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Abstract—In this paper, we investigate the problem of design-
ing compact-support interpolation kernels for a given class of
signals. By using calculus of variations, we simplify the opti-
mization problem from an nonlinear infinite dimensional problem
to a linear finite dimensional case, and then find the optimum
compact-support function that best approximates a given filter
in the least square sense (`2 norm). The benefit of compact-
support interpolants is the low computational complexity in the
interpolation process while the optimum compact-support inter-
polant guarantees the highest achievable Signal to Noise Ratio
(SNR). Our simulation results confirm the superior performance
of the proposed kernel compared to other conventional compact-
support interpolants such as cubic spline.

Index Terms—Compact-Support, Filter Design, Interpolation,
Spline.

I. INTRODUCTION

DUE the existence of powerful digital tools, nowadays it
is very common to convert the continuous time signals

into the discrete form, and after discrete processing, we can
convert it back to the original domain. The conversion of
the continuous signal into the discrete domain is usually
called the sampling process; the common form of sampling
consists of taking samples directly from the continuous signal
at equidistant time instants (uniform sampling). Although the
samples are uniquely determined by the continuous function,
there are infinite number of continuous signals which produce
the same set of samples. The reconstruction process is defined
as selecting one of the infinite possibilities which satisfies
certain constraints. For a given set of constraints, a proper
sampling scheme is the one that establishes a one-to-one
mapping between the discrete signals and the set of continuous
functions satisfying the constraints. One of the well-known
constraints is the finite support in Fourier domain [?]. The
theory of wavelets [?], [?], [?] introduced a generalized class
of basis for representing continuous functions. In fact, any
kind of such representation is equivalent to associating a
countable infinite set of scalars (coefficients) to any given
continuous function (similar to sampling). The one-to-one
mapping of this association is achieved only if the continuous
function belongs to a specific class. The reconstruction of the
continuous function from the coefficients usually involves filter
banks and interpolation. Multiresolution analysis [?], [?], self-
similarity [?], [?], and singularity analysis [?] are inseparable
from continuous-time interpolation. Theoretically, the opti-
mum interpolations require interpolants with infinite support
which are impractical from the implementation perspective.
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The common trend is to truncate the interpolant function or
approximate it with a compact-support function.

In this field, polynomial splines such as B-Splines are
particularly popular, mainly due to their simplicity, compact-
support, and excellent approximation capabilities compared to
other methods. B-Spline interpolations have spread to various
applications [?], [?], [?]. The cubic spline is of particular
interest since it generates the function with minimum curvature
passing through a given set of points [?]. Also fast methods
for obtaining the spline coefficients of a continuous function
is addressed in [?]; it is shown that the coefficients follow
a recursive equation. For the asymptotic behaviour (as order
increases) and approximation properties of the B-splines, the
interested reader is referred to [?].

Many advantages of the B-splines arise from the fact that
they are compact-support functions. However, there is no
evidence that they are the best compact-support kernels for the
interpolation process; i.e., it may be possible to improve the
performance without compromising the desired property of the
compact-supportedness. In this paper, we focus on the problem
of designing compact-support interpolants that best resemble
a given filter such as the ideal lowpass filter; more precisely,
we aim to find a compact-support kernel that minimizes the
least squared error when its cardinal is compared to a given
function. The given filter may be any arbitrary function that
reflects the properties and constraints of the class of signals
that enter the sampling process. Different variations of this
problem are previously studied in [?], [?]: the problem in [?]
is to find the best one-sided (causal) kernel (not necessarily
with compact-support) while in [?], the aim is to convert
the required IIR filtering in the discrete domain for a given
polynomial spline to an optimal causal filtering. The optimal
B-spline interpolants for hexagonal 2D signals are also derived
in [?]. The main difference of the work in this paper from
the aforementioned problems is that we do not restrict the
kernel to be a polynomial spline. In fact, the optimality of
the kernel is within the linear combination of the Dirichlet
functions (see Def. 7 for the definition of Dirichlet functions);
i.e., one cannot improve the least squared error by modifying
the resultant compact-support kernel with an additive Dirichlet
function.

The remainder of the paper is organized as follows: The
next section briefly describes the spline interpolation method.
In section III, a novel scheme is proposed to produce new
optimized kernels for interpolation regardless of the type of
filtering. The performance of the proposed method is evaluated
in section IV by comparing the interpolation results of the pro-
posed method to those of well-known interpolation techniques.
Section V concludes the paper.



2

0 1 2 3 4 5

´

0 1 2 3 4 5

=

0 1 2 3 4 5

Fig. 1. Sampling process modelled by multiplying an impulse train by a
continuous time signal.

II. PRELIMINARIES

We start by introducing some of the definitions required in
the rest of the paper. The definitions and results are generic to
the dimension of the space, therefore, instead of the 1D terms
“continuous-time” and “discrete-time”, we use “continuous-
space” and “discrete-space”, respectively. Furthermore, t rep-
resents the index for the continuous-space signals while n
plays the same role for the discrete-space signals. To facilitate
the reading of the paper, we have gathered all the notations in
Table I.

Definition 1. For a continuous-space k-dimensional signal
x(t), the continuous-space signal xp(t) and the discrete-space
signal xd(n) are defined as follows:

xd[n1, n2, . . . , nk] , x(n1T, n2T, . . . , nkT ), (1)

xp(t) , x(t)p(t) =
∑
n∈Zk

xd[n]δ(t− Tn), (2)

where δ(t) is the k-dimensional Dirac delta distribution
centred at origin and p(t) ,

∑
n∈Zk δ(t− Tn) is the k-

dimensional periodic impulse train. The sampling period T is
normalized to 1 in all directions. without any loss of generality.

The sampling process is shown in Fig 1.

Definition 2. A Linear Shift Invariant (LSI) filter with impulse
response h(t) is said to have the “interpolation property” if
and only if,

hp(t) = δ(t). (3)

In other words, the interpolation property implies that the
impulse response vanishes at the integers or in general at the
grid points. This is equivalent to the partition of unity in the
1D case.

Definition 3. A discrete-space signal yd[n] is called a “proper”
signal if and only if it is bounded and has a unique and
bounded inverse y−1d [n].

It is not hard to check that a bounded discrete signal is
proper if and only if it contains no zeros (and obviously no
poles) on the unit circle.

Definition 4. For any continuous-space signal y(t), if yd[n] is
a proper signal, then ŷ(t) is defined as follows:

ŷ(t) =
(
(yp)

−1 ∗ y
)
(t). (4)

TABLE I
NOTATIONS AND DEFINITIONS

Notation Definition

δ(t) k-dimensional Dirac delta function

p(t) k-dimensional periodic impulse train

xd[n] x(nT ) (See Def. 1)

xp(t) x(t)p(t) (See Def. 1)

y−1
d [n] Inverse of yd[n] (i.e, yd[n] ∗ y−1

d [n] = δ(t))

ŷ(t)
(
(yp)−1 ∗ y

)
(t) (See Def. 4)

βm(t) The polynomial B-Spline of degree m (See Def. 5)

cm(t) Cardinal spline of degree m (See Def. 6)

Dk
Set of all k-dimensional continuous-space signals that

satisfy the Dirichlet conditions (See Def. 7)

χm(yd) Feasible set (See Def. 8)

ex(y) Cost function (See Def. 9)

ρm[x, ρmd ]
Optimized compact-support interpolation kernel (See

Def.10)

F{x}
k-dimensional continuous-space Fourier transform

operator

Ma,b
xd

Convolution matrix (See Def. 11)

va,bx Convolution vector (See Def. 12)

Corollary 1. ŷ(t) in (4) is the impulse response of a filter with
the interpolation property. In other words:

ŷp(t) = δ(t). (5)

Proof:

ŷp(t) = ŷ(t)p(t)

=
[(
(yp)

−1 ∗ y
)
(t)
]
p(t)

=
(
(yp)

−1 ∗ yp
)
(t) = δ(t). (6)

Definition 5. The polynomial B-Spline of degree m is defined
as:

βm(t) ,
m+1∑
n=0

(−1)n
(
m+ 1

n

)
um+1(t− n). (7)

Definition 6. According to the above definition, cm(t) ,
β̂m(t) defines as the cardinal spline of degree m (Fig. 2).

III. PROPOSED OPTIMIZED COMPACT-SUPPORT KERNELS

In many applications, it is desirable that the interpolation
filter resembles an ideal filter, and there is no need for it
either to be smooth or piecewise polynomial. In this section
an optimized compact-support interpolation kernel will be
introduced to emulate a desired filter.

Definition 7. Let Dk denote the set of all k-dimensional
continuous-space signals that satisfy the Dirichlet conditions,
i.e, for any y(t) ∈ Dk:

1) y(t) has a finite number of extrema in any given box,
2) y(t) has a finite number of discontinuities in any given

box,
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Fig. 2. Cardinal splines of different degrees.

3) y(t) is absolutely integrable over a period,
4) y(t) is bounded.

To continue, we first introduce an affine subspace of the
k-dimensional Dirichlet function space (functions that satisfy
Dirichlet conditions) and then, we find the optimal interpola-
tion kernel within this subspace by means of the calculus of
variation.

Definition 8. Let yd[n] be a proper signal that vanishes at all
n /∈ (0,m+ 1)k. For this particular yd, define χm(yd) as the
set of all continuous-space signals y(t) that satisfy,

1) y ∈ Dk,
2) ∀n ∈ Nk; y(n) = yd[n],
3) ∀t /∈ (0,m+ 1)k; y(t) = 0.

In plain words, χm(yd) is a set of continuous-space compact
support functions for which the set of samples coincides with
yd[n]. The use of y(t) ∈ χm(yd) as an interpolation kernel for
interpolating xd[n] establishes a linear shift invariant process
with the impulse response ŷ(t).

Definition 9. The error function ex : χ
m(yd) → R is defined

as follows:

ex(y) , ‖ ŷ ∗ xp − x‖22
=

∫
Rk

|(ŷ ∗ xp)(t)− x(t)|2dt

=

∫
Rk

|F{ŷ ∗ xp} − F{x}|2df

=

∫
Rk

|F{
(
(yp)

−1 ∗ y
)
∗ xp} − F{x}|2df

=

∫
Rk

|F{xp}
F{yp}

F{y} − F{x}|2df . (8)

where F represents the k-dimensional continuous-space
Fourier transform operator.

Definition 10. According to the above definition, if ρmd is a
proper signal that vanishes at all n /∈ (0,m+ 1)k, an optimal
compact-support kernel ρm[x, ρmd ] is defined by:

ρm[x, ρmd ] , argmin
y∈χm(ρmd )

ex(y). (9)

Now, for a given proper discrete signal ρmd with the required
vanishing property, we employ the calculus of variations in
order to find the optimized continuous interpolation kernel ρm

that minimizes the error function ex(ρm).

Theorem 1. Equation (9) has a unique solution and it satisfies

[xp ∗ xp ∗ (ρmp )−1 ∗ (ρmp )−1] ∗ ρm = [(ρmp )−1 ∗ xp] ∗ x, (10)

for all t ∈ (0,m+ 1)k, where y(t) , y∗(−t).

Proof: For γ ∈ χm(0) and any ε > 0, we have ρm+εγ ∈
χm(ρmd ), and the variational derivative of ex(ρm) with respect
to ρm with γ as the test function is equal to

〈ex(ρm), γ〉 , lim
ε→0

ex(ρ
m + εγ)− ex(ρm)

ε

= 2

∫
Rk

<{γ(t)}<

{
F−1

{[
F{xp}
F{ρmp }

]∗
[
F{ρm}
F{ρmp }

F{xp} − F{x}
]}}

dt

− 2

∫
Rk

={γ(t)}=

{
F−1

{[
F{xp}
F{ρmp }

]∗
[
F{ρm}
F{ρmp }

F{xp} − F{x}
]}}

dt (11)

The proof of (11) is presented in (12). Since there are no
boundaries for χm(ρmd ), the minimizers of ex(ρm) are those
that set 〈e(ρm), γ〉 to zero for all γ ∈ χm(0). This implies
that the second term inside the above integral should be zero
for t ∈ (0,m+ 1)k, i.e,

F−1
{[
F{xp}
F{ρmp }

]∗ [F{ρm}
F{ρmp }

F{xp} − F{x}
]}

= 0. (13)

The above equation directly yields (10). Since we have a
quadratic minimization problem subject to an affine feasible
set χm(ρmd ), the problem is convex and has a unique solution.

A. Filter Estimation

Another application of (10) is to approximate an ideal
interpolation filter by an optimized compact-support kernel.
In fact, these kernels are superior to FIR filters.

Now the goal is to design ρm such that ρ̂m best estimations
h, the impulse response of a filter that has the interpolation
property.

Lemma 1. (Estimating a desired filter) Assume h(t) is the
impulse response of a linear shift invariant filter which satisfies
the interpolation property and let ρmd [n] be a proper discrete
signal, then

argmin
y∈χm(ρmd )

‖h− ŷ‖22 = ρm[h, ρmd ]. (14)
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〈ex(ρm[x, ρmd ]), γ〉 , lim
ε→0

ex(ρ
m + εγ)− ex(ρm)

ε

= lim
ε→0

1

ε

[∫
Rk

∣∣∣∣( F{ρm + εγ}
F{(ρm + εγ)p}

)
F{xp} − F{x}

∣∣∣∣2 df − ∫
Rk

∣∣∣∣(F{ρm}F{ρmp }

)
F{xp} − F{x}

∣∣∣∣2 df
]

= lim
ε→0

1

ε

∫
Rk

{[
<
{(

F{ρm + εγ}
F{(ρm + εγ)p}

)
F{xp} − F{x}

}2

−<
{(
F{ρm}
F{ρmp }

)
F{xp} − F{x}

}2
]

+

[
=
{(

F{ρm + εγ}
F{(ρm + εγ)p}

)
F{xp} − F{x}

}2

−=
{(
F{ρm}
F{ρmp }

)
F{xp} − F{x}

}2
]}

df

= lim
ε→0

1

ε

∫
Rk

{
<
{(

F{ρm + εγ}
F{(ρm + εγ)p} −

F{ρm}
F{ρmp }

)
F{xp}

}
<
{(

F{ρm + εγ}
F{(ρm + εγ)p} +

F{ρm}
F{ρmp }

)
F{xp} − 2F{x}

}

+ =
{(

F{ρm + εγ}
F{(ρm + εγ)p} −

F{ρm}
F{ρmp }

)
F{xp}

}
=
{(

F{ρm + εγ}
F{(ρm + εγ)p} +

F{ρm}
F{ρmp }

)
F{xp} − 2F{x}

}}
df

= lim
ε→0

1

ε

∫
Rk

{
<
{(
F{ρm + εγ} − F{ρm}

F{ρmp }

)
F{xp}

}
<
{(
F{ρm + εγ}+ F{ρm}

F{ρmp }

)
F{xp} − 2F{x}

}

+ =
{(
F{ρm + εγ} − F{ρm}

F{ρmp }

)
F{xp}

}
=
{(
F{ρm + εγ}+ F{ρm}

F{ρmp }

)
F{xp} − 2F{x}

}}
df

= lim
ε→0

1

ε

∫
Rk

{
<
{(
F{εγ}
F{ρmp }

)
F{xp}

}
<
{(
F{2ρm + εγ}
F{ρmp }

)
F{xp} − 2F{x}

}

+ =
{(
F{εγ}
F{ρmp }

)
F{xp}

}
=
{(
F{2ρm + εγ}
F{ρmp }

)
F{xp} − 2F{x}

}}
df

=

∫
Rk

<
{
F{γ}
F{ρmp }

F{xp}
}
<
{
2
F{ρm}
F{ρmp }

F{xp} − 2F{x}
}

+ =
{
F{γ}
F{ρmp }

F{xp}
}
=
{
2
F{ρm}
F{ρmp }

F{xp} − 2F{x}
}
df

= 2<
{∫

Rk

[
F{γ}
F{ρmp }

F{xp}
] [
F{ρm}
F{ρmp }

F{xp} − F{x}
]∗
df

}
= 2<

{∫
Rk

F{γ}
[
F{xp}
F{ρmp }

] [
F{ρm}
F{ρmp }

F{xp} − F{x}
]∗
df

}
= 2<

{∫
Rk

γ(t)F−1

{[
F{xp}
F{ρmp }

]∗ [ F{xp}
F{ρmp }

F{ρm} − F{x}
]}}

dt

= 2

∫
Rk

<{γ(t)}<

{
F−1

{[
F{xp}
F{ρmp }

]∗ [ F{xp}
F{ρmp }

F{ρm} − F{x}
]}}

dt

− 2

∫
Rk

={γ(t)}=

{
F−1

{[
F{xp}
F{ρmp }

]∗ [ F{xp}
F{ρmp }

F{ρm} − F{x}
]}}

dt

(12)

Proof:

eh(y) =

∫ ∞
−∞
|F{ŷ ∗ hp} − F{h}|2df

=

∫ ∞
−∞
|F{ŷ}F{hp} − F{h}|2df

=

∫ ∞
−∞
|F{ŷ} − F{h}|2df

= ‖h− ŷ‖22. (15)

Thus

argmin
y∈χm(ρmd )

‖h− ŷ‖22 = argmin
y∈χm(ρmd )

eh(y) = ρm[h, ρmd ]. (16)

Corollary 2. For an impulse response h(t) with the interpola-
tion property, if ρm ∈ χm(ρmd ) denotes the optimum compact-
support kernel for which ρ̂m best approximates h(t) (i.e.,
ρ̂m(t) = argmin

y∈χm(ρmd )

‖h− ŷ‖22), then ρm ∈ χm(ρmd ) satisfies:

[(ρmp )−1 ∗ (ρmp )−1] ∗ ρm = [(ρmp )−1] ∗ h. (17)



5

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

t

Ρ
3
@h

,Ρ
d3
DH

tL
,
Β

3
Ht
L

Β3

Ρ3

Fig. 3. The optimized compact-support interpolation kernel versus cubic B-
spline. ρ3{h, ρ3d} is the optimized kernel built for estimating the ideal lowpass
filter h(t) = sin(πt)

πt
with ρ3d(z) = 0.235z + 0.484z2 + 0.235z3.

The proof follows directly from (10) and the fact that h(t)
has the interpolation property.

Figure 3 shows the cubic B-spline and the optimized inter-
polation kernel designed for estimating the ideal lowpass filter
h(t) = sinc(t) with ρ3d(z) = 0.235z + 0.484z2 + 0.235z3,
while Fig. 4 shows ρ̂3[h, ρ3d](t) in comparison to c3(t).

B. Implmentational Details in 1D

It is proven that the optimized interpolation kernel which
gives the best estimation of x satisfies (10). By defining

vp , (xp ∗ xp) ∗ [(ρmp )−1 ∗ (ρmp )−1] (18)

w , [(ρmp )−1 ∗ xp] ∗ x, (19)

for k = 1, we can rewrite (10) as (vp ∗ ρm)(t) =
w(t)|t∈(0,m+1). Since this equation is valid only in a particular
interval, (vp)−1 cannot be used to obtain ρm. However, since
vp is an impulse train (convolution of four impulse trains) we
will show that the continuous functional equation in (10) boils
down to solving a finite Hermitian Toeplitz system of linear
equations. For this purpose, we first propose the notion of the
convolution matrix and then, define two vectors containing
functions which are supported only on a unit-length interval:

Definition 11. For a discrete-space one-dimensional signal
xd[n], and any a, b ∈ Z, the matrix Ma,b

xd
, [xd[i − j +

a]]i,j=1,...,b+1 is defined as the convolution matrix:

Ma,b
xd

=

 xd[a] xd[a−1] ... xd[a−b]
xd[a+1] xd[a] ... xd[a−b+1]

...
...

. . .
...

xd[a+b] xd[a+b−1] ... xd[a]

 . (20)

Definition 12. For a continuous-space one-dimensional signal
x(t), and any a, b ∈ Z, the convolution vector is defined as
va,bx = [xa, xa+1, . . . , xa+b]

T , where for n ∈ Z we have

xn(t) =

{
x(t+ n) 0 ≤ t < 1

0 o.w.
. (21)
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Fig. 4. The comparison of the proposed method with the cubic spline for
an ideal lowpass filter.

Now, the matrix-form equivalent of the property (10) can
be written as

M0,m
vd

v0,m
ρm = v0,m

w . (22)

Since vd[−n] = v∗d[n], the matrix M0,m
vd

is both Hermitian
and Toeplitz. An efficient recursive method for solving this
kind of linear systems is presented in [?]. By solving (22), we
can derive {ρmn }

m
n=0 and thus, the optimized compact-support

kernel:

ρm(t) =

m∑
n=0

ρmn (t− n). (23)

This optimized compact-support interpolation kernel mini-
mizes the interpolation mean squared error. On the other hand,
smoothness of the kernel and causality of the prefilter can be
achieved by adjusting ρd.

C. Implementational Details in 2D

In 2D case, to derive the optimized compact-support inter-
polation kernel ρm(t1, t2) from (10), we have an (m+1)2 by
(m+ 1)2 Toeplitz-block-Toeplitz linear system to solve:

M(m+1)2×(m+1)2p(m+1)2×1 = w(m+1)2×1, (24)

where,

M =


M0,m

vd[0,.]
M0,m

vd[−1,.] . . . M0,m
vd[−m,.]

M0,m
vd[1,.]

M0,m
vd[0,.]

. . . M0,m
vd[−1,.]

...
...

. . .
...

M0,m
vd[m,.]

M0,m
vd[m−1,.] . . . M0,m

vd[0,.]

 , (25)

and

p =


v0,m
ρm(0,.)

v0,m
ρm(1,.)

...
v0,m
ρm(m,.)

 ,w =


v0,m
w(0,.)

v0,m
w(1,.)

...
v0,m
w(m,.)

 . (26)

According to [?], the linear system (24) can be solved by
O(m5) steps and the solution can be obtained from the derived
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vector as follows:

ρm(t1, t2) =

m∑
n1=0

m∑
n2=0

Pn1(m+1)+(n2+1)(t1 − n1, t2 − n2).

(27)

IV. SIMULATION RESULTS

To compare the proposed method with the existing interpo-
lation techniques, we have performed various simulations. The
cubic B-spline, due to its short time support and relatively high
accuracy in approximating the ideal lowpass filter, is the most
common technique for interpolating 1-D lowpass signals. For
the purpose of comparison, we have optimized a kernel with
the same time support as an ideal lowpass filter. Figures 3 and
4 show the shape of the obtained kernel and the interpolating
spline, respectively. Figure 3 shows that the energy is more
concentrated in the middle of the cubic B-spline while the
optimized kernel has slower decaying rate of energy at the
sides. The resultant interpolation kernels, as depicted in Fig.
4, reveal that the main advantage of the optimized kernel (ρ̂3)
compared to the cubic spline (c3), is the smaller error in the
first side-lobe. The SNR values of ρ̂3 and c3 with respect to
the sinc function are 20.39 and 13.15dBs, respectively.

For a more realistic comparison, we have applied different
interpolation techniques on standard test images. For this
purpose, the original images, with or without applying the
anti-aliasing filter (ideal lowpass filter), are down-sampled by a
factor 2 in each direction (25% of the original pixels) and then
they are enlarged (zooming) using the interpolation techniques.
The comparison is made with the following interpolation
methods: 1) bilinear interpolation, 2) bicubic interpolation, 3)
wavelet-domain zero padding cycle-spinning [?], and 4) soft-
decision estimation technique for adaptive image interpolation
[?]. Also for our proposed method, two different scenarios
are implemented: the ideal filter for which we are optimizing
the kernel function is first taken as a sinc filter, and first the
spectrum of the original image.

In order to evaluate the quality of the interpolated images,
we have considered the Peak Signal-to-Noise Ratio (PSNR)
criterion. Table II indicates the resultant PSNR values when
the original image is subject to the anti-aliasing filter before
down-sampling while the error is calculated based on the
image without applying the filter. Table III contains similar
values while the basis for the error calculation is the anti-
aliased image. In both cases, the PSNR criterion the proposed
optimized kernel for the ideal lowpass (sinc) filter. On the
average, the proposed method out performs the other standard
interpolating methods by 0.74dB in Table II and 4.19dB in
Table III.

To exclude the effect of the anti-aliasing filter, the simula-
tions are repeated without applying it and the results are pre-
sented in Table IV. As expected, the optimized kernel which
is matched to the spectrum of the original image outperforms
other competitors in all cases. It should be mentioned that the
function ρm[x, ρmd ] is not a universal filter in this case and
depends on the choice of the image.

Although the PSNR value is a good measure of global
quality of an image, it does not reflect the local properties.

In order to present a qualitative view of various interpolation
methods, we have plotted the enlarged images for a segment
of the Lena test image in Fig. 5. To highlight the differences,
one could compare the texture on the top and the sharpness
on the bottom edge of the hat.

V. CONCLUSION

The interpolation problem using uniform knots is a well
studied subject. In this paper, we considered the problem of
optimizing the interpolation kernel for a given class of signals
(represented by a filter). Although functional optimization
in the continuous domain is often very difficult, we have
demonstrated the equivalency of this problem with a finite
dimensional linear problem which can be easily solved using
linear algebra. As a special case, we considered the class of
lowpass signals which is associated with the sinc function as
the optimum interpolation kernel. For the optimum compact-
support interpolant, we compared our function with the con-
ventional cubic B-Spline; the simulation results indicate 1dB
improvement in the SNR of the interpolated signal (on the
average) using the introduced function, and 7dB improvement
compared to the cardinal spline itself (compared to the sinc
function) (Fig. 4).
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison of different methods for the Lena image: (a) The original image, (b) bilinear interpolation, (c) bicubic Interpolation. (d) WZP Cycle-
Spinning [?], (e) SAI [?], and (f) the proposed method.

TABLE II
PSNR (DB) RESULTS OF THE RECONSTRUCTED IMAGES BY VARIOUS METHODS, THE ORIGINAL IMAGE WAS ANTI-ALIASED BEFORE SAMPLING AND

THE RESULTS ARE COMPARED TO THE ORIGINAL IMAGE (IMAGE ENLARGEMENT FROM 256× 256 TO 512× 512)

Images Bilinear Bicubic [?] WZP–CS [?] SAI [?] Optimized kernel for
image ρ3[x, ρ3d]

Optimized kernel for the ideal
lowPass ρ3[sinc(t), ρ3d]

Lena 30.33 30.44 30.12 30.96 32.46 32.20
Baboon 22.40 22.52 22.41 22.89 22.20 24.22
Barbara 24.39 24.42 24.34 24.65 24.33 25.14
Peppers 29.46 29.46 29.14 29.72 31.14 31.04

Girl 30.98 30.98 30.66 30.43 31.70 30.87
Fishing bout 27.68 27.48 28.12 30.92 28.61 29.71

Couple 27.35 27.50 27.27 27.39 28.04 28.97
Overall Average 27.51 27.54 27.43 28.14 28.35 28.88

TABLE III
PSNR (DB) RESULTS OF THE RECONSTRUCTED IMAGES BY VARIOUS METHODS, THE ORIGINAL IMAGE WAS ANTI-ALIASED BEFORE SAMPLING AND

THE RESULTS ARE COMPARED TO THE ANTI-ALIASED IMAGE (IMAGE ENLARGEMENT FROM 256× 256 TO 512× 512)

Images Bilinear Bicubic [?] WZP–CS [?] SAI [?] Optimized kernel for
image ρ3[x, ρ3d]

Optimized kernel for the ideal
lowPass ρ3[sinc(t), ρ3d]

Lena 31.56 31.72 31.62 32.45 35.28 35.21
Baboon 26.88 27.26 26.89 28.48 26.33 35.70
Barbara 30.61 30.74 30.65 31.86 30.40 35.72
Peppers 31.62 31.82 31.77 32.14 37.41 38.02

Girl 34.08 34.24 34.25 33.10 35.89 34.28
Fishing bout 29.91 30.19 29.93 30.92 32.00 34.87

Couple 29.81 30.10 29.84 29.77 31.44 34.28
Overall Average 30.64 30.87 30.71 31.25 32.68 35.44
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TABLE IV
PSNR (DB) RESULTS OF THE RECONSTRUCTED IMAGES BY VARIOUS METHODS, THE ORIGINAL IMAGE WAS NOT ANTI-ALIASED AND THE RESULTS

ARE COMPARED TO THE ORIGINAL IMAGE 256× 256 TO 512× 512)

Images Bilinear Bicubic [?] WZP–CS [?] SAI [?] Optimized kernel for
image ρ3[x, ρ3d]

Optimized kernel for the ideal
lowPass ρ3[sinc(t), ρ3d]

Lena 30.21 30.13 30.05 30.88 32.29 30.95
Baboon 21.67 21.34 21.70 22.09 22.50 21.63
Barbara 23.90 23.32 23.88 23.71 25.10 22.58
Peppers 28.82 28.61 26.93 28.91 30.64 29.77

Girl 30.41 29.97 30.20 29.94 30.90 29.20
Fishing bout 27.10 26.93 27.07 27.63 28.50 27.66

Couple 26.92 26.73 26.86 26.93 27.91 27.08

Overall Average 27.00 26.72 26.67 27.16 29.12 26.98


