
1

Low-rank Matrix Approximation Using
Point-wise Operators

Arash Amini, Amin Karbasi, Student Member, IEEE, Farokh Marvasti, Senior, IEEE,
and Martin Vetterli, Fellow, IEEE,

Abstract—The problem of extracting low dimensional structure
from high dimensional data arises in many applications such as
machine learning, statistical pattern recognition, wireless sensor
networks, and data compression. If the data is restricted to a
lower dimensional subspace, then simple algorithms using linear
projections can find the subspace and consequently estimate its
dimensionality. However, if the data lies on a low dimensional
but nonlinear space (e.g., manifolds), then its structure may be
highly nonlinear and hence linear methods are doomed to fail.
In this paper we introduce a new technique for dimensionality

reduction based on point-wise operators. More precisely, let
An×n be a matrix of rank k ! n and assume that the matrix
Bn×n is generated by taking the elements of A to some real
power p. In this paper we show that based on the values of
the data matrix B, one can estimate the value p and therefore,
the underlying low-rank matrix A; i.e., we are reducing the
dimensionality of B by using point-wise operators. Moreover,
the estimation algorithm does not need to know the rank of A.
We also provide bounds on the quality of the approximation and
validate the stability of the proposed algorithm with simulations
in noisy environments.

Index Terms—Dimensionality Reduction, Low-Rank Matrix,
Point-wise Operator.

I. INTRODUCTION

A fundamental question regarding the real-world data is
the degrees of freedom involved in their generation. The term
intrinsic dimension, which is the main focus of dimensionality
reduction methods, refers to the number of independent vari-
ables for describing a model or a class of signals. Investigation
of the intrinsic dimension arises in a variety of settings such as
machine learning [1], computer vision [2], sensor networks [3],
bandwidth compression [4], and compressed learning [5].
The purpose of reducing the dimension is to obtain a more
compact representation of the data with no or little loss of
information. Simplification of the data structure enables us to
use the traditional machinery provided for low dimensional
data, whereas oversimplifying, results in the loss of crucial
information. Hence, there has been significant interest over
the last few decades in finding dimensionality reductions that
preserve as much information as possible.
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One way to formalize this problem is by representing the
data as a matrix B and then find a low-rank matrix A that
well approximates B. The main intuition behind this method
is that the rank of a matrix roughly represents its degrees of
freedom.
It is known that the best low-rank approximation (in terms

of the Frobenius norm) of B is given by the truncated singular
value decomposition (SVD). More precisely, let Bk denote the
matrix obtained by keeping the k largest singular values of B
and setting the rest to zero. Then one can show that for allM
for which rank(M) = k,

‖B−Bk‖F ≤ ‖M−B‖F ,

where ‖ · ‖F denotes the Frobenius norm. This approach is
shown to be successful in a variety of areas such as information
retrieval [6], face recognition [2] and matrix completion [7],
[8] where the matrix B is approximately low-rank.
In this paper we look at dimensionality reduction from

the signal processing point of view. More specifically, in
applications such as wireless sensor networks and ultrasound
tomography, where the system contains a number of separated
nodes and the communication channel distorts the transmitted
signals among the nodes. In many cases, if the matrix A
models the transmitted (ideal) signals from each node to the
rest of the network, A is low-rank due to the structure of
the network and the type of the transmitted signals. Now, the
corresponding matrix of the received signals, B, is formed
from A through point-wise but nonlinear operations. Hence,
the linear approximation of B will no longer lead to a faithful
representation of the data, while finding the inverse operator
will do the job. Thus, the fundamental question is how to find
this inverse operator which leads to the approximation of the
desired low-rank matrix.
To illustrate this point, below we will describe two appli-

cations as typical examples.

Calibration in Ultrasound Tomography: known operator
In ultrasound tomography with circular apertures, there are

transmitters and receivers installed on the interior edge of a
circular ring surrounding an unknown object. At each time
instance, a transmitter is fired and all the other sensors on the
ring record the scattered signals and the process is repeated
for all the transmitters. Each sensor on the ring is capable
of transmitting and receiving ultrasound signals. The aim of
tomography, in general, is to reconstruct the characteristics of
the 2D (or 3D) enclosed object based on the recorded data
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Fig. 1. Circular setup for ultrasound tomography. Sensors are fired each in
turn and the remaining sensors record the arriving ultrasound signals.

(e.g. sound speed, sound attenuation, etc.). The general setup
for such a tomography device is depicted in Fig. I.
Before the start of the recording process, the apparatus

should be calibrated. To this end, the relative time of flights
between each transmitter-receiver pair are measured. More
formally, let tij denote the flight time between transmitter i
and receiver j and let T denote the matrix of flight times
given by T = [tij ]n×n. Because of the circular placement
of the sensors, it is easy to check that only a small fraction
of the total

(
n
2

)
flight times suffices to estimate the rest;

i.e., the intrinsic dimension is much less than the nominal
dimension. In general, T is a full-rank matrix, however, the
matrix T̃ = [t2i,j ]n×n is shown to have rank 3 [9]. Therefore,
the linear projection of T̃ onto the rank 3 matrices will provide
us with a much better calibration result than the received
matrix T.
This is a situation where both the intrinsic dimension (rank=3)
and the point-wise operator (x2) are known a priori. The same
phenomenon also happens in the Time of Arrival estimation
(TOA) of a sound source when a series of microphones is
deployed [10].

Sensor Localization
In radio communications, the received signal power de-

creases as the distance between the transmitter and the receiver
increases; this phenomenon is called path-loss. In general,
the received signal power from a transmitter at distance r is
proportional to:

1

rα

where the exponent α varies between 2 in free space to 6 in
heavily built urban areas [11].
In a sensor localization problem, n sensor nodes are located

in a d-dimensional space where each sensor measures its
distance to other (probably neighboring) sensors. In practice,
exact distance measurements are not directly available and
must be estimated using the Received Signal Strength (RSS).
More formally, let dij denote the Euclidean distance between
the nodes i and j, and let D denote the distance matrix given
by D = [di,j ]n×n. Furthermore, let pij denote the received
signal power by sensor i from sensor j and let P = [p i,j ]n×n.

Given the pairwise distances, the positions of the sensors
can be found using MultiDimensional Scaling (MDS) [12].
Unfortunately, in practice the matrix D is not available and
should be estimated through P. Although the matrix P is full-
rank in general, it is not difficult to see that its point-wise
transformed matrix P̃ = [p−2α

i,j ]n×n has a rank not exceeding
d+2. Therefore, estimating the matrix P̃ will provide us with
a low-rank matrix that can later be used for many kinds of
sensor localization algorithms [9], [13].
Since α is a property of the environment, it is usually

unknown. Hence, we are in a situation where the intrinsic
dimension is known (d+2) but the point-wise operator linking
the high rank matrix to the low-rank one is unknown (x−2α).
In this work, we consider this problem in its general form,

namely, two matrices, one low-rank and the other full-rank (or
with a higher rank than the first one) that are linked through
a polynomial point-wise operator. Given the full-rank matrix,
we would like to obtain the low-rank one without a priori
knowledge of the rank or the point-wise operator.

Related work
Truncated singular value decomposition became popular by

the pioneer work of Papadimitriou et al. [14] who proved that
latent semantic analysis works under the context of a simpli-
fied model. This method generates faithful low dimensional
representations when the high dimensional input patterns are
mainly confined to a low dimensional subspace.
The nuclear norm of a Matrix is defined as the sum of

the singular values. For a partially known matrix (e.g., we
know some of the entries or their linear combinations) it is
shown in [15] that by constraint nuclear norm minimization we
can achieve the matrix with the minimum rank satisfying the
constraints. This can be interpreted as the matrix form of the
compressed sensing where low rank matrices are considered as
the 2D generalization of sparse vectors and "1-norm minimiza-
tion is replaced with nuclear norm minimization[16]. Beside
the nuclear norm, there are other minimization problems such
as log-det penalty function which heuristically lead to the
matrix with the minimum rank [17], [18].
Graph-based methods have recently received some attention

as a powerful tool for analyzing high dimensional data which
is sampled from a low dimensional sub-manifold. These
methods begin by constructing a sparse graph in which nodes
represent input patterns and edges represent neighborhood
relations. The resulting graph can be viewed as a discretized
approximation of the sub-manifold sampled by the input
patterns. From these graphs, one can then construct matrices
whose spectral decompositions reveal the low dimensional
structure of the sub-manifold (and sometimes even the dimen-
sionality itself). A detailed survey of many of these algorithms
is given in [19]. These algorithms find the low dimensional
embedding using the properties of the manifold. Isomap [20]
is based on computing the low dimensional representation of
a high dimensional data set that most faithfully preserves the
pairwise distances between input patterns as measured along
the sub-manifold from which they were sampled. Maximum
variance unfolding [21] tries to maintain the distances and
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angles between nearby input patterns. The main goal in locally
linear embedding is to keep the local linear structure of nearby
input patterns [22]. Finally, Laplacian eigenmaps map nearby
input patterns to the nearby outputs by preserving proximity
relations [23].
In the context of bandwidth reduction, the point-wise op-

erators of the form xp for p ∈ N are previously studied in
[4]. In fact, the point-wise operator xp extends the bandwidth
of a lowpass signal; based on the root-multiplicities of the
derivative of a bandlimited signal, it is shown in [4] that
one can estimate integer ps and therefore, reduce the effective
bandwidth.
Our approach differs significantly from the previous works.

Our work is closer to the recent work [24] on compressed
sensing where the authors consider two correlated signals
linked by a sparse filter.
The rest of this paper is organized as follows. In Sec. II, we

introduce formally the problem and state the main results in
Sec. III. Section IV provides simulation and numerical results
and Sec. V concludes the paper.

II. NOTATIONS AND STATEMENT OF THE PROBLEM
We begin by definitions and notations which are used

throughout the paper.

Notations
These notations are consistently used throughout the paper:

we use % to indicate an element-wise operation on a matrix
or a vector; for instance, if A = [ai,j ]m×n then A#2 =[
a2i,j

]
m×n

and %f(A) =
[
f(ai,j)

]
m×n

. The rank-deficient
matrix and its rank are represented by A and k, respectively,
and if B = %f(A), f(.) is called the distorting operator
relating B to A. Furthermore, the inverse of f(.) (if exists)
is called the rank minimizing operator. We also represent the
noisy version of B by B̃.
Since we frequently use the determinant of some specific

matrices, we define the following notations:

TB(x) = det
(
B#x

)
, (1)

T̄B(q1, . . . , qn) = det
([

(ln bi,j)
qi
])

. (2)

In this paper, Z and Z+ denote the set of integers and non-
negative integers (zero included), respectively.
Problem statement: Let f(x) = xp be the polynomial

distortion function with unknown but fixed p > 0. Moreover,
let f(x) link the rank deficient square matrix A to the square
matrix B as follows:

B = %f(A) =
[
f(ai,j)

]
.

The goal is to estimate the point-wise operator f(x) and
consequently the rank deficient matrix A given the matrix B
(see Figure 2).

III. MAIN RESULTS
In this section, we explain our results regarding the men-

tioned problem in form of lemmas and theorems.

f(x)

Low rank High Rank

Fig. 2. The distortion function linking matrix A to B.

A. Monomials with Integer-Valued Power
The following theorem reveals the effect of polynomial-type

distorting functions on a rank-deficient matrix:
Theorem 1: Let An×n be a matrix of rank k and p be an

arbitrary positive integer, we have:

rank
(
A#p

)
≤ min

{
n,

(
k + p− 1

p

)}
. (3)

Proof Since rank(A) = k, we can select k linearly
independent row vectors {vi}ki=1 among the rows of A.
This means that the rows of A can be written as the linear
combination of these vectors:

An×n =




c1,1 . . . c1,k
...

. . .
...

cn,1 . . . cn,k





︸ ︷︷ ︸
Cn×k




v1
...
vk





︸ ︷︷ ︸
Vk×n

=
[∑k

l=1 ci,lvl,j
]
. (4)

Therefore, we have:

A#p =

[( k∑

l=1

ci,lvl,j
)p
]

=

[ ∑

p1+···+pk=p
pi∈Z+

(
p

p1, . . . , pk

) k∏

l=1

(ci,lvl,j)
pl

]

=
∑

p1+···+pk=p
pi∈Z+

(
p

p1, . . . , pk

)[ k∏

l=1

(ci,lvl,j)
pl

]
, (5)

where
[∏k

l=1(ci,lvl,j)
pl
]
stands for the n×n matrix for which∏k

l=1(ci,lvl,j)
pl is the i, j element and Z+ represents the set

of non-negative integers. Thus:

rank(A#p) ≤
∑

p1+···+pk=p
pi∈Z+

rank
([ k∏

l=1

(ci,lvl,j)
pl

])
. (6)

Note that:

[ k∏

l=1

(ci,lvl,j)
pl
]
=





∏k
l=1 c

pl

1,l
...∏k

l=1 c
pl

n,l




[∏k

l=1 v
pl

l,1 . . .
∏k

l=1 v
pl

l,n

]
, (7)
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which suggests

rank
([ k∏

l=1

(ci,lvl,j)
pl

])
= 1. (8)

Combining this result with (6), we get:

rank(A#p) ≤
∑

p1+···+pk=p
pi∈Z+

1 =

(
k + p− 1

p

)
, (9)

and the proof is complete. !
Remark 1: If A is a circulant matrix such that the first row

has only k non-zero and consecutive DFT coefficients,

rank(A#p) ≤ p(k − 1) + 1. (10)

According to the properties of the Fourier series, if a,b, c
are vectors of the same size such that a = b % c, the DFT
coefficients of a are obtained by circularly convolving the
DFT coefficients of b, c. In addition, we know that circulant
matrices can be diagonally decomposed using DFT and IDFT
unitary matrices where the diagonal matrix contains the DFT
coefficients of the first row on its main diagonal (eigen-values).
This suggests that the eigen-values of A#p are found by p-
fold circular convolution of the DFT coefficients of the first
row of A which results in (10).
Remark 2: The distorting operator in Theorem 1 can be

considered as a special case of the polynomial operator with
B = %f(A) where f(x) =

∑p
i=0 fix

i; in fact, f(x) is a
monic monomial in Theorem 1. For the general polynomial
operator, we have:

%f(A) =
p∑

i=0

fiA
#i, (11)

thus

rank
(
% f(A)

)
≤

p∑

i=0

rank
(
A#i

)

≤
p∑

i=0

(
k + i− 1

i

)
=

(
k + p

p

)
. (12)

Remark 3: The bound in Theorem 1 is often achieved.
This is helpful for detecting polynomially distorted low-rank
matrices: assume f(x) is a polynomial of degree p and An×n

is a matrix of rank kA where kA is small compared to n.
Moreover, let B = %f(A) be the distorted version with rank
kB ≤

(kA+p
p

)
. If B is a general rank-deficient matrix of

rank kB, the matrix B#i (i ∈ N) will most likely have the
rank

(kB+i−1
i

)
. However, B#i can be related to A using a

polynomial of degree p+ i which implies that the rank of this
matrix is upper-bounded by

(
kA+p+i

p+i

)
. It is not hard to check

that the latter upper-bound is less than the general upper-bound(
kB+i−1

i

)
; this fact, simply distinguishes B from a general

rank-deficient matrix subject to the condition that kA is small
enough compared to n, otherwise,B#i or evenB are probably
full-rank matrices. Furthermore, the trend of rank

(
B#i

)
with

respect to i can reveal the degree of the distorting polynomial

(f ): if rank
(
A#i

)
≈

(
kA+i

i

)
, then rank

(
B"i+1

)

rank
(
B"i

) ≈ 1+ kA
p+i+1

for a range of i values. Now it is easy to estimate p and kA

by having rank
(
B#i

)
for a number of consecutive values of

i.

B. Monomial Operators with Real-Valued Power
In the rest of the paper, we focus on the special case of B =

A#p where we assume that .p is an invertible function (that we
can recover the original matrix A). For example, consider the
case of A# 3

5 ; if the elements of A are real, both . 3
5 and . 53 are

well defined. For a rank-deficient matrix A, it is very likely
that the matrix B = A# 3

5 is full-rank. Here, by observing
Bn×n, we aim to decide whether this matrix is originated
from a rank-deficient matrix using an operator of the form . p

and if yes we would like to estimate p and the rank-deficient
matrix. Note that B# 1

p is the original rank-deficient matrix,
however, if x is a good approximation of 1

p (but x (= 1
p ), B

#x

is still full-rank; i.e., even good estimates of 1
p do not decrease

the rank. This difficulty is mainly due to the discrete nature
of the rank value; therefore, we should introduce continuous
measures to evaluate the rank deficiency of the matrices. For
this purpose, we employ the function TB(x) defined in (1).
It is clear that B#0 = 1n×n (if there are no zeros in B),

thus, if n > 1 we have TB(0) = 0. Moreover, if B = A#p

where An×n is a rank-deficient matrix, TB(
1
p ) = TA(1) = 0.

Note that TB(x) is a continuous function of x which implies
that if x is close to 1

p , TB(x) is also close to zero. This means
that the roots of TB(x) (except the trivial case of x = 0)
play an important role in detecting the rank-deficient structure
behind B; nonetheless, finding the roots of TB(x) is not an
easy task. For this purpose we try to approximate the function
with its truncated Taylor series.
Lemma 1: The function TB(x) has convergent Taylor series

at each point and the qth Taylor coefficient in series expansion
around x = 0 (TB(x) =

∑∞
q=0 tqx

q) is given by:

tq =

∑
π∈Sn

sgn(π)
(∑n

i=1 ln bi,π(i)
)q

q!
(13)

where Sn denotes the set of all permutations of {1, . . . , n}
(|Sn| = n!) and for each element π ∈ Sn, the sign of
π (denoted by sgn(π)) is defined as (−1)N(π) where N(π)
represents the number of inversions in the permutation.
ProofWe consider the expanded version of the determinant

function to find the Taylor coefficients:

TB(x) = det
[
bxi,j

]
=

∑

π∈Sn

sgn(π)
n∏

i=1

bxi,π(i)

=
∑

π∈Sn

sgn(π)ex
∑n

i=1 ln bi,π(i)

=
∑

π∈Sn

sgn(π)
∞∑

q=0

(∑n
i=1 ln bi,π(i)

)q

q!
xq

=
∞∑

q=0

xq

q!

∑

π∈Sn

sgn(π)
( n∑

i=1

ln bi,π(i)

)q
. (14)

The last equation shows the Taylor coefficients. Note that
since det(M1 +M2) is not necessarily equal to det(M1) +
det(M2), the term ∂q

∂xq TB(x) is not necessarily det
(

∂q

∂xqB#x
)

(which shows the importance of (14) and its derivation). Also
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note that, due to the representation of TB(x) as the sum of
finite number of exponentials, the Taylor series is convergent
for every x. !
Although Lemma 1 describes the Taylor coefficients, there

is a more useful representation of the terms which we later
exploit to demonstrate bounds on the truncation error.
Theorem 2: The Taylor series of TB(x) has n−1 vanishing

terms and the expansion can be reformulated as

TB(x) =
∞∑

q=n−1

xq

q!

∑

q1,...,qn=q
qi∈Z+

(
q

q1, . . . , qn

)

× T̄B(q1, . . . , qn). (15)

where the function T̄B is previously defined in (2).
Proof For a given permutation π ∈ Sn we know

( n∑

i=1

ln bi,π(i)

)q
=

∑

q1,...,qn=q
qi∈Z+

(
q

q1, . . . , qn

)
n∏

i=1

(
ln bi,π(i)

)qi .

(16)
Now, by using Lemma 1 and the definition (2) in (16) we
have:

TB(x) =
∞∑

q=0

xq

q!

∑

q1+···+qn=q
qi∈Z+

(
q

q1, . . . , qn

)

× T̄B(q1, . . . , qn). (17)

If there are 2 or more zeros in an n-tuple (q1, . . . , qn) (non-
negative integers qi where

∑n
i=1 qi = q), then

[(
ln bi,j

)qi]

includes two or more rows completely filled with ones and
thus, T̄B(q1, . . . , qn) = 0. Hence, only n-tuples appear in the
coefficients that contain at most one zero. Consequently, the
coefficients of xq for q < n− 1 vanish and the Taylor series
start with xn−1; i.e., x = 0 is a multiple root of TB with
multiplicity at least n− 1. !
Remark 4: The summations in (17) for finding the Taylor

coefficients involve an increasing number of summands which
becomes computationally impractical for large n. In these
cases, it might be possible to numerically approximate the
Taylor coefficients; for instance, one might look for the Fourier
series of the function TB

(
ejω

)
(it is easy to show that TB(.)

is an analytic function and it is well-defined over the complex
plane) with respect to ω which yields the Taylor coefficients.
Theorem 2 and Lemma 1 suggest that in order to have a

good approximation of TB at a given x, it suffices to include
only a finite number of the terms in the Taylor series; i.e., for
a limited range of x, TB can be properly approximated by a
polynomial of finite degree. This is our main key to evaluate
the roots of TB(x); we truncate the Taylor series at the N th

term and find the roots of the resultant polynomial. We then
calculate the range of x for which the N -term approximation
of the Taylor series yields acceptable (pre-specified upper-
bound for error) results. Finally, we discard those roots which
do not belong to this range.
In the following theorem, we demonstrate an upper-bound

on the truncation error of the Taylor series.
Theorem 3: Let EN (x) =

∑∞
q=N+1 tqx

q denote the trun-
cation error of the Taylor series approximated by the firstN+1

terms and let MB be the maximum modulus of the elements
of % lnB. For an arbitrary value x and N ≥ *eMBx+, we
have:

|EN (x)| ≤
n

n
2

(
eMBx

)N+1

√
2π(N + 1)N+1.5−n

(
1− eMBx

N+1

) . (18)

Proof Using Hadamard’s inequality, we have:
∣∣T̄B(q1, . . . , qn)

∣∣ =
∣∣∣det

([
(ln bi,j)

qi
])∣∣∣

≤
n∏

i=1

( n∑

j=1

| ln bi,j|2qi
)0.5

≤
n∏

i=1

√
nM qi

B = n
n
2 M

∑n
i=1 qi

B . (19)

Note that,

|EN(x)| =
∣∣∣

∞∑

q=N+1

xq

q!

∑

q1,...,qn=q
qi∈Z+

(
q

q1, . . . , qn

)

× T̄B(q1, . . . , qn)
∣∣∣

≤
∞∑

q=N+1

xq

q!

∑

q1,...,qn=q
qi∈Z+

(
q

q1, . . . , qn

)

×
∣∣∣T̄B(q1, . . . , qn)

∣∣∣. (20)

Therefore, from (19) we get

|EN(x)| ≤
∞∑

q=N+1

xq

q!

∑

q1,...,qn=q
qi∈Z+

(
q

q1, . . . , qn

)
n

n
2 Mq

B

= n
n
2

∞∑

q=N+1

(
MBx

)q
qn

q!
. (21)

Employing n! >
(
n
e

)n√
2πn, we obtain:

|EN(x)| ≤ n
n
2 (eMBx)n−0.5

√
2π

∞∑

q=N+1

(eMBx
q

)q+0.5−n

≤ n
n
2 (eMBx)n−0.5

√
2π

∞∑

q=N+1

(eMBx
N + 1

)q+0.5−n
(22)

Due to our assumption that N ≥ *eMBx+, we have eMBx
N+1 <

1 and therefore,
∞∑

q=N+1

(eMBx

N + 1

)q+0.5−n
=

(eMBx

N + 1

)N+1.5−n 1

1− eMBx
N+1

, (23)

which completes the proof. !
It should be mentioned that multiplying or dividing the

elements of B by a scalar does not change the roots of TB(x);
however, it does affect the value MB and consequently the
upper-bound for the truncation error, thus, in order to improve
the numerical results, it is desirable to find the optimum scalar
value (it is easy to check that this value is the inverse of the
geometric mean between the minimum and maximum values
in the main matrix).
The last thing to discuss is the rank (k) of the original matrix

An×n from which the matrix Bn×n is generated. As Theorem
1 indicates, for all values of m that

(m+k−1
m

)
< n (let mmax
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denote the maximum of these m’s), the matrix A#m is rank-
deficient. Thus, if B = A#p (p ∈ R), all the elements of the
set { i

p}
mmax
i=0 are the roots of TB(x); i.e., the set of the roots

contains an arithmetic progression of lengthmmax+1 starting
from zero and with step size 1

p . In fact this is a helpful tool
for both detecting the rank-deficient structure behind B and
denoising the estimates of p or its inverse 1

p ; i.e., since we
are using the truncated version of the Taylor series (probably
using even noisy matrix elements), the roots are not exact but
a pattern similar to an arithmetic progression helps denoising
the step size and consequently recovering the original matrix.
Furthermore, the length of the detected arithmetic progression
can be used to estimate the original rank value (k). If, the
length is l we have:

(
l + k − 2

l − 1

)
< n ≤

(
l + k − 1

l

)
. (24)

It is again useful to denoise the estimate of the matrix A from
B. In fact, we can map the estimated matrix Â to the closest
rank-deficient matrix using the upper-bound for k by means
of setting some of the smallest singular values of Â to zero.
Table I shows the step-wise procedure of the proposed method.
1) A special case: We showed in Remark 1 that circulant

matrices are special cases for the monomial distorting opera-
tors with integer power. Here we also develop special methods
for finding the real-valued power of a distorting operator
acting on a circulant matrix. Let us denote the first row of
the distorted circulant matrix B (which is also circulant) as
[b1, . . . , bn]. We know:

B#x =





bx1 bx2 . . . bxn
bxn bx1 . . . bxn−1
...

...
. . .

...
bx2 bx3 . . . bx1





= D





b̂1(x) 0 . . . 0
0 b̂2(x) . . . 0
...

...
. . .

...
0 0 . . . b̂n(x)




DH , (25)

where D represents the unitary DFT matrix and b̂i(x)’s are
the DFT coefficients of the vector [bx1 , . . . , bxn]:



b̂1(x)
...

b̂n(x)



 = D




bx1
...
bxn



 =
∞∑

k=0

D




(ln b1)k

...
(ln bn)k




xk

k!
. (26)

From 25 it follows that

TB(x) = det
(
B#x

)
=

n∏

i=1

b̂i(x). (27)

This shows that we have a simple factorization of the
function TB(x) in which we can simply calculate the Taylor
coefficients of each term; according to (26), the kth Taylor
coefficient of b̂i(x) is equal to the ith DFT coefficient of
1
k! [(ln b1)

k, . . . , (ln bn)k]. In simple words, instead of approxi-
mating TB(x) with its truncated Taylor series, we can approx-
imate it by truncating the Taylor series of its components.

TABLE I
ESTIMATING THE RANK MINIMIZING OPERATOR

Input:
• Bn×n.

Outputs:
• p, the power of the rank minimizing monomial.
• kmax, maximum possible rank of the original matrix.
• Ân×n, estimated rank-deficient matrix.

Steps:
1) Initialize N , the number of Taylor coefficients to keep,

and xmax, the maximum expected root of TB(.).
2) [optional] Instead of working with B it is better to

divide all the elements by MB, the geometric mean
between the minimum and the maximum entries of B.

3) Compute the first N Taylor coefficients (coefficients
of xn−1, . . . , xn+N−2) of TB(.), either directly by
using (17) or indirectly by an approximation method
(for large n).

4) Find the roots of the truncated Taylor series by one
of the root-finding methods such as Splitting Circle
Method [25].

5) Check if the roots belong to the confidence interval of
the N -term Taylor approximation. The safest way is
to use the upper-bound on the error but more practical
is to check if it is also the root of the truncated Taylor
series with N − 1 and N − 2 terms.

6) If there are l > 1 acceptable roots (including x = 0),
set xmax ← l+1

l−1 rmax where rmax is the maximum
acceptable root; otherwise, do not change xmax.

7) If N is large enough to yield good enough approxi-
mations for the whole range of [0, xmax], terminate
the loop; otherwise increase N and return to step 2.

8) Is there any arithmetic progression of length at least 3
among the acceptable roots?

• No (or if there are no non-trivial roots): The
matrix B is unlikely to be produced by a low
rank matrix.

• Yes: set 1
p as the smallest positive element in the

arithmetic progression, set kmax as the maxi-
mum value k such that

(l+k−2
l−1

)
< n where l

is the length of the arithmetic progression, and
define Â by setting the n − kmax smallest
singular values of B% 1

p to zero.

The advantage is that unlike (17) where the summation is
over a large and increasing number of summands, the Taylor
coefficients of the components can be obtained using the Fast
Fourier Transform (FFT).

IV. NUMERICAL RESULTS
For the purpose of simulation results, we have implemented

the algorithms for both the integer and the real-valued powers
in MATLAB. In the first scenario, we have generated a low
rank matrix by multiplying two 1000×5 and 5×1000 random
matrices with i.i.d. elements uniformly distributed in [0, 1].
The resultant matrix which is of rank 5 is used as the original
low rank matrix while its distorted version is constructed
as B = A#2. According to Theorem 1, we should have
rank

(
A#p

)
≤

(4+p
p

)
for a positive integer p; in fact, Fig.

3 confirms that the equality happens for this matrix1. On the

1Due to the numerical errors, MATLAB’s rank function is inaccurate for
large rank-deficient matrices; for determining the rank, we have used the gap
between the singular values to distinguish between the zero and non-zero
values.
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respectively, which imply upper bounds of the form

(4+p
p

)
and

(14+p
p

)
on
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Fig. 4. The determinant of B%x and its noisy versions versus x; the large
negative peaks in the log scale indicate the existence of roots (rank minimizing
power).

other hand, for the matrix B where we have rank(B) = 15,
there is a gap between the upper bound

(14+p
p

)
and the actual

rank. It is easy to check that the rank curve of B#p coincides
with

(
4+2p
2p

)
; this is in fact the key to find the rank of A by

having B (as explained in Remark 3).
In the second scenario, we have considered a circulant rank-

deficient matrix. The first row of this 100 × 100 matrix is
generated in such a way that it has only 5 non-zero and con-
secutive DFT coefficients; in fact the non-zero coefficients are
generated by realizations of i.i.d. zero-mean normal random
variables with variance 10. The applied distorting operator
here is .# 5

11 ; i.e., p = 5
11 and the original rank-deficient matrix

A100×100 is recovered by taking the elements of the distorted
matrix B100×100 to the power 1

p = 2.2. In order to include
the noise effect, in addition to implementing the techniques on
the noiseless matrix, the noisy versions of B are also studied:
the elements of B are subject to Additive White Gaussian
Noise (AWGN) with difference noise variances resulting in
SNR values 100dB, 75dB and 50dB. Before we conduct
the experiments to find the rank minimizing operator, it
is interesting to examine the suitability of the determinant
function for this purpose. Figure 4 depicts the curve of the
function TB(x) and the corresponding functions for the noisy
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Fig. 5. The condition number of B%x and its noisy versions versus x; the
large positive peaks might indicate the existence of roots (rank minimizing
power).

versions of B. As discussed before, we expect the functions to
have roots at x = 2.2, 4.4, 6.6, . . . ; nevertheless, due to the
additive noise, the roots are perturbed and they may no longer
lay on the real axis. As a result, instead of roots, the functions
have local minima at the desired values which can still be used
for approximating the original roots. Now it is interesting to
replace the determinant measure by the condition number of
the matrix; the roots of the determinant are mapped to the
sharp peaks in the curve of the condition number. Although
this is the case for the noiseless matrix, Fig. 5 reveals that
there are many fake peaks in the curves of the noisy matrices.
In other words, it is more difficult to locate the original roots
by focusing on the condition number when the observations
are noisy.
Figures 6, 7, 8, and 9 show the approximations of the

determinant functions obtained by truncating the Taylor series
as explained in III-B1. The curves for the truncated Taylor
approximations with degrees higher than 40 almost coincide
and therefore, are not reported in these figures. This fact shows
that for the mentioned matrix, only 40 Taylor coefficients are
sufficient for an accurate estimation of the determinant for
x ∈ [0, 10] and consequently, the roots in this interval.
To evaluate the computational complexity of the propose

method, note that as explained in III-B1, for each Taylor coef-
ficient of an n×n circulant matrix we require an FFT operation
which requires O(n logn) multiplications and suggests the
complexity of O(dn logn) for a degree d approximation of
the Taylor series. Generally, finding the roots of a polynomial
of degree d with ε accuracy requires O

(
d2 log d | log ε|

)

operations [26] which shows that the total cost of the proposed
method is O

(
d2 log d | log ε| + dn logn

)
. Now to compare

this result with the brute-force search, it should be mentioned
that each determinant evaluation for a circulant matrix costs
O
(
n2 logn

)
multiplications (it is more thanO(n3) for general

matrices) and to have ε accuracy in the roots, O
(
1
ε

)
determi-

nant evaluations are needed; i.e., the complexity ofO
(
n2 logn

ε

)

for the whole procedure. It is evident that for the cases in
which a good Taylor approximation is obtained with d < n
(such as the mentioned example where n = 100 and d = 40),
the proposed method is much faster than the simple brute-
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Fig. 6. The Taylor approximations of the determinant for the noiseless
100 × 100 circulant matrix with various number of terms.

0 2 4 6 8 10
1000

800

600

400

200

0

200

400

600

800

1000

x

lo
g(

 | 
po

l. 
| )

 

 

deg=10
deg=20
deg=30
deg=40

Fig. 7. The Taylor approximations of the determinant for the noisy 100×100
circulant matrix with SNR = 100dB and various number of terms.

force search. It is also important to point out that the desired
accuracy in the roots (ε) influences the complexities with
different order of magnitudes; the complexity of the proposed
method scales with | log ε| (which is inherent in all common
root-finding methods) while the scaling factor is 1

ε in the brute-
force search method.
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Fig. 8. The Taylor approximations of the determinant for the noisy 100×100
circulant matrix with SNR = 70dB and various number of terms.
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Fig. 9. The Taylor approximations of the determinant for the noisy 100×100
circulant matrix with SNR = 50dB and various number of terms.

V. CONCLUSION

We have considered the problem of detecting the exis-
tence of a function of the form f(x) = xp (p ∈ R) that
converts a given matrix Bn×n into a rank-deficient matrix
A. Furthermore, we have introduced means to estimate p by
considering a determinant-type function ofB; this function has
p as its root and the problem of estimating p reduces to the
problem of finding the roots of this generally non-polynomial
function. We have shown that when rank(A) - n, there
exists an arithmetic progression among the roots starting
from zero with step size p. Since finding the roots of this
function is computationally hard, we used its truncated Taylor
series which are shown to be good approximations. Simulation
results show that these polynomials yield acceptable results for
finding the roots when the noise level on the elements of B
is small.
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