0.75σy,

(16)

which yields

P (EV1) = P
(
EV1

∣∣EV2

)
P (EV2) + P

(
EV1

∣∣EV3

)
P (EV3)

≤ P
(
EV1

∣∣EV2

)
+ P (EV3)

≤ P
(
σ1(k; {yi}mki=1) ≥ r

(
mkµy − (mk)0.75σy

))
+P
( mk∑
i=1

yi < mkµy − (mk)0.75σy
)
. (17)

The independence of the yis results in{
Ey
{∑mk

i=1 yi
}

= mkµy
Var
{∑mk

i=1 yi
}

= mkσ2
y.

(18)

Therefore, by applying Chebychev’s inequality we obtain

P
( mk∑
i=1

yi < mkµy − (mk)0.75σy

)
≤ 1√

mk
. (19)

Furthermore, σ1(k; {yi}mki=1) is generated by one of the
(
mk
k

)
possible ways of selecting k elements. Therefore, we get

P
(
σ1(k; {yi}mki=1) ≥ r

(
mkµy − (mk)0.75σy

))
≤
(
mk

k

)
P
( k∑
i=1

yi ≥ r
(
mkµy − (mk)0.75σy

))
.(20)

Note that, since E
{∑k

i=1 yi
}

= kµy , the probability of the
event

∑k
i=1 yi ≥ r

(
mkµy − (mk)0.75σy

)
is in fact a tail

probability for large m. The exponential decay of this tail
probability is given by

P
( k∑
i=1

yi ≥ T
)

= P
(
eγ

∑k
i=1 yi ≥ eγT

)
≤

E
{
eγ

∑k
i=1 yi

}
eγT

=
(
E
{
eγy
}
e−γ

T
k
)k

<
(eγ(rmµy−Tk )

3m

)k
, (21)

where the first inequality is obtained by Markov’s inequality.
Thus, using

(
mk
k

)
< (em)k and the results in (20) and (21),

we have

P
(
σ1(k; {yi}mki=1) ≥ r

(
mkµy − (mk)0.75σy

))
<

(
e

3
eγrσym

0.75k−0.25

)k
(22)

which, in combination with (17) and (19), yields

P (EV1) = P

(
σ1(k; {xi}mki=1)

σ1(mk; {xi}mki=1)
≥ r
)

<
1√
mk

+

(
e

3
eγrσym

0.75k−0.25

)k
. (23)

It is easy to check that, for fixed m, the latter upperbound
vanishes as k → ∞. Hence, to keep the probability greater
than a pre-specified value δ, we require to keep more than k
terms among the total of mk, so that

lim
k→∞

κ̃p
(
r, δ, km; fx

)
km

≥ 1

m
, (24)

where m depends only on r and not k. Consequently, the
probability density fx is not `1-compressible. �

Theorem 1 reveals that distributions with exponential de-
cay such as Laplace, Gamma, and Gaussian are not `1-
compressible. Our next step is to show that a class of heavy-tail
distributions fulfills the requirements of Definition 6. However,
we need to review a few preliminaries first.

According to the Central Limit Theorem, if {xi}i∈N is a
sequence of i.i.d. random variables such that the distribution
has finite mean µx and variance σ2

x, then the distribution of the
normalized sum n−0.5

∑n
i=1(xi−µx) is a zero-mean Gaussian

with variance σ2
x in the limit. In addition, the sum of two

independent Gaussian random variables is again a Gaussian
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random variable: the Gaussian distribution is stable under the
summation operation.

In fact, the class of stable distributions is not limited to
the Gaussian case; there is a class of distributions indexed
by the parameter α ∈ (0, 2] with the name α-stable, which
includes the Gaussian distribution for the special case α = 2.
Except for Gaussians, an α-stable distribution decays like
|t|−(α+1) and has finite moments only for orders less than α.
None of them has finite variance [13]. Similar to the Gaussian
case, the distribution of the normalized sum of i.i.d. random
variables (for some distributions) tends to an α-stable law in
the limit. For this to happen, the normalization factor must
be set to n−

1
α . These distributions are said to be in the

attraction domain of a stable law with index α. For instance,
the attraction domain for α = 2 contains all the distributions
with finite variance.

To classify the attraction domain for 0 < α < 2, let x be a
random variable and define y = |x| and G(t) = P (y > t). It
is known that x is in the domain of attraction of a stable law
with index 0 < α < 2 if and only if [14]

1) the function tαG(t) varies slowly3 as t→∞; and
2) the limit limt→∞

P (x>t)
G(t) exists.

Because of their polynomial decay, the distributions that
are in the attraction domain of stable laws are suitable can-
didates for s-compressible distributions. As discussed earlier,
we need to study order statistics to inspect the k-term ap-
proximation of i.i.d. sequences. The following theorem by
Lepage, Woodroofe, and Zinn demonstrates the asymptotic
order statistics of the distributions in the attraction domain
of stable laws [15]:

Theorem 2. Let {ηi} be an i.i.d. sequence with standard
exponential distribution, fη(t) = e−tu(t) (u(.) is the Heav-
iside step function), and define Γi =

∑i
j=1 ηj . For the i.i.d.

sequence {xi} for which the distribution is in the attraction
domain of an α-stable law, we have that

lim
n→∞

a−1
n

(
yn1, . . . , ynn, 0, 0, . . .

)
=d

(
Γ
− 1
α

1 ,Γ
− 1
α

2 , . . .
)
, (25)

where =d denotes the convergence in distribution (conver-
gence of all finite-dimensional distributions), {yni}ni=1 rep-
resents the ordered sequence of {|xi|}ni=1, and

an = lim
t→∞

G−1
(

1
ntα

)
t

. (26)

The importance of Theorem 2 is to enable us to study the
asymptotic order statistics of a large class of distributions
by investigating the i.i.d. sequence of standard exponential
distributions. We have now the required tools to establish a
link between the s-compressible distributions and the attraction
domain of stable laws.

Theorem 3. If the random variable x with the distribution
fx is in the domain of attraction of a stable law with index
α < 1, then fx is `1-compressible.

Proof: To prove the s-compressibility, we start by con-
sidering the probability involved in Definition 5. Since

3The function f(t) is said to vary slowly at t→∞ if limt→∞
f(ct)
f(t)

= 1

for all c > 0.

σ1

(
k; {xi}ni=1

)
= σ1

(
k; {yi}ni=1

)
, where yi = |xi|, we have

that

P

(
σ1

(
k; {xi}ni=1

)
σ1

(
n; {xi}ni=1

) ≥ r)
= P

(
a−1
n

(
yn(k+1) + · · ·+ ynn

)
a−1
n

(
yn1 + · · ·+ ynn

) ≤ 1− r
)
.(27)

The s-compressibility definition deals with the asymptotic
behavior of the above probability; therefore, based on Theorem
2, replacing a−1

n yni with Γ
− 1
α

i does not change the probability
in the asymptotic case n→∞. Thus, we can write

P

(
σ1

(
k; {xi}ni=1

)
σ1

(
n; {xi}ni=1

) ≥ r) ∼ P(Γ
− 1
α

k+1 + · · ·+ Γ
− 1
α

n

Γ
− 1
α

1 + · · ·+ Γ
− 1
α

n

≤ 1− r
)
. (28)

Note that the relation

Γ
− 1
α

k+1 + · · ·+ Γ
− 1
α

n

Γ
− 1
α

1 + · · ·+ Γ
− 1
α

n

=
k2−α( Γ1

Γk+1

) 1
α

1 +
(Γ1

Γ2

) 1
α + · · ·+

( Γ1
Γn

) 1
α

×
1 +

(Γk+1

Γk+2

) 1
α + · · ·+

(Γk+1

Γn

) 1
α

k2−α

≤ k2−α( Γ1

Γk+1

) 1
α︸ ︷︷ ︸

Ak

1 +
(Γk+1

Γk+2

) 1
α + · · ·+

(Γk+1

Γn

) 1
α

k2−α︸ ︷︷ ︸
Bk,n

(29)

implies that

P

(
Γ
− 1
α

k+1 + · · ·+ Γ
− 1
α

n

Γ
− 1
α

1 + · · ·+ Γ
− 1
α

n

≤ 1− r
)
≥ 1− P

(
AkBk,n ≥ 1− r

)
≥ 1− P

(
Ak > 1

)
− P

(
Bk,n > 1− r

)
≥ 1− E {Ak} −

1

1− r
E {Bk,n}. (30)

The last result is obtained by applying Markov’s inequality.
In the remainder of the proof we show that both E {Ak} and
E {Bk,n} vanish as k →∞ (n > k + 2).

To show the vanishing property of E {Ak}, we first state a
lemma which is proved in App. A.

Lemma 3. Let {ηi}i∈N be a sequence of i.i.d. random vari-
ables with standard exponential distribution and let θ, β be
arbitrary positive real numbers. We have that

0 ≤ E{ηi}i

{
1(

1 + 1
θ

∑k
i=1 ηi

)β
}
< 0.83k +

(2θ

k

)β
. (31)

Having stated this Lemma B, we now recall the definition
of E {Ak}, i.e.,

E {Ak} = k2−αE{ηi}i

{( Γ1

Γk+1

) 1
α

}
= k2−αEη1

{
E{ηi}i>1

{(
1 +

1

η1

k+1∑
i=2

ηi
)− 1

α

}}
.(32)

Now, the following upper-bound is derived from Lemma 3:

E{ηi}i>1

{(
1 +

1

η1

k+1∑
i=2

ηi
)− 1

α

}
< 0.83k +

(2η1

k

) 1
α . (33)
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Therefore, it stands that

E {Ak} ≤ k2−α0.83k + k2−α− 1
α Eη

{
(2η)

1
α

}
. (34)

Since 2 < α+ 1
α , it is clear that limk→∞ E {Ak} = 0.

To show the vanishing property of E {Bk,n}, we employ the
following lemma (see App. B for the proof):

Lemma 4. Let {ηi}i∈N be a sequence of i.i.d. random vari-
ables with standard exponential distribution and let 0 < θ and
1 < β be arbitrary numbers. We have the following identity:

E{ηi}i

{
1 +

∞∑
k=1

1(
1 + 1

θ

∑k
i=1 ηi

)β
}

= 1 +
θ

β − 1
. (35)

Before we prove the vanishing property of E {Bk,n} with
the help of Lemma 4, it is interesting to point out the link
between this lemma and the Riemann zeta function: In Lemma
4, for the simple case θ = 1, we are interested in finding the
expected value of 1 +

∑∞
k=1 Λ−βk where {Λk}k are random

variables such that Λk ≤ Λk+1 and E {Λk} = k + 1. In the
extreme case where the variance of all Λks are zero (removing
the randomness), we have that Λk = k+ 1, and, therefore, the
expected value of the summation is 1 +

∑∞
k=2 k

−β . This can
be identified with the value of the zeta function at β. Hence,
the summation in (35), can be regarded as the randomized
version of the zeta function. Similar to the zeta function, this
randomized version is also converges when β > 1 and contains
a pole at β = 1.

Now we get back to Bk,n, which has

E {Bk,n} = kα−2E
{

1 +

n∑
t=k+2

(Γk+1

Γt

) 1
α

}
≤ kα−2E

{
1 +

∞∑
t=k+2

(Γk+1

Γt

) 1
α

}
(36)

as expectation. Using Lemma 4 we can write:

E{ηi}i>k+1

{
1 +

∞∑
t=k+2

(Γk+1

Γt

) 1
α

}
= E{ηi}i>k+1

{
1 +

∞∑
t=k+2

1(
1 +

∑t
i=k+2 ηi
Γk+1

) 1
α

}

= 1 +
α

1− α
Γk+1, (37)

which leads to

E {Bk,n} ≤ kα−2EΓk+1

{
1 +

α

1− α
Γk+1

}
= kα−2

(
1 +

α(k + 1)

1− α

)
. (38)

Again, since α < 1, the upperbound in the above inequality
vanishes as k →∞. Thus, we have that limk→∞ E {Bk,n} =
0. Along with (30), this implies that

lim
k→∞

P

(
Γ
− 1
α

k+1 + · · ·+ Γ
− 1
α

n

Γ
− 1
α

1 + · · ·+ Γ
− 1
α

n

≤ 1− r
)

= 1. (39)

Note that the upper bounds for E {Ak} in (34) and E {Bk,n}
in (38), respectively, do not depend on n and vanish as k

grows. Hence, for a lower bound 1− ε
2 (arbitrary 0 < ε < 1)

on the probability in (39), it is sufficient to choose k ≥ k0.
On the other hand, Theorem 2 states that for this fixed k0

(which depends on ε) and for large-enough values of n (above
a threshold), the difference between the two probabilities in
(28) would be less than ε

2 . Hence, for this fixed k0 and for
large-enough values of n, we conclude that

P

(
σ1

(
k0; {xi}ni=1

)
σ1

(
n; {xi}ni=1

) ≥ r) ≥ 1− ε. (40)

Obviously, when n grows we have that k0
n → 0, which

completes the proof. �
Theorem 3 roughly states that a heavy-tail distribution fx(t)

that decays as |t|−(α+1) for α < 1 is `1-compressible. At first
glance, it seems that this theorem is of no use when the decay
is faster than |t|−2, particularly for those distributions in the
attraction domain of stable laws with 1 ≤ α < 2, or even
for those heavy-tail distributions in the attraction domain of
Gaussian distribution that decay faster than |t|−3 and have a
finite variance. However, since the distribution of y = |x|p is
fy(t) = fx(t1/p)+fx(−t1/p)

pt1−1/p , if fx decays as |t|−(q+1), then fy
will decay as |t|−(q/p+1); hence, according to Lemma 2, fx
is `p-compressible for p > q.

In summary, the main results in this section are

1) if the distribution of a random variable x is such that
Ex{eγx} is finite for some γ > 0, then the distribution
is not `p-compressible for p ≤ 1, and

2) if the distribution of a random variable x decays as
|t|−(q+1), then it is `p-compressible for p > q.

IV. DISCUSSION

We proposed in Sec. II a definition of the compressibility of
infinite sequences (called s-compressibility) that was not based
on the decay of the sequence; however, all of our examples so
far were decaying sequences. Here, we analyze our definition
in more details and introduce non-decaying s-compressible
sequences.

Assume that we have a monotonically decreasing sequence
of positive numbers which is s-compressible. Whenever we
truncate the sequence, the best k-term approximation of this
finite sequence is, in fact, the first k elements. Note that only
the energy of the best k terms plays a role in Definition 4 and
not their location: The s-compressibility status of the sequence
would not have changed if these k significant elements would
have been located at the end of the truncated sub-sequence.
Consequently, a monotonically increasing sequence of num-
bers where the increasing rate is similar to the decreasing rate
of a decaying s-compressible sequence is also compressible.

A. An Exponentially Increasing S-Compressible Sequence

We show that the exponentially increasing sequence of ai =
2i is `p-compressible for any p. The approach is similar to the
one presented for ai = 2−i. Let 0 ≤ r < 1 and 0 < p be
arbitrary numbers and set k =

⌈
− log2(1−rp)

p

⌉
. For n ≥ k we
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TABLE I
SOME EXAMPLES OF HEAVY-TAIL DISTRIBUTIONS.

Distribution fx(t)

Generalized Pareto q
2λ

(
1 +

|t|
λ

)−(q+1)

Student’s t Γ((q+1)/2)

Γ(q/2)
√

2πλ

(
1 + t2

2λ

)−(q+1)/2

Extreme Value q
2λ
e−(1+

|t|
λ

)−q (1 +
|t|
λ

)−(q+1)

Log-Logistic (q/λ)(t/λ)q−1(
1+(t/λ)q

)2

have that

σp
(
k; {ai}ni=1

)
σp
(
n; {ai}ni=1

) =

(∑n
i=n−k+1 2ip∑n

i=1 2ip

) 1
p

=

(∑k
i=1 2−ip∑n
i=1 2−ip

) 1
p

>
(
1− 2−kp

) 1
p ≥ r. (41)

Similarly to the arguments used for ai = 2−i, this sequence
is also `p-compressible for all 0 < p.

B. S-Compressible Distributions

In Sec. III we showed that heavy-tail distributions are in
some sense compressible. To show some examples, we have
listed a few polynomial-decaying distributions in Table I. In
fact, those are the compressible distributions introduced in [9].
It is easy to check that these distributions decay like t−(q+1)

and therefore, they are `p-compressible for p > q. To verify
the compressibility of these distributions based on Definition
1, note that for y = |x| we have:

1− Fy(t) =

∫ ∞
t

fy(τ)dτ ∝ t−q

⇒ F−1
y

(
1− i

n+ 1

)
∝
( i

n+ 1

)− 1
q , (42)

which suggests R(n, θ) ∝ (n + 1)
1
q and p(n, θ) = q, as

required in (2).
In addition to the examples in Table I, all α-stable distri-

butions for 0 < α < 2 (which include Cauchy and Lévy
distributions) are `p-compressible for p > α.

C. Realizations of an I.I.D. Sequence

We illustrate in Fig. 1, a realization of an i.i.d. sequence
with Student’s t distribution (q = 0.5; decaying like t−1.5). In
the upper graph, we focus on the first n = 100 terms, while
we show a broader view of the same sequence in the lower
graph. We observe that the significant samples in the first 100
terms become insignificant when 1000 terms are considered.
In other words, as n increases, we observe larger peaks in
the sequence, which leads to dramatic changes in the energy
of the truncated sequence depending on whether or not these
peaks are considered.

D. Energy Fraction in Practice

To visualize the concept of s-compressibility in i.i.d. se-
quences, we have plotted the average curves of σ1(k;{ai}ni=1)

σ1(n;{ai}ni=1)

for Gaussian, Laplace, Cauchy, and Student’s t (q = 0.5)

0 20 40 60 80 100
4000

2000

0

2000

0 200 400 600 800 1000

5

0

5

x 104

index

Fig. 1. A realization of an i.i.d. sequence of random variables with Student’s
t distribution (q = 0.5).
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1

k / n

1(k
,{a

i} i=
1

n
) /

 
1(n

,{a
i} i=

1
n

)

 

 

Student t
 Cauchy
 Laplace
Gaussian

Fig. 2. Average curve of σp(k;{ai}ni=1)

σp(n;{ai}ni=1)
with respect to k

n
when p = 1

and n = 104 for i.i.d. realizations of the Gaussian, Laplace, Cauchy, and
Student’s t (q = 0.5) distributions.

distributions in Fig. 2. We set n = 104 and averaged the
curves over 500 different realizations. Theorem 3 implies that
Student’s t distribution with q = 0.5 is `1 compressible. In
Fig. 2, we observe that its energy fraction curve saturates
at very small values of k

n . According to Theorem 3, the
curve for Student’s t distribution will be a step function
in the limiting case of n → ∞. Conversely, Gaussian and
Laplace distributions are not compressible in any sense and
we expect their asymptotic curves (n→∞) to be close to the
ones depicted in Fig. 2. Meanwhile, the fate of the Cauchy
distribution is as yet undecided; since it decays like t−2, we
know that it is `p-compressible for p > 1; however, our results
are not enough to decide for p = 1.

E. Effect of p

To investigate the role of p in s-compressibility of distribu-
tions, we have plotted the average energy fraction curves for
Cauchy distribution with p = 0.9 and p = 1.1 and n = 10i,
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n = 1e6
n = 1e5
n = 1e4p = 0.9
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Fig. 3. Average curve of σp(k;{ai}ni=1)

σp(n;{ai}ni=1)
with respect to k

n
for p = 0.9

and p = 1.1 with different sequence lengths n when i.i.d. realizations of the
Cauchy distribution are considered.

where i ∈ {4, 5, 6, 7}. As predicted by Theorem 3, the curves
for p = 1.1 approach the step function when n increases. The
curves for p = 0.9 seem to have a continuous limit.

F. Linear Transformations

It is interesting to mention that, since α-stable distributions
satisfy a generalized form of the central-limit theorem, they
are closed under linear transformations. In other words, the
stability index of a stable law does not change whatever
the linear-transformation may be. This suggests that the s-
compressibility status of a sequence can be determined in any
domain. However, due to the requirement of independence, the
k-term approximation of the sequence should be carried out
preferentially in the innovation domain.

V. CONCLUSION

In this paper, we first proposed a definition for com-
pressibility of infinite sequences (s-compressibility) that is
consistent with the intuition and is mathematically exploitable.
We then defined compressibility and sparsity for i.i.d. random
sequences. Our definitions are based on the asymptotic dis-
tribution of the energy among the elements in truncated sub-
sequences. We showed that some exponentially decaying prob-
ability density such as the Laplace distribution are not proper
candidates for a s-compressible prior. This arises because they
distribute the energy in the sequence rather uniformly. On
the other hand, by using order statistics, we demonstrated
the connection between the s-compressibility of a heavy-tail
distribution and the stability index to which it is attracted.

APPENDIX A
PROOF OF LEMMA 3

Since ηi and θ are non-negative, the left inequality is trivial.
Defining Γk =

∑k
i=1 ηi, we can write that

E{ηi}

{
1(

1 + Γk
θ

)β} =

∫ ∞
0

1(
1 + γ

θ

)β fΓk(γ)dγ

=

∫ k
2

0

1(
1 + γ

θ

)β fΓk(γ)dγ +

∫ ∞
k
2

1(
1 + γ

θ

)β fΓk(γ)dγ

≤
∫ k

2

0

fΓk(γ)dγ +

∫ ∞
k
2

(2θ

k

)β
fΓk(γ)dγ

≤ P
(

Γk ≤
k

2

)
+
(2θ

k

)β
. (43)

Since Γk is a sum of k i.i.d. random variables with unit mean,
we have E {Γk} = k. Thus, P

(
Γk ≤ k

2

)
is a tail probability.

The following approach is a classical method to show the
exponential decay of the tail probability:

P
(

Γk ≤
k

2

)
= P

(
−

k∑
i=1

ηi ≥ −
k

2

)
= P

(
e−

∑k
i=1 ηi ≥ e− k2

)
≤

E{ηi}i
{
e−

∑k
i=1 ηi

}
e−

k
2

= e
k
2

(
Eη{e−η}

)k
=
(√e

2

)k
< 0.83k, (44)

where the first inequality is obtained by applying Markov’s
inequality. �

APPENDIX B
PROOF OF LEMMA 4

Similarly to the proof of Lemma 3, let Γk =
∑k
i=1 ηi. Since

ηis are i.i.d., the probability density function of Γk is found by
convolving k times the standard exponential distribution with
itself:

fΓk(γ) =
(
fη ∗ · · · ∗ fη︸ ︷︷ ︸

k−times

)
(γ) = F−1

ω

{
(1 + jω)−k

}
(γ). (45)

Thus, we have that

E{ηi}

{
1(

1 + Γk
θ

)β} =

∫ ∞
0

∫
R

1(
1 + γ

θ

)β ejωγ

(1 + jω)k
dω

2π
dγ, (46)

which yields

E{ηi}i

{
1 +

∞∑
k=1

1(
1 + Γk

θ

)β }
=

∫ ∞
0

∫
R

ejωγ(
1 + γ

θ

)β ∞∑
k=0

1

(1 + jω)k
dω

2π
dγ

=

∫ ∞
0

∫
R

ejωγ(
1 + γ

θ

)β (1 +
1

jω

)dω
2π

dγ

=

∫
R

δ(γ) + 1(
1 + γ

θ

)β dγ = 1 +
θ

β − 1
<∞ � (47)
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