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Abstract

One of the proposed methods for recovery of a band-limited
signal from its samples, whether uniform or nonuniform, is the so
called frame Method!. In this method the original signal is recon-
structed by iterative use of sampling-filtering blocks. Convergence
of this method for linear invertible operators has been previously
proved. In this paper we show that this method for non-invertible
periodic nonuniform samplings as well as non-invertible uniform
samples of bandpass (or multi-band) signals will lead to the pseudo-
inverse solution. Convergence conditions in case of additive noise
will also be discussed.
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Tt is also called marvasti’s method by Feichtinger and Grochenig [1] and Grochenig
and Strohmer in the sixth chapter of [2].
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1 Introduction

Although uniform sampling at the Nyquist rate for low pass signals is
quite straitforward, the extensions to bandpass and multi-band signals
are not trivial. The bandwidth for such signals consists of separate pos-
itive frequency intervals with the overall length of B (thus the Nyquist
rate is 2B). Therefore, uniform sampling at the rate 2B is likely to lead
aliasing. The minimum alias-free uniform sampling rate for bandpass
and multiband signals are not necessarily 2B [3].

One of the old proposed methods for reducing the sampling rate is
the second order sampling [4]. In this method the classical uniform sam-
pling points are substituted by two interlaced uniform sampling sets. The
average sampling rate of 2B can be reached by proper selection of the in-
terlacing parameter. Generalization to N** order samplings (or periodic
nonuniform sampling) for bandpass and multi-band signals have been
studied by [5, 6, 7, 8]. Periodic nonuniform sampling is also generalized
to sampling sets which are unions of shifted lattices ([9, 10]); these sets
are not necessarily periodic. Implementations of periodic nonuniform
samplings are usually fulfilled by passing the signal through different de-
laying filters and then uniformly sampling each filter output. The idea
of using a general filter bank (instead of delay filters) has been developed
by [11, 12].

The proposed reconstruction methods are mainly based on interpo-
lating functions. Since these functions are bandlimited, they cannot be
timelimited. For practical implementations these functions should be
truncated. In many cases these truncations result in considerable errors.
The alternative methods are iterative approaches. In these methods, by
repeated use of a simple but not a perfect reconstruction method, the
output gradually converges to the perfect solution [2]. For optimizing
the iterative method with respect to the convergence rate, accelerated
methods has been proposed [13]. One of the advantages of the iterative
methods is that when the sampling scheme is non-invertible, it still con-
verges while the interpolating methods diverge. We will show that the
converging signal is the pseudo-inverse solution. In the next section, we
first introduce our specific iterative method and then in section 3 we will
consider its convergence analysis for the case of Hermitian matrices; in
this section we consider the effect of additive noise. In section 4 we will
check the results for a special non-invertible case of bandpass sampling
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Figure 1: Block diagram of the iterative method for the distorting oper-
ator D and the relaxation parameter \ = 1.

where we show how the sampling-filtering block can be modeled with a
Hermitian matrix. The extensions to periodic nonuniform sampling for
bandpass and muliband signals is given in section 5. Simulation results
and conclusion are given in sections 6 and 7 respectively.

2 The Iterative Method

One of the methods for reconstruction of a signal from its samples, is
the iterative method [14, 2]. In this method by successive use of a crude
reconstruction method, we increase the quality (measured by SNR) of
the reconstructed signal and we may reach the original signal without
error. The block diagram of this method is presented in Fig. 1. As it is
shown, to recover the original signal z from its distorted version y, we
repeatedly apply lowpass filtering and sampling denoted by the operator
D. The mathematical formulation of this method is as follows:

Tpr1 = A (y - D[$k]> +

- D (1)
y = Dlz]
o — 0

In the above equation A is called the relaxation parameter. Con-
vergence of the iterative method is determined by this parameter. The
range of A which is required for convergence is usually a continuous in-
terval which includes zero; thus to avoid divergence, A is normally set
near zero.
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3 Convergence Analysis

We shall discuss convergence conditions for the iterative method in this
section. The analysis is general for any linear operator D which could
be modeled with a Hermitian matrix and is not limited to sampling
problems. Let us assume that the input x is an [ X 1 vector and the
output y is

y = D.x, (2)

where D is an | x [ Hermitian matrix (we will show later that for the
convergence of the iterative method, the matrix D should be either Non-
negative Real or Nonpositive Real). We can also include a noise vector
by assuming:

y=Dx+n (3)

The statement of the problem is that given the output y vector, we
wish to find the input vector x; i.e., to find the inverse of the system.
Since the noise vector or even the existence of the noise is not known,
for the purpose of the reconstruction we have to assume the distorting
operation is defined by (2) while (3) is more likely to hold. Therefore,
we implement the iterative method by successive multiplication of the
vector by the D matrix. Thus the reconstructed vector in each iteration
is found by:

X1 = My — D.xy) + xy,

y=Dx+n (4)

Xp = 0

We define the error vector and the error matrix as:
Zp =X — X
{ E=I,,—-)D (5)
Thus, we can rewrite (4) as:

{ Zp41 = E.Zk —An

Z) — —X

=2, = B ' x + Al +E+E* +--- + E ')n (7)

=% = (L — BN x + A(loq + E+ B 4+ B n (8)
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We are interested in the convergence and uniqueness of the sequence
x; when k& — oo. To find the answers of these questions, we need to
evaluate powers of E as shown in (8).

Assuming D is nonnegative definite (Hermitian) with eigen-values
dl, d2, e ,dl, we have:

O=di=dy=--=de<dey1 <deyo <--- < d 9)

where ¢ is the number of zero eigen-values (0 < ¢ < n). Moreover,
Hermitian matrices have orthonormal eigen-vectors; let vi,va,...,v; be
these orthonormal eigen-vectors:

D.Vi = divi
vl = dlj — ] (10)
1<i<j<l
Therefore: [ ]
V = |vq|va]...|v;
{ vV.vil =1, (11)
and
D = V.diag(di,ds, ..., d;). V", (12)
where diag(dl,dg, . ,dl) represents a square diagonal matrix with its
diagonal elements as dy,ds, .. .,d;. Similarly we can write:

E =1, — AD = V.diag(1 — Adi,1 — Ada,...,1 — Ad;).VZ  (13)

We will first study the case with no noise (2) and then we will consider
the effect of additive noise as shown in (3).

3.1 The Case Without Additive Noise

Without additive noise, (8) becomes:
X — (Ile — Ek).X (14)

Hence the convergence of the algorithm is equivalent to the convergence
of limy,_,o E¥. From (13) we have:

EF = V.diag((1 — Xd1)", (1 = Ad2)F, ..., (1 — Ad))*¥). VH (15)
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To assure convergence, it is required that |1 — Ad;| < 1. Moreover, if for
any i we have 1 — \d; = —1, although E* elements stay bounded, (14)
does not converge. In summary, to assure convergence, we should have:

0§>\<d% d; >0
Vi:i—-1<1—Xd;<1= < or (16)
02A>d% d; <0

Since all eigen-values are positive, there exists a nonempty set of A
values which satisfy all these inequalities. If we had both positive and
negative eigen-values, no solution for A would be achieved (equivalent to
the previously stated condition of non-negativity or non-positivity of the
real part). In the iterative method (4), A = 0 is a trivial case; thus we
have:

convergence < 0 < X < (17)

dma:l:
From now on we assume that the above condition is fulfilled by proper
choice of A. If D is an invertible matrix, it has no zero eigen-values
(c = 0 in (9) and thus for all 4, |1 — Ad;| < 1. This means E¥ — 0 as
k — oo and from (14) we have:
lim x;, = x, (18)
k—o00
which means perfect reconstruction (which was predictable due to the
invertibility of D). Now let us assume that D is not invertible and has
c zero eigen-values. As a consequence, E has ¢ eigen-values equal to 1
and the rest have absolute values less than 1:

EF = V.diag(l, Loy, (1= Mdeyp)F, ..., (1= Adl)’“>.VH (19)
N—_———

c times

- k—o00

= E® = lim Ek:V.diag(l,l,...,l, 0,...,0 >.VH (20)
— Y—

c times |—c times

= Xoo = klggo Xp = kli)rgo (lel — Ek).x = (lel — EOO).X
= V.diag(0,0,...,O, 1,...,1>.VH.X (21)
—_——— ——

c times [—c times
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Now we shall show that this result is also obtained by pseudo-inverse of

D.
D= V.diag(O,...,0,dc+1,...,dl>.VH
———
c times
= Pseudo — Inverse : DT = V.diag(0,...,0, d;}l, . ,dl_l).VH(22)
——

c times

= D+.D:V.diag<0,0,...,0, 1,...,1 >.VH
N N —

c times [—c times
= x"=D"y=D"Dx
:V.diag<0,0,...,0, 1,...,1>.VH.x (23)
—_———— ——
c times [—c times
Comparing (21) and (23), we get:
Xoo = X (24)

Thus we prove the important result that when the matrix D is not in-
vertible, the iterative method converges to the pseudo-inverse solution.

3.2 The Case of Additive Noise

Assuming the additive noise has zero mean and D is invertible, we can
write (3) as:
y=Dx+n=D.(x+D '.n) (25)

Thus by the same argument as given for the noiseless case, we will have:

Xoo = lim xy =x+ D ln (26)
k—o00

Although the iterative method converges to the above equation, yet D!
can amplify the noise component, and hence the final SNR may not be
acceptable.

Now we assume that D is not invertible and has ¢ zero eigen-values
and therefore (19) holds for powers of E. If we define ¢; = 1 — Ad;
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(1<e<l),wewillhavee; =---=e,=1and |e;| <1 forc+1<i<I.
Rewriting (19), we have:

E' = V.dmg(l,...,1,eg+1,...,e§>.vH

c times

k—1

1—e 1—ek
:>ZEZ = Vdmg(k, K 1 ctl 1 l)VH
=0 c times T Cett —
c l 1
= kaz vi 4 Z vi.vE (27)
i=1 i=c+1 1- €i

Combining (8) with the above result, we get:

l

Cc
1— ek
= xp, = (I — BF) x + A(kai.le + Z . _Zz- vi.le>n (28)
i=1 i=c+1 !

When )\ is properly chosen, EF converges as k — oo. Moreover, since
lei] < 1for c+1 < i <1, we know that ef — 0 as k increases. Hence,
the only part in (28) which may diverge is k(Y. ;_, v;.v/’).n:

c
Convergence < (Z vi.vZH) n=0 (29)
i=1

Cc

= nH.(ivi.le).n = Z (nH.vi).(nH.vi)H =0

i=1
= V 1<i<e¢: nflv;i=0= nlvy...,v, (30)
On the other hand, we know that {vy,...,v;} form an orthonormal basis
for our vector space, thus n Lvq,...,v. implies:

I !
3 Betty,--sBr n= Z Bivi = Z %D-Vz’
(2

i=c+1 i=c+1

i

[
=n= D.< > %VZ) =D.q, (31)
i=c+1
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where n is an [ x 1 vector. Thus we have shown that the convergence
condition requires that n € Range(D). Now if this condition is satisfied,
we have convergence of the iterative method:

n :D.ﬁ:>y:D.x—i—n:D.(x+ﬁ)
= lim x; = D" (x + n) (32)
k—o0
We summarize the results in the following theorem:

Theorem 1 The iterative method described in (4) (for a Hermitian dis-
torting matriz D) converges if and only if:

0 <A< 72—
(33)
n=D.n,
where 1 45 an | X 1 vector and we have:
lim x; = D".D.(x + n), (34)

k—o0

where dpep 15 the mazimum eigen-value of the matriz D and DT is its
pseudo-inverse. For invertible D we have DY =D ! and n =D '.n .

4 TIterative Reconstruction from Uniform Sam-
ples of Bandpass Signals

In this section we study a special case which is often non-invertible. Let
z(t) be a bandpass signal with its Fourier transform X (f) (Fig. 2). If we
simply sample this signal uniformly with a rate close to the Nyquist rate,
i.e., 2B, the occurrence of aliasing effect for some frequency components
is highly probable. Let fi,..., fn be equally spaced frequencies which
cover the interval [fr, frr]. We define the original vector as:

T
XD = | X(=fn)y- s X(=f1), X(F1), -, X (fN) (35)

After uniform sampling of z(t), followed by a bandpass filtering, some
frequency components are distorted due to the aliasing. We assume the
interference to be as shown in Fig. 3. Thus the £ higher frequency
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5 X(F) .

_fH _-f'_ f:'_ fH , f

Figure 2: The spectrum of a bandpass signal with bandwidth B.

fI\T-IcH fN _”'?\r 7

M+

Figure 3: Aliasing effects for uniform sampling. Dots on the axis show
nonzero frequency components. Aliasing effects take place between

(frs =IN)5( frgrs —fn=1)s---s(fN , —fN—k+1) and similarly for negative
frequencies.

components will interfere with the k lower frequency components and
the 2N — k middle components remain unchanged, hence the distortion
matrix (shown in (2)) is given by:

Liscke Ok x (2N k) Liscke
D= | Opnv-2kxr Ienv-2rxeNv-20) OpN_2r)xk (36)
Liscke Ok x (2N k) Liscke

It is evident that this matrix, only for £ = 0 is invertible and for £ > 0
is non-invertible (since the sampling scheme was irreversible). To find
the pseudo-inverse of the matrix, we have to evaluate the eigen-values:

Eig{D} = (Eig{ ( Lok Lk > },Eig{l(zN%)X@N%)}> (37)

Tiexk  Lixk
:>Eig{D}:((0,...,0,2,...,2),( 1,...,1 )) (38)

k times k times 2N =2k times
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Eigen-values of D can be translated to those of E as:

Eig{E} = <1,...,1,}—A,...,1—Aj,}—2>\,...,1—25> (39)

k times k times 2N =2k times

= E® = V.diag(1,...,1, 0,...,0 ).V"
N N —
k times 2N —k times

= [v1|v2| .. |vk] . [v1|vQ| .. |vk]T, (40)

where vq,..., v are eigen-vectors of D related to its zero eigen-values.
It is easy to check that:

T
[0,...,0,1,0,...,0,—1,0,...,0] L 1<i<k(41)
—_—— = ~——

1—1 2N—k—-1 k—1

1
Dv,=0=v;, = E
Now that we have the eigenvectors, we can evaluate the final vector

produced by the iterative method. For this purpose, we have to first
calculate the E* matrix:

1 | PR 0k (2N —2k) Lk
E™ = 2 Oan—ak)xk  O@n—2k)x(@2N—2k) T2n—2k)xk (42)
v Ok x (2N —2k) Lk

X(fn) = X(—fN—k+1)

X(fy—isr) = X(~fx)
0

) N N : Son ok |@43)
0
X(=fn-ks1) — X(fn)

X(=fn) - X(fN—k+1)
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X(fN)+X§_fN—k+l)

X(fN—k-+l2)._X(_fN)
X(fnr)

X(f-n+k)
X(_fN—k-;l)_X(fN)

X(_fN)_)(.(fN—k-H)
2

In other words, using the iterative method, we have only divided the
aliased frequencies by 2. Although this result could have been achieved
without the use of the iterative method, the strength of this method
becomes more evident in more complex cases such as multiband signals.
In fact this method, without any knowledge about the aliasing parts,
accomplishes the desired results.

5 Periodic Nonuniform Sampling for Bandpass
and Multi-band Signals

To avoid high sampling rates for perfect reconstruction of bandpass and
multi-band signals, Periodic Nonuniform Samplings (PNS) have been
suggested. In the N** order PNS, the sampling points {¢;} are found by:

tanyy = aT +k aEZ,bE{O,l,...,N—l}
0<Kki <k < ---<kn_1<T (45)

where T is the sampling period and the average sampling rate is % We
denote the signal and its Fourier transform by z(¢) and X(f), respec-
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tively. If we apply the N*» order PNS to the signal z(t), we get:

N-1
zs(t) = (). Y ot —al —k)

a€Z b=0

N-—1
= Xs(f) = X(f)*zz(s(f_%)e—ﬂwkb%
b=0 a€Z
N-1

= ZX(f - f)- Z e ke

Q€7 b=0

L(a)

= Y X(f - 2)L() (46)

Q€L

As shown in the above equation, each frequency component of the sam-
pled signal may be affected by more than one component of the original
signal. Since the original signal is bandlimited, each frequency compo-
nent of the sampled signal is the combination of finite components. Let
fo,f1,--.,fm be the initial frequencies which affect the frequency fy of
the sampled signal. Thus:

VO<ik<m : T.fi—fx)€Z
Xo(fi) = D X(fx)-L(T-(fi = fr) (47)
k=0

We can represent the above summations as a matrix equation:

%D = Lx(D

S [X(f1), X(f2)-- - X (fm)]"
xs(f) £ [Xs(fl)vXS(fZ)v"'7X5(fm)]T

(L(T'(fi - fk))) , 0<i,k<m (48)

ik

=
(1>

Due to the definition of the L function we know:

N-1 N-1 *
Lip = L(T.(fi _ fk:)) - Z e~ I2mky(fi—fr) — (Z 6_j27rkb(fk_fi)>

b=0 b=0

= LY(T.(fx — fi)) = L, (49)
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where * denotes the conjugate operation. The above equation shows the
fact that the matrix L is Hermitian (LY = L).

Up to now we have only considered m+1 single frequency components
of the continuous Fourier transform. Let us assume that we have sampled
the signal X (f) at the sampling pointsof f € {..., %, %,0, %, %, b
where r is an arbitrary positive integer. Since the frequency step between
these sampling points is an integer multiple of 1/(r.T), the frequency
components which play a role in aliasing are either all included or all ex-
cluded. Moreover, we will discard the out of band components and only
focus on the components inside the original band (by means of filtering).
The original signal was bandlimited and we have only considered the
inband frequency components; thus we are dealing with finite number of
samples and we can consequently define the original and sampled Fourier
transform vectors similar to (48). Similar to the above approach, we can
show that these vectors are related to each other within a Hermitian ma-
trix. The vectors are estimates of the continuous Fourier transforms and
when the parameter r in the frequency sampling part increases, these
estimates represent the continuous functions more precisely. We assume
that we have chosen a large enough r so that our estimates are suitable
representations. Now we are dealing with discrete signals which could
be treated via vectors and as shown here, the sampling-filtering block
could be modeled with a Hermitian matrix (distortion matrix).

6 Simulation results

We have verified our theoretical results with MATLAB simulations. Fig.
4 shows a bandpass signals and its reconstructed versions from uniform
samples at the Nyquist rate (which are non-invertible) for different it-
eration numbers. It is evident that for aliased components, we have a
division by 2 in the frequency domain (compare the sampled signal and
the one at the 20" iteration). Fig. 5 shows that after 20 iterations (for
A = 0.9) we have almost reached the final signal and the SNR curve
is saturated. The case of noisy samples which we expect to diverge, is
shown in Fig. 6. Although the initial SNR of noisy samples is 2575,
divergence is clear by the reconstructed signal at the 20" iteration. In
each iteration, we improve the signal while amplifying the noise. After
a finite number of iterations, the pseudo-inverse solution of the signal is
reached (neglecting the noise part) but noise amplification is continued;
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Figure 4: Spectrum of a bandpass signal and its reconstructed versions
from noiseless uniform samples at the Nyquist rate with A = 0.9.

thus we would expect to have an optimum recovered signal after a finite
number of iterations which is given in the 7/ iteration with A = 0.9 (Fig.
7). To include a more general case of PNS, a multiband signal is sampled
at times {n.50™°, n.50™* + 37.5™5 n.50™* + 41.7™}, ¢z (Fig. 8). Since
SNR curve is saturated before the 20" iteration (Fig. 9), the recovered
signal at the 20" iteration (Fig. 8) is the pseudo-inverse solution.

7 Conclusion

Uniform sampling at the Nyquist rate for bandpass (or multi-band) sig-
nals may not be sufficient to recover the signal exactly. On the other
hand, various periodic nonuniform sampling schemes can be used at the
Nyquist rate for perfect recovery. In either case, for discrete signals, sam-
pling (uniform or periodic nonuniform) and filtering can be modeled as a
Hermitian matrix. For the first case the matrix is usually non-invertible;
for the second case the matrix may be invertible. Iterative methods can
be used to find the inverse of a Hermitian matrix. Convergence analysis
of the iterative methods show that for invertible matrices, the iterative
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Figure 5: SNR of the reconstructed signals from noiseless uniform sam-
ples with A = 0.9 for the signal of Fig. 4.
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Figure 6: Spectrum of a bandpass signal and its reconstructed versions
from noisy uniform samples at the Nyquist rate with A = 0.9.
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Figure 7: SNR of the reconstructed signals from noisy uniform samples
with A = 0.9 for the signal of Fig. 6.
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Figure 8: Spectrum of a multiband signal and its reconstructed versions
from a non-invertible PNS set at the Nyquist rate with A = 0.5.
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Figure 9: SNR of the reconstructed signals from a non-invertible PNS
set with A = 0.5 for the signal of Fig. 8.

method converges to the original signal and when the matrix is non-
invertible, the iterative result is equivalent to the pseudo-inverse of the
matrix. For the case of quantized samples or additive noise in the chan-
nel, iterative methods converge to the pseudo inverse if a finite number
of iterations are used. On the other hand if infinite number of iterations
are used, the recovered signal converges to the inverse of the system:;
in this case, depending on the noise structure, the inverse system may
amplify or attenuate the noise component.
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