A Unified Approach to Sparse Signhal Processing

F. Marvasti,Senior Member, IEEEA. Amini, F. Haddadi, M. SoltanolkotabBtudent Member, IEEE,
B. H. Khalaj, Member, IEEEA. Aldroubi, S. SaneiSenior Member, IEEE]). ChambersSenior Member, IEEE,
and other invited contributors

Abstract— A unified view of the area of sparse signal processing :
is presented in tutorial form by bringing together various fields i
in which the property of sparsity has been successfully explted. ‘ ] { |
For each of these fields, various algorithms and techniques, 1
which have been developed to leverage sparsity, are desceith -2r ) ) l ) ) l ‘l ) ) N
succinctly. The common potential benefits of significant redction 5 10 15 20 25 30 35 40 45 50
in sampling rate and processing manipulations through spase Time Coefficient
signal processing are revealed. ‘ ‘ ‘ ‘

The key application domains of sparse signal processing are 20 il
sampling, coding, spectral estimation, array processingcompo- - |
nent analysis, and multipath channel estimation. In terms bthe [ m { X { h d { N [ m W
sampling process and reconstruction algorithms, linkagesare 0 1111 1T [Ty
made with random sampling, compressed sensing and rate of 5 10 B DZIIJZT ngeffiz[i)ent %40 45 %0
innovation. The redundancy introduced by channel coding in
finite and real Galois fields is then related to over-samplingvith
similar reconstruction algorithms. The Error Locator Poly nomial
(ELP) and iterative methods are shown to work quite effectiely
for both sampling and coding applications.
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Fig. 1. Sparse discrete time signal with its Discrete Fouriansform (DFT).

The methods of Prony, Pisarenko, and MUItiple Signal Clas- 0.4F :
sification (MUSIC) are next shown to be targeted at analyzing — 02 1] h I | { 1 1]
. A . . . i= 0lls 1 RN A A [l -
signals with sparse frequency domain representations. Spii- x e “ T [Tl w T
cally, the relations of the approach of Prony to an annihilaing 02 ‘ ‘ 1
o - . . . e -04t ] ] ] ] ] : : . =
filter in rate of innovation and ELP in coding are emphasized;the 5 10 15 20 25 30 35 40 45 50
Pisarenko and MUSIC methods are further improvements of the Time Coefficient
Prony method under noisy environments. The iterative methds — af : : : : ]
developed for sampling and coding applications are shown tbe =
powerful tools in spectral estimation. Such narrowband spetral = ok i
estimation is then related to multi-source location and diection &
of arrival estimation in array processing. =a ] ] ] ] i ] ] ]
Sparsity in unobservable source signals is also shown to 5 10 15 20 25 30 35 40 45 50
facilitate source separation in Sparse Component AnalysiSCA):; DFT Coefficient

the algorithms developed in this area such as linear programing ] o ] ) i
and Matching Pursuit (MP) are also widely used in compressed Fig- 2. Sparsity is manifested in the frequency domain.
sensing. Finally, the multipath channel estimation problen is

shown to have a sparse formulation; algorithms similar to

sampling and coding are used to estimate typical multicar®@r  {ransforms in another domain (normally callettetjuency
communication channels. coefficienty) are sparse (see Figs. 1 and 2). There are trivial
sparse transformations where the sparsity is preservedtin b
I. INTRODUCTION the “time” and “frequency” domains; the identity transform

HERE are many applications in signal processing afdgatrix and its permutations are extreme examples. Wavelet
I communication systems where the discrete signals épgnsform.ations that preserve the local characteristfcsg o]
sparse in some domain such as time, frequency, or spadRd’Se signal can be regarded as “almost” sparse in the

.

i.e., most of the samples are zero, or alternatively, thefféquency” domain; in general, for sparse signals, theemor
similar the transformation matrix is to an identity matrike
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TABLE |

are self explanatory and will be discussed in more details in
COMMON NOTATIONS USED THROUGHOUT THE PAPER

the following sections.
The rows 2-4 of Table Il are related to the sampling

n Length of original vector (uniform or random) of signals that are bandlimited in the

k Order of sparsity Fourier domain. Band-limitedness is a special case of &pars

m Length of observed vector . . .

x Original vector where thg nonzero coefﬁuen?s in the frequency doma_ln_are

s Corresponding sparse vector consecutive. A better assumption in the frequency domam is

Z 83;‘;"(/‘2‘1&?‘0' have random sparsity [25]-[27] as shown in row 5 and column

A Transformation matrix relating to y 3.A gengralization of the spars:ity in the frequency domain [

unxille, (37, ‘u_|p)(§) sparsity in any transform domain such as Discrete Cosine and
n ) i= (3

Wavelet Transforms (DCT and DWT); this concept is further
generalized in compressed sensing (row 6) where sampling is
taken by a linear combination of time domain samples [2],

reconstruction methods for sparse signal processing. féevy [28]-[30]. Sampling of signals with finite rate of innovatio
authors have noticed the similarities of these fields. Itis t(row 7) is related to piecewise smooth (polynomial based)
intention of this tutorial to describe these methods in dadti  signals. The positions of discontinuous points are detegthi
succinctly and show that these methods can be used in othgrannihilating filters that are equivalent to error locator
areas and applications often with appreciable improvesaerffolynomials in error correction codes and the Prony’s metho
Among these fields are $ampling random sampling of [10] as discussed in Sections IV and V, respectively.
bandlimited signals [1], Compressed Sensing (CS) [2], andRandom errors in a Galois field (row 8) and the additive
sampling with finite rate of innovation [3]; Zoding Galois impulsive noise in real-field error correction codes (rovag)
[4], [5] and real-field error correction codes [6]; Spectral Sparse disturbances that need to be detected and removed. Fo
Estimation[7]-[10]; 4- Array ProcessingMulti-Source Loca- €rasure channels, the impulsive noise can be regarded as the
tion (MSL) and Direction Of Arrival (DOA) estimation [11], negative of the missing sample value [31]; thus the missing
[12], sparse array processing [13], and sensor networks [18ampling problem, which can also be regarded as a special
5- Sparse Component Analy$BCA): blind source separationcase of nonuniform sampling, is also a special case of the
[15]-[17] and dictionary representation [18]-[20]; 6hannel €rror correction problem. A subclass of impulsive noise for
Estimationin Orthogonal Frequency Division Multiplexing2-D signals is salt and pepper noise [32]. The information
(OFDM) [21]-[23]. The sparsity properties of these fields ardomain, where the sampling process occurs, is called the
summarized in Table 3 The details of most of the majorsyndrome which is usually in a transform domain. Spectral
applications will be discussed in the next sections but tigstimation (row 10) is the dual of error correction codes,
common traits will be discussed in this introduction. i.e., the sparsity is in the frequency domain. MSL (row 11)
The columns of Table Il consist of 0- category, 1- topics, Aand multi-target detection in radars are similar to spéctra
sparsity domain, 3- type of sparsity, 4- information domairgstimation since targets act as spatial sparse mono-teaeis;
5- type of sampling in information domain, 6- minimumarget is mapped to a specific spatial frequency regarding it
Samp“ng rate, 7- conventional reconstruction methocb’&n line of Slght direction relative to the receiver. The te(qlrﬂ.s
applications. The first rows (2-7) of column 1 are on samplirfdeveloped for this branch of science is unique; with exasple
techniques. The 8!8 rows are related to channel coding, rowsuch as MUSIC [7], Prony [8], and Pisarenko [9]. We shall
10 is on spectral estimation and rows 11-13 are related &y arf€e that the techniques used in real-field error correctides
processing. Rows 14-15 correspond to SCA and finally, row gych as iterative methods (IMAT) can also be used in this. area
covers multicarrier channel estimation, which is a rathewn  The array processing category (rows 11-13) consists oéthre
topic. As shown in column 2 of the table, depending on tHeparate topics. The first one covers MSL in radars, sondrs an
topicsy Sparsity is defined in the time' space, or “frequéncPOA. The teChniqueS developed for this field are similar # th
domains. In some applications, the sparsity is defined as &Rrectral estimation methods with emphasis on the Minimum
number of polynomial coefficients (which in a way could b&escription Length (MDL) [33]. The second topic in the array
regarded as “frequency”), the number of sources (which majocessing category is related to the design of sparsesarray
depend on location or time sparsity for the signal source¥yhere some of the array elements are missing; the remaining
or the number of “words” (signal bases) in a dictionary. Theodes form a nonuniform sparse grid. In this case, one of the
type of sparsity is shown in column 3; for sampling scheme@ptimization problems is to find the sparsest array (number,
it is usually low-pass, band-pass, or multiband [24], while locations and weights of elements) for a given beampattern.
compressed sensing, and most other applications, it iorand This problem has some resemblance to the missing sampling
Column 4 represents the information domain, where the orddblem but will not be discussed in this paper. The third
of sparsity, locations, and amplitudes can be determined pic is on sensor networks (row 13). Distributed sampling
proper sampling (column 5) in this domain. Coluriris on and recovery of a physical field using an array of sparse
traditional reconstruction methods; however, for eaclamay SE€Nsors is a problem of increasing interest in environnhenta

of the reconstruction methods can be used. The other colundiél seismic monitoring applications of sensor networks. [34
Sensor fields may be bandlimited or non-bandlimited. Since

2A list of acronyms is given in Table Il at the end of this seati the power consumption is the most restricting issue in gsnso




TABLE I
VARIOUS TOPICS AND APPLICATIONS WITH SPARSITY PROPERTIESHE SPARSITY WHICH MAY BE IN THE TIME /SPACE OR“FREQUENCY' DOMAINS,
CONSISTS OF UNKNOWN SAMPLEBCOEFFICIENTS THAT NEED TO BE DETERMINEDTHE INFORMATION DOMAIN CONSISTS OF KNOWN
SAMPLES/COEFFICIENTS IN THE*FREQUENCY' OR TIME/SPACE DOMAIN(THE COMPLEMENT OF THE SPARSE DOMAIY. A LIST OF ACRONYMS IS GIVEN
IN TABLE Il AT THE END OF THIS SECTION ALSO, A LIST OF COMMON NOTATIONS IS PRESENTED INTABLE |. FOR DEFINITION OFESPRITON ROW11
AND COLUMN 7, SEE THE FOOTNOTE ON PAGR1.

L0 ] 1 | 2 [ 3 | 4 | 5 | 6 | 7 | 8 |
Sparsity Type Information Type of Min Number Conventional
1 Category Topics Domain of Domain Sampling in of Required Reconstruction Applications
Sparsity Info. Domain Samples Methods
Uniform Lowpass
2 sampling Frequency | Lowpass | Time/Space Uniform 2 X BW —1 filtering / AID
Interpolation
Nonuniform Missing samp- 2Xx BW —1 Iterative Metho- Seismic /
3 sampling Frequency | Lowpass | Time/Space | -les/Jitter/Per- (in some cases -ds/Filter banks/ MRI / CT/
-iodic/Random even BW) Spline Interp. FM / PPM
Sampling of Union of Uniform/Jit- lterative metho- Data
4 Sampling multiband Frequency disjoint Time/Space | -ter/Periodic/ 2 X > BW -ds/Filter banks/ | Compression/
signals intervals Random Interpolation Radar
Random Random/ Iterative methods:| Missing Samp.
5 sampling Frequency | Random | Time/Space Uniform 2 x > #Coeff. Adapt. Thresh. Recovery/
RDE / ELP Data Comp.
Compressed| An arbitrary Random Random Basis pursuit/ Data
6 sensing orthonormal | Random | mapping of mixtures c-k-log(%) Matching compression
transform Time/Space of samples pursuit
Finite Time and Filtered # Coeff. +1 + Annihilating ECG/
7 rate of polynomial Random time Uniform 2 - (# Discont. filter OCT/
innovation Coeff. domain Epochg (ELP) uwB
Galois Uniform Berlekamp Digital
8 field Time Random Syndrome or 2 X 7 errors -Massey/Viterbi/ communic-
Channel codes random Belief Prop. -tion
coding Real Transform Uniform 2 X # Impulsive Adaptive Fault
9 field Time Random domain or noise thresholding tolerant
codes random RDE / ELP system
Spectral Spectral Time / 2 X # Tones MUSIC/ Military/
10 estimation | estimation Frequency | Random Autocor- Uniform -1 Pisarenko/ Radars
-relation Prony / MDL
MSL/ Space/ 2% MDL+ Radars/
11 DOA Space Random Autocor- Uniform # Sources MUSIC / Sonar/
estimation -relation ESPRIT Ultrasound
Array Sparse arr- Random/ Peaks of 2 X # Desired Optimiz- Radars/sonar/
12 processing| -ay beam- Space Missing Space sidelobes/ array -ation: LP/ Ultrasound/
-forming elements [Non]Uniform elements SA / GA MSL
Sensor 2x BW Similar Seismic/
13 networks Space Random Space Uniform of random torow 5 Meteorology/
field Environmental
Active 2 X # Active 0101
14 BSS source/Time | Random Time Uniform sources SLO Biomedical
SCA
Linear mix- Uniform 7 2% 0, T0T Data
15 SDR Dictionary Random | -ture of time Random # Sparse SLO compression
samples Words
Channel Multipath Frequency Uniform / 2 X # Spa- 01 Channel
16 estimation channels Time Random or time Nonuniform -rse channel MIMAT equalization/
components OFDM

it is vital to use the lowest possible number of sensors ggpaComponent Analysis (ICA) is used for a complete set of linear
sensor networks) with the minimum processing computatiomixtures. In the case of a non-complete (underdetermiretd) s
this topic also will not be discussed in this paper. of linear mixtures, ICA can work if the sources are also spars

In SCA, the number of observations is much less th4Ar this special case, ICA analysis is synonymous with SCA.
the number of sources (signals). However, if the sourcesFinally, channel estimation is shown in row 16. In mobile
are sparse in the time domain, then the active sources aminmunication systems, multipath reflections create aratlan
their amplitudes can be determined; this is equivalent torer that can be modeled by a sparse FIR filter. For proper decoding
correction codes. Sparse Dictionary Representation (3BR)of the incoming data, the channel characteristics should be
another new area where signals are represented by the Spaestimated before they can be equalized. For this purpose, a
number of words (signal bases) in a dictionary of finite numbé&aining sequence is inserted within the main data, which
of words; this sparsity may result in a tremendous amouenables the receiver to obtain the output of the channel
of data compression. When the dictionary is overcompletgy exploiting this training sequence. The channel estima-
there are many ways to represent the signal, however, ti@en problem becomes a deconvolution problem under noisy
are interested in the sparsest representation. Normalty, énvironments. The sparsity criterion of the channel gyeatl
extraction of statistically independent sources, Indépah improves the channel estimation; this is where the algasth



TABLE IV

for extraction of a sparse signal could be employed [21]],[22 GREEDY ALGORITHMS

[35].
When sparsity is random, further signal processing is
needed. In this case, there are three items that need to be 1) Let§ = 0px1, r® =x, 80 =@ andi=1.

. . .. R (i—1) . R
considered. 1- Evaluating the number of sparse coefficients 2) Bvaluatec; = (r'"~ 7, a;) for j =1,...,n where
a;'s are the columns of the mixing matriA (atoms)

(or samples), 2- finding the positions of sparse coefficjents and sortc;’s as|cj, | > -+ > |cj,. |-
and 3- determining the values of these coefficients. In some 3) o MP:Sets® :(f)SU*U Ujl.(. N '
applications, only the first two items are needed; e.g., in . iMP: S_Gt_S[;_] = S§"Y UG and
spectral estimation. However, in almost all the other cases mx|S()] = i ljes) ' ,

X : . ! e CoSaMP: SetS(®) = S U {j1,...,jar}
mentioned in Table 11, all the three items should be deteethin andA,, s, = [a5],cs0-
Various types of Linear Programming (LP) and some itera- !
tive algorithms, such as the lterative Method with Adaptive 4 o MP:—— —

X . " o OMP & CoSaMP: Finds that A() - § = x.
Thresholding (IMAT), determine the number, positions and o8 nes ha 5T

values of sparse samples at the same time. On the other hand, 5) e MP&OMP: — — —

the Minimum Description Length (MDL) method, used in . |C§°5|a'\">'°3 Sor;nt(;]ere\(/jaelﬁrfzjog asj|§t;L tﬁe
. . . t N yeney

DOA/MSL and spectrgl estimation, det_ermlnes the number indices of the columns im. _tﬁ,at Corr‘;qund to
of sparse source locations or frequencies. In the subsequen the columngy, .. ., ¢ in A(). Also sets(") =
sections, we shall describe, in more details, each algorith {7152k}
for various areas and applications based on Table II. 6) o MP:Sets;, =cj,.

Finally, it should be mentioned that the signal model for e OMP & CoSaMP: Seﬁj%é Gforl=1,...,k
each topic or application may be deterministic or stochasti and; = 0 wherel ¢ 5.
For gxample, in Fhe sgmpling cate_ggry for rows 2-4 apd 7, 7) Setr) =x — A -8,
the signal model is typically deterministic although stastic 8) Stop if [r() ], is smaller than a desired threshold
models could also be envisioned [36]. On the other hand, or when a maximum number of iterations is reached;

otherwise, increasé and go to ste.

for random sampling and CS (rows 5-6), the signal model
is stochastic although deterministic models may also bé& env
sioned [37]. In channel coding and estimation (rows 8-9 and
16), the signal model is normally deterministic. For Spalctrfirst review some of the important reconstruction methods in
and DOA estimation (rows 10-11), stochastic models afiis section.

assumed; while for array beam-forming (row 12), deterntimis

models are used. In sensor networks (row 13), both determi- Greedy Methods

istic and stochastic signal models are employed. Finatly, i \allat and Zhang have developed a general iterative method
SCA (rows 14-15), statistical independence of sources megy approximating sparse decomposition [38]. When the dic-
be necessary and thus stochastic models are applied.  tjonary is orthogonal and the signalis composed ok < n
atoms, the algorithm recovers the sparse decompositianlgxa
Il. UNDERDETERMINED SYSTEM OF LINEAR EQUATIONS after n steps. The introduced method which is a greedy
In most of the applications where sparsity constraint plysalgorithm [39], is usually referred to aslatching Pursuit
significant role, we are dealing with under-determinedesyst Since the algorithm is myopic, in some certain cases, wrong
of linear equations; i.e., a sparse vectof., is observed atoms are chosen in the first few iterations, and thus the
through a linear mixing system denoted By,,., where remaining iterations are spent on correcting the first few
m <M mistakes. The concepts of this method are the basis of other
advanced greedy methods such as OMP [40] and CoSaMP

[41]. The algorithms of these greedy methods (MP, OMP, and
Sincem < n, the vectos, 1 cannot be uniquely recoveredCcoSaMP) are shown in Table IV.

by observing the measurement vectgr . 1; however, among
the infinite number of solutions to (1), the sparsest sotutiqg  Basis Pursuit
may be unique. For instance, if rix& columns ofA,, «,, are
linearly dependent, the null-space Af,,«,, does not include
any 2k-sparse vector (at mostk non-zero elements) and
therefore, the measurement vectoss, () of different k-

Xmx1 :Amxn'snxl (1)

The mathematical representation of counting the number
of sparse components is denoted &y However,/, is not
a proper norm and is not computationally tractable. The

. ; ; closest convex norm td, is ¢;. The ¢; optimization of
sparse vectors are different. Thus,sifx; is sparse enough . . . .
n overcomplete dictionary is called Basis Pursuit. Howeve

(k-sparse), the sparsest solution of (1) is unique and casci he ¢1-norm is non-differentiable and we cannot use gradient

with s,,«1; i.e., perfect recovery. Unfortunately, there are twg . .
obstacles here: 1) the vectsy, «; often includes an additive methods for optimal solutions [42]. On the other hand, the

noise term, and 2) finding the sparsest solution of a ”neé?lunon is stable due to its convexity (the global optimugn i

system is an NP problem in general e same as the local one) [20],
yst . P 9 : : . Formally, the Basis Pursuit can be formulated as:
Since in the rest of the paper, we are frequently dealing with
the problem of reconstructing the sparsest solution ofW#), min ||s|l, St x=A-s (2)



TABLE Il
LIST OFACRONYMS

ADSL: Asynchronous Digital AlC: Akaike Information Criterion
Subscriber Line AR: Auto-Regressive
ARMA: Auto-Regressive Moving Average BSS Blind Source Separation
BW: BandWidth CAD: Computer Aided Design
CFAR: Constant False Alarm Rate CG: Conjugate Gradient
Cs: Compressed Sensing CT: Computer Tomography
DAB: Digital Audio Broadcasting DC: Direct Current: Zero-Frequency
DCT: Discrete Cosine Transform Coefficient
DFT: Discrete Fourier Transform DHT: Discrete Hartley Transform
DOA: Direction Of Arrival DST: Discrete Sine Transform
DT: Discrete Transform DVB: Digital Video Broadcasting
DWT: Discrete Wavelet Transform EEG: ElectroEncephaloGraphy
ELP: Error Locator Polynomial ESPRIT: Estimation of Signal Parameters via
FDTD: Finite-Difference Time-Domain Rotational Invariancechaiques
FETD: Finite-Element Time-Domain FOCUSS FOCal Under-determined System
FPE: Final Prediction Error Solver
GA: Genetic Algorithm GPSR Gradient Projection Sparse Reconstruction
HNQ: Hannan and Quinn method ICA: Independent Component Analysis
IDE: Iterative Detection and Estimation IDT: Inverse Discrete Transform
IMAT : Iterative Methods with Adaptive ISTA: Iterative Shrinkage-Threshold Algorithm
Thresholding KLT : Karhunen Loeve Transform
l1: Absolute Summable Discrete Signals /42 Finite Energy Discrete Signals
LDPC: Low Density Parity Check LP: Linear Programming
MA: Moving Average MAP: Maximum A Posteriori
MDL : Minimum Description Length probability
MIMAT : Modified IMAT ML : Maximum Likelihood
MMSE: Minimum Mean Squared Error MSL: Multi-Source Location
MUSIC: MUItiple Slgnal Classification NP: Non-Polynomial time
OCT: Optical Coherence Tomography OFDM: Orthogonal Frequency Division
OFDMA:  Orthogonal Frequency Division Multiplex
Multiple Access OMP: Orthogonal Matching Pursuit
OSR: Over Sampling Ratio PCA: Principle Component Analysis
PDF: Probability Density Function PHD: Pisarenko Harmonic Decomposition
POCs Projection Onto Convex Sets PPM: Pulse-Position Modulation
RDE: Recursive Detection and Estimation RIP: Restricted Isometry Property
RS: Reed-Solomon RV: Residual Variance
SA: Simulated Annealing SCA: Sparse Component Analysis
SDCT: Sorted DCT SDFT: Sorted DFT
SDR: Sparse Dictionary Representation SER: Symbol Error Rate
Sl: Shift Invariant SLO: Smoothedly-norm
SNR: Signal-to-Noise Ratio ULA: Uniform Linear Array
UWB: Ultra Wide Band WIMAX :  Worldwide Inter-operability for
WLAN : Wireless Local Area Network Microwave Access
WMAN : Wireless Metropolitan Area
Network
TABLE V

We now explain how the Basis Pursuit is related to Linear
Programming (LP). The standard form of Linear Programming
is a constrained optimization problem defined in terms of
variablex € R™ by: |

RELATION BETWEENLP AND BASIS PURSUIT (THE NOTATION FOR
LINEAR PROGRAMMING IS FROM[43].)

Basis Pursuit | Linear Programming|

minCTx st Ax=b, Vi: z; >0 3) Tg 25
where C”x is the objective functionAx = b is a set of (1";2“’" i
equality constraints andfi : z; > 0 is a set of bounds. X b

Table V shows this relationship. Thus, the solution of (2) ca
be obtained by solving the equivalent LP. The Interior Point

methods are the main approaches to solve LP. Note that.J(s) is almost the Lagrange form of the constraint
problem in (2) where the Lagrange multiplier is definedz—]gs
C. Gradient Projection Sparse Reconstruction (GPSR)  With the difference that in (4), the minimization procedise
erformed exclusively om and not onr. Thus, the outcome of
2) coincides with that of (2) only when the propeis used.
For a fast implementation of (4), the positive and negative
elements ok are treated separately, i.e.,

The GPSR technique [44] is considered as one of t
fast variations of thé;-minimization method and consists of
solving the following minimization problem:

. 1
argmsln J(S):§||X_AS||?2 + 7lsl[ey (4) s=u-v, Vi uj,v; >0



TABLE VI TABLE VI

BAsic GPSR AL.GORITHM ISTA ALGORITHM
1) Initialize 8 € (0,1), p € (0, %)’ ap andz(0). Also seti = 0. 1) Choose the scalg$ larger than all the singular values &€
) ; - Al 0 0) —
2) Choosex(*) to be the largest number of the form 87, j > 0, and seti = 0. Also initialize s(”), e.g,s(*) = ATx.
such that 2) Setz() =s(® + LAH(x — As()),

3) Apply the shrinkage-threshold operator defined in (11):
F((z® — aVF(=® < F(z®)— ) )
(¢ (), ) < P(z®) G s (9 1<j<n
INT (20 — (z() — o@ (i) ! Y o
uVF(z®) (z (z aDVF(z())) ) - o . .
+ 4) Check the termination criterion. If neither the maximuomm

(i+1) _ (,G) _ o) (4) ber of iterations has passed nor a given stopping condition i

3) Setz (z VIV E(z )) ) fulfilled, increase: and return to the 2nd step.

4) Check the termination criterion. If neither the maximuomm
ber of iterations has passed nor a given stopping conditop i
fulfilled, increase: and return to the 2nd step.

TABLE VIII
FOCUSS (Bsic)

~ Now by assuming that all the vectors and matrices are real, « Step L'W,, = diag(si_1)

it is easy to check that the minimizer of the following cost o Step 2:q; = (AW, ) Tx

function (F') corresponds to the minimizer of(s): o Step 3is; = Wy, - q;
1

F(z) =cTz + §ZTBZ st. z>0 (5)
where where
u —ATx () — () 4 LAH(x — Ag®
Z=[V] C:7-12n><1+|: ATy } 2" = s 4 S AT (x - As'Y) (10)
ATA —ATA Note that the minimization problem in (9) is separable with
B= —_ATA ATA (6) respect to the elements af and we just need to find the

minimizer of the single-variable cost funCti(g'(S—Z)2+T|S|,

In GPSR, the latter cost function is iteratively minimizeq, i1 is the well-known shrinkage-threshold operator:
by moving in the opposite direction of the gradient while '

respecting the conditiom > 0. There step-wise explanation z —% z > %
of the basic GPSR method is given in Table VI. In this table, S, (2) = 0 2| < 5 (11)
(a)+ denotes the valuenax{a,0} while (a); indicates the z+5 z2<—3

element-wise action of the same function on the veetor
There is another adaptation of this method knowBagzilai-
Borwein (BB) GPSR which is not discussed here.

The steps of the ISTA algorithm are explained in Table VII.

E. FOCal Underdetermined System Solver (FOCUSS)

D. Iterative Shrinkage-Threshold Algorithm (ISTA) FOCUSS is a non—pargmgtric algorithm that.consist of.two
arts [46]. It starts by finding a low resolution estimation
f the sparse signal, and then pruning this solution to a

sparser signal representation through several iteratidhs

solution at each iteration step is found by taking the pseudo
inverse of a modified weighted matrix. The pseudo-inverse
Vs: J(s)>J(s) & J(O)=J(60) (7) of the modified weighted matrix is defined HAW) T =
3 (AW)7 (AW - (AW)H)~1, This iterative algorithm is the

Now if s(!) is the minimizer of/(.), we should have/(s'")) < sojution of the following optimization problem:

J(sM); i.e., sM) better estimates the minimizer df.) than

s . This technique is useful only when finding the minimizer Finds = Wq, where: min [|q[[¢, s.t.x = AWq  (12)

of J(.) is easier than solving the original problem. In ISTA

[45], at thekth iteration and by having the estimat€), the

following alternative cost function is used:

Instead of using the gradient method for solving (4), it i
possible to approximate the cost function. To explain tthési
let s(9) be an estimate of the minimizer of (4) and l&ts) be
a cost function that satisfies:

escription of this algorithm is given in Table VIII and an
extended version is discussed in [46].

ji(s) = J(s) + g”s _ s(i)”i _ %HA(S _ S(i))ng 8) F. Iterative Detection and Estimation (IDE)
The idea behind this method is based on a geometrical
wheref3 is a scalar larger than all squared singular valueA of interpretation of the sparsity. Consider the elements ofare
to ensure (7). By modifying the constant terms and rewritingare i.i.d. random variables. By plotting a sample distiitmut
the above cost function, one can check that the minimizer gf vectors, which is obtained by plotting a large number of
Ji(.) is essentially the same as samples in theS-space, it is observed that the points tend to
B @12 concentrate first around the origin, then along the cootdina
argmin _[|s — 2z, + 7lls{le, (9)  axes, and finally across the coordinate planes. The algorith



TABLE IX TABLE X

IDE STEPS SLOSTEPS
« Detection Step: Find indices of inactive sources: o Initialization:
m 1) Setsp equal to the minimun?z-norm solution
r'={1<i<m: |al x— ZgiaLT -a;| < €} of As = x, obtained by pseudo-inverse &f.
ot 2) Choose a suitable decreasing sequencedfo
o . . o o1, 0x]-
o Estimation Step: Find the following projection as the e FOri=1.... K:
new estimate: 1) Seto — o
- (2l
gitl — argmin, Z 522 stx(t) = A -s(t) 2) Maximize the functionF, on the feasible se

S = {s|As = x} using L iterations of the
steepest ascent algorithm (followed by projection
The solution is derived from Karush-Kuhn-Tucker sy onto the feasible set):

tem of equations. At th¢l + 1)*" iteration: — Initialization: s = 8;_1.

iell

[
1

— forj=1,...,L (loop L times):
S; = A,LT .P(X—Aa ‘Sa) J ( psf ) .2
sa = (ATPA,) 'ATP . x a) Let: As=[sie 2o7,...,spe 202]7T.
b) Sets + s — uAs (wherep is a small
where the matrices and vectors are partitioned into positive constant).
inactive/actlive parts asA;,Aq,si,sq and P = c) Projects back onto the feasible sé:
(AAT)” L
e Stop after a fixed number of iterations. s+ s— AT(AAT)  (As—x)
3) Sets; =s.

e Final answer iss = S

used in IDE is given in Table IX. In this table;s are the
inactive sourcess,s are the active sourced,; is the column
of A corresponding to the inactivg and A, is the column of maximum for small values of, which gives the minimum
A corresponding to the active,. Notice that IDE has some ¢,-norm solution. The algorithm is summarized in Table X.
resemblances to the RDE method discussed in Sec. IV-A.2,

IMAT mentioned in Sec. IV-A.2, and MIMAT explained in

Sec. VIII-A.2. H. Comparison of Different Techniques

The above techniques have been simulated and the results
G. Smoothed,-norm (SLO) Method are depic_ted in Fig. 3. I_n order to compare the efficiency _and
) ) o o computational complexity of these methods, we use a fixed
As discussed earlier, the criterion for sparsity ist0orm; gy nihetic mixing matrix and source vectors. The elements of
thus our minimization is the mixing matrix are obtained from zero mean independent
min [|sll,, St A-s=x (13) Gaussian random variables with varianeé = 1. Sparse
sources have been artificially generated using a Bernoulli-
The {y-norm has two major drawbacks: the need for a conaussian modek; = p N (0, 0,,) + (1 — p) N(0,0057). We
binatorial search, and its sensitivity to noise. These grob seto, ;s = 0.01, 0,, = 1 andp = 0.1. Then, we compute the
arise from the fact that th&-norm is discontinuous. The ideanoisy mixture vectok from x = As-+ v, wherev is the noise
of SLO is to approximate thé,-norm with functions of the vector. The elements of the vectorare generated according
type [47]: to independent zero mean Gaussian random variables with
N varianceo2. We use Orthogonal Matching Pursuit (OMP)
fo(s) = e z? (14) " \which is a variant of Matching Pursuit [38]. OMP has a better

whereo is a parameter which determines the quality of theerformance in estimating the source vector in comparieon t

approximation. Note that we have Matching Pursuit. Fig. 4 demonstrates the time needed for
1 if s—0 each algorithm to estimate the vectorwith respect to the
lim0 fo(s) = { 0 :f i ; 0 (15) number of sources. This figure shows that IDE and SLO have
o—

the lowest complexity.

For the vectors, we have||s|l,, ~ n — F,(s), where Figures 5 and 6 illustrate a comparison of several sparse
F,(s) =Y., f-(si). Now minimizing||s||¢, is equivalent to reconstruction methods for sparse DFT signals and sparse
maximizing F, (s) for some appropriate values of For small random transformations, respectively. In all the simolagi
values ofo, F,(s) is highly non-smooth and contains manyhe block size of the sparse signalbis2 while the number of
local maxima, and therefore its maximization over s = x  sparse signal components in the frequency doma.isThe
may not be global. On the other hand, for larger values,of compression rate i25% which leads to a selection af28
F,(s) is a smoother function and contains fewer local maxim&me domain observation samples.
and its maximization may be possible (in fact there are nalloc In Fig. 5, the greedy algorithms, COSAMP and OMP,
maxima for large values af [47]). Hence we use a decreasinglemonstrate better performances than ISTA and GPSR, es-
sequence fos in the steepest ascent algorithm and may escapecially at lower input signal SNRs. IMAT shows a better
from getting trapped into local maxima and reach the actyagérformance than all other algorithms; however its perfor-
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Fig. 6. Performance comparison of some reconstructiomtquks for sparse

Fig. 3. Performance of various methods with respect to #hedstrd deviation random trasnformations.

whenn = 1000, m = 400 and k = 100.

and nonlinear functions of such redundant functions [48],
[49]. The minimum sampling rate is the Nyquist rate for
uniform sampling and its generalizations for nonuniforrp [1
and multiband signals [50]. When a signal is discrete, the
equivalent discrete representation in the “frequency” diom
(DFT, DCT, DWT, Discrete Hartley Transform (DHT), Dis-
crete Sine Transform (DST)) may be sparse, which is the
discrete version of bandlimited or multiband analog signal
where the locations of the bands are unknown.

For discrete signals, if the nonzero coefficients (“frequyén
sparsity) are consecutive, depending on the location of the
zeros, they are called lowpass, bandpass, or multibancetisc
signals; if the locations of the nonzero coefficients do bt f
low any of these patterns, the “frequency” sparsity is rando
) ) ) ) ) ~ The number of discrete time samples needed to represent a
mance in the higher |nput_S|gnaI SNRs is almost similar tﬁ’equency-sparse signal with known sparsity pattern valo
OMP and COSAMP. In Fig. 6, OMP and COSAMP havgne |aw of algebra, i.e., the number of time samples should
better performances than the other ones while ISTA, SLO agd equal to the number of coefficients in the “frequency”
GPSR have more or less the same performances. In spysgain; since the two domains are related by a full rank
DFT signals, the complexity of the IMAT algorithm is lessyansform matrix, recovery from the time samples is eqentl
than the others while ISTA is the most complex algorithmq solving an invertiblek x & system of linear equations
Similarly in Fig. 6, SLO has the least complexity. wherek is the number of sparse coefficients. For band-limited

real signals, the Fourier transform (sparsity domain) st&is
I1l. SAMPLING: UNIFORM, NONUNIFORM, MISSING, of similar nonzero patterns in both negative and positive
RANDOM, COMPRESSEDSENSING, RATE OF INNOVATION  frequencies where only the positive part is counted as the

Analog signals can be represented by finite rate discrétandwidth;thus, the law of algebra is equivalent to the Nstqu
samples (uniform, nonuniform, or random) if the signal hasite, i.e., twice the bandwidth (for discrete signals wit€ D
some sort of redundancies such as band-limitedness, firdtemponents it is twice the bandwidth minus one). The dual
polynomial representation (e.g., periodic signals thatrep- of frequency-sparsity is time-sparsity, which can happen i
resented by a finite number of trigonometric polynomials® burst or a random fashion. The number of “frequency”
coefficients needed follows the Nyquist criterion. This lwil
be further discussed in Sec. IV for sparse additive impalsiv
noise channels.

Time (Seconds)

n (Number of sources)

Fig. 4. Computational time (Complexity) versus the numblesaurces for
m = 0.4n andk = 0.1n

100 —*—ISTA
- - GPSR

_B0F " -m: Cosam) X .

g | -—ow " A. Sampling of Sparse Signals

% [ ——IMAT ) ) ) )

2 If the sparsity locations of a signal are known in a transform

H domain, then the number of samples needed in the time (space)

domain should be at least equal to the number of sparse co-
efficients, i.e., the so called Nyquist rate. However, deljyemn

on the type of sparsity (lowpass, bandpass, or random) a&nd th
type of sampling (uniform, periodic nonuniform, or randem)
the reconstruction may be unstable and the corresponding
reconstruction matrix may be ill-conditioned [51], [52]hTs

i i i i i i
10 20 30 40 50 60 70 80 90 100
Input SNR (dB)

Fig. 5. Performance comparison of some reconstructiomtquaks for DFT
sparse signals.
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set at the Nyquist rate (OSR=1) for a bandpass signal.

1) Take the transform (e.g. the Fourier transform) of the
input to theit” iteration &(?)) and denote it as¢ (9);
x(9) is normally the initial received signal.

2) Multiply X by a mask (for instance a band-limiting
filter).

Information Domain
Samples of the Noisy Signal

3) Take( _t)he inverse transform of the result in step 2[to * Initialization Replacement with Exact
getr'"). _ ) ) ** Main DT |—>| : ! —>| IDT |-
4) Set the new result asc(i+1) = x(©) 4 x(i) _ p(0). Information Domain Samples

5) Repeat for a given number of iterations.
6) Stop when|x(t+1) — Xu)”[2 < €. i (Iteration Number)

* *% i
T ‘ Thresholding [€— a
|xin| = pe-a.l ¢ B

in many applications discussed in Table II, the sampling rat’g e’ x| xu= { Xin
in column 6 is higher than the minimum (Nyquist) rate. - 0 Ixin| < B!
When the location of sparsity is not known, by the law of
algebra, the number of samples needed to specify the Spargjf o The IMAT for detecting the number, location, and eaitof sparsity.
is at least twice the number of sparse coefficients. Again for
stability reasons, the actual sampling rate is higher tinés t
minimum figure [1], [50]. To guarantee stability, instead of |n the case of the usual assumption that the sparsity is in
direct sampling of the signal, a combination of the samplége “frequency” domain and for the uniform sampling case of
can be used. Donoho has recently shown that if we take |in¢@ﬁ/pass signals, one projection (bandlimiting in the freogy
combinations of the samples, the minimum stable sampliggmain) suffices. However, if the frequency sparsity is cand
rate is of the orde©(k log(3;)), wheren andk are the frame the time samples are nonuniform, or the “frequency” domsin i
size and the sparsity order, respectively [29]. defined in a domain other than the DFT, then we need several
1) Reconstruction AlgorithmsThere are many reconstruc-iterations to have a good replica of the original signal. In
tion algorithms that can be used depending on the spardity pgeneral, this iterative method converges if the “Nyquistter
tern, uniform or random sampling, complexity issues, amd sds satisfied, i.e., the number of samples per block is greater
sitivity to quantization and additive noise [53], [54]. Am® than or equal to the number of coefficients. Fig. 8 shows
these methods are: Linear Programming (LP), Lagrange-intére improvement in dB versus the number of iterations for
polation [55], time varying method [56], spline interpatat a random sampling set for a bandpass signal. In this figure,
[57], matrix inversion [58], Error Locator Polynomial (ELP besides the standard iterative method, acceleratedidtesat
[59], iterative techniques [52], [60]-[65], and IMAT [29B1], such as Chebyshev and Conjugate Gradient methods are also
[66], [67]. In the following, we will only concentrate on theused (please see [72] for the algorithms).
last three methods as well as the first (LP) that have beenterative methods are quite robust against quantization
proven to be effective and practical. and additive noise. In fact, we can prove that the iterative
Iterative Methods When the Location of Sparsity is Knowmethods approach the pseudo-inverse (least squaresipsolut
The reconstruction algorithms have to recover the origintr a noisy environment; specially, when the matrix is ill-
sparse signal from the information domain and the type oénditioned [50].
sparsity in the transform domain. We know the samples inlterative Method with Adaptive Threshold (IMAT) for Un-
the information domain (both position and amplitude) and wienown Location of SparsityAs expected, when sparsity is
know the location of sparsity in the transform domain. Aassumed to be random, further signal processing is needed. W
iteration between these two domains (Fig. 7 and Table Xheed to evaluate the number of sparse coefficients (or sajnple
or consecutive Projections Onto Convex Sets (POCS) shothe position of sparsity, and the values of the coefficients.
yield the original signal [51], [61], [62], [65], [68]-[71] The above iterative method cannot work since projectioa (th

Xin

A
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TABLE XII
GENERICIMAT OF FIG. 9 FOR ANY SPARSITY IN THEDISCRETE
TRANSFORM(DT), WHICH IS TYPICALLY DFT.

guantization or additive noise when the matrices are ill-
conditioned.
There are other approaches such as Spline interpolatign [57

nonlinear/time varying methods [58], Lagrange intergotat
1) Use the all-zero block as the initial value of the spafse [55] and Error Locator Polynomial (ELP) [74] that will not be
domain signal ¢*" iteration) S discussed here. However, the ELP approach will be discussed
2) Convert the current estimate of the signal in the sparse ) o e i
domain into the information domain (for instance the in Sec. IV-A; variations of this method are called the aniaihi
3) Whiiorsgél.'tﬂ? t&%.ZSSrigedgmg with the kol ing filter in sampling with finite rate of innovatipn (_Sec.-n])
samples of the signal in the information domain. and Prony’s method in spec_tral and_ DOA estimation (Sec_._V-
4) Convert the signal back to the sparse domain. A). These methods work quite well in the absence of additive
5) Use adaptive hard thresholding to distinguish the ofig- noise but they may not be robust in the presence of noise. In
6 nal nonzero samples. ¢ ierations has ohst the case of additive noise, the extensions of the Prony rdetho
nor a given stopping condition is fulfilled, return to tHe (ELP) such as Pisarenko Harmonic Decomposition (PHD),
2nd step. MUSIC and Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT) will be discussed in Sastio
V-B, V-C and VI.
60
B. Compressed Sensing (CS)
407 1 The relatively new topic of Compressed (Compressive)
) Sensing (CS) for sparse signals was originally introduced i
° 20! [75] and [29], and further extended in [30], [76] and [77].€Th
% idea is to introduce sampling schemes with low number of
0 required samples which uniquely represent the originalsgpa
Of 1 signal; these methods have lower computational complexi-
ties than the traditional techniques that employ oversangpl
20 ‘ ‘ ‘ ‘ ‘ and then apply compression. In other words, compression is
0 5 10 15 20 25 30 achieved exactly at the time of sampling. Unlike the claasic
lteration sampling theorem [78] based on the Fourier transform, the

o 10, SNR o ¢ erations § nal —_— signals are assumed to be sparse in an arbitrary transform
AT (Table X”)VS‘ the no. of iterations for sparse signal renousing the 4, m5in - Furthermore, there is no restricting assumption fo
the locations of nonzero coefficients in the sparsity dognain

i.e., the locations should not follow a specific pattern sash

masking operation in Fig. 7) onto the “frequency” domain ilowpass or multiband structure._ Clearly, this assumpt'rm i
not possible without the knowledge of the positions of spar§ludes a more general class of signals than the ones prévious
coefficients. In this scenario, we need to use the knowledgdied. o o
of sparsity in some way. The introduction of an adaptive Since the concept of sparsity in a transform domain is
nonlinear threshold in the iterative method can do the fricRlOre convenient to study for discrete signals, most of the
thus the name: Iterative Method with Adaptive Thresholigsearch in this field is focused along discrete type sidials
(IMAT); the block diagram and the pseudo-code are depicté@WeVver, recent results [80] show that most of the work can be
in Fig. 9 and Table XII, respectively. The algorithms irpeneralized to contmgous S|gn§1Is in shift-invariant ams_
[23], [25], [31], [73] are variations of this method. Fig. o(a s_,ubclass_ of the S|gnals wh_lch are represent_ed by Riesz
shows that by alternate projections between informatich ahasis). We_ﬂrst study dlsqrete signals and then briefly discuss
sparsity domains (adaptively lowering or raising the thosg the extension to the continuous case.

levels in the sparsity domain), the sparse coefficients arel) CS Mathematical ModelingLet the vectorx € R™ be
gradually picked up after several iterations. This methad c@ finite length discrete signal which has to be under-sampled
be considered as a modified version of Matching Pursuit ¥4 assume that has a sparse representation in a transform
described in Sec. II-A; the results are shown in Fig. 10. Tromain denoted by a unitary matrik,, .,,; i.e., we have:
sampling rate in the f[ir.ne doma_\in.is twice the number pf Xx=W.s (16)
unknown sparse coefficients. This is called the full capacit

rate; this figure shows that after approximatelyiterations, wheres is ann x 1 vector which has at most non-zero

the SNR reaches its peak value. In general, the higher #lements k-sparse vectors). In practical caseshas at most

sampling rate relative to the full capacity, the faster is th

convergence rate and the better the SNR value. 3The sequence of vectofs/,, } is called a Riesz basis if there exist scalars
: . . 0 < A < B < oo such that for every absolutely summable sequence of

Matrix Solutions: When the sparse nonzero locations ar&alars{a,}, we have the following inequalities [81]:

known, matrix approaches can be utilized to determine the
’ 2 2 2

values of sparse coefficients [58]. Although these methods A(;‘“"‘ )< H;a"""uzz < B(;‘“"‘ )

are rather straight forward, they may not be robust against
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k significant elements and the insignificant elements are setere 1), ¢, are thea'” column and theb’ row of the

to zero which means is an almostk-sparse vector. For matrices¥ and®, respectively. The above result implies that,
example,x can be the pixels of an image and can be the the probability of reconstruction is close to one for:
corresponding IDCT matrix. In this case, most of the DCT

coefficients are insignificant and if they are set to zero, the m> p*(¥,®)
quality of the image will not degrade significantly. In fattis I

is the main concept behind some of the lossy compression he ab derivation imolies that th ller th )
methods such as JPEG. Since the inverse transfornx on -rll- ea OVS envatu;]n implies 1 _att ehsmla ert_e Lnaxmulr)n
yields s, the vectors can be used instead of, which can coherence etween the two matrices, the lower is the number

be succinctly represented by the locations and values gf€duired samples. Thus, to decrease the number of samples
the nonzero elements af Although this method efficiently W& Should look for matrice® with low coherence with.
compresseg, it initially requires all the samples ok to For this purpose, we use a ran_doI_n_ Itis shoyvn that“the
produces, which undermines the whole purpose of CS. cqherence qf a random matrix with i.i.d. Gau55|an_ distrdut
Now let us assume that instead of samplescofve take with any unitary®¥ is considerably small [29], which makes

m linear combinations of the samples (called generalizt proper candidate for the sampling matrix. Investigat

samples). If we represent these linear combinations by t € probability distribution has shown that the Gaussiaff BD

matrix ®,,,,, and the resultant vector of samples Py, .., not the only solution (for gxamp!e binary Bernouli dlstmiqm
we have: and other types are considered in [84]) but may be the simnples

to analyze.
(17) For the case of random matrix with i.i.d. Gaussian distribu-
tion (or more general distributions for which the concetidra
The question is how the matri® and the sizen should be inequality holds [84]), a stronger inequality compared to
chosen to ensure that these samples uniquely represent(#8 is valid; this implies that for the reconstruction with
original signalx. Obviously, the case o = I,,,,, where @ probability of almost one, the following condition for the
L.« iS ann x n identity matrix yields a trivial solution number of samples: suffices [2], [79]:
(keeping all the samples &) that does not employ the sparsity Q) 21)
condition. We look for® matrices with as few rows as possible k
which can guarantee the invertibility, stability and rofmess Notice that the required number of samples given in (20)
of the sampling process for the class of sparse inputs. s for random sampling of an orthonormal basis while (21)
To solve this problem, we introduce probabilistic measuregpresents the required number of samples with i.i.d. Gauss
i.e., instead of exact recovery of signals, we focus on thstributed sampling matrix. Typically, the number in (44)
probability that a random sparse signal (according to argiviess than that of (20).
probability density function) fails to be reconstructedngs  2) Reconstruction from Compressed Measuremeintshis
its generalized samples. If the probabilityof failure can be subsection, we consider reconstruction algorithms, amd th
made arbitrarily small, then the sampling scheme (the joistability robustness issues. We briefly discuss the foligwi
pair of ¥, @) is successful in recovering with probability three methods: a- Geometric, b- Combinatorial, c- Infoiamat

k-lnn

(20)

> p2(F,e0m)

Ymx1 = émxn *Xpxl = émxn ' ‘I’nxn *Spx1

m > ¢ klog(

1 -9, i.e., with high probability. Theoretic. The first two methods are standard while the last
Let us assume thab("™) represents the submatrix formecbne is more recent.
by m random (uniform) rows of an orthonormal matdx, .. .. a- Geometric Methods:The oldest methods for recon-

It is apparent that if we us¢®(™}" _ as the sampling struction from compressed sampling are geometric, ig.,
matrices for a given sparsity domain, the failure probtib8i minimization techniques for finding f-sparse vectos € R

for ®© and &™) are respectively one and zero, and asom a set ofm = O(klog(n)) measurements(s); see e.g.,
the indexm increases, the failure probability decreases. TH29], [82], [85]-[87]. Let us assume that we have applied a
important point shown in [82] is that the decreasing ratenef t suitable® which guarantees the invertibility of the sampling
failure probability is exponential with respect 6. Therefore, process. The reconstruction method should be a technique to
we expect to reach an almost zero failure probability mucekcover ak-sparse vectos, «; from the observed samples
earlier thanm = n despite the fact that the exact rate highly,.x1 = ®mxn - ¥nxn - Snx1 OF POSSiblyy,mx1 = Ppxn -
depends on the mutual behavior of the two matridesP. ¥, .., - Snx1 + Vmx1 ,» Wherev denotes the noise vector.

More precisely, it is shown in [82] that: Suitability of ® implies thats,, 1 is the onlyk-sparse vector
- that produces the observed samples; therefare; is also
Proiture <m-e w?(x.e) F (18) the sparsest solution for = ® - ¥ - s. Consequentlys can

be found using:
wherePyqi.re is the probability that the original signal cannot

be recovered from the samplesjs a positive constant and minimize [|s[l,,  subjecttoy = ® - ¥ -s (22)
(¥, @) is the maximum coherence between the columns of Good methods for the minimization of @g-norm (sparsity)
¥ and rows of® defined by [83]: do not exist. The ones that are known are either compu-
T B — 19 tationally prohibitive, or are not well behaved when the
w¥, @) = 1SaTen (a5 60)] (19 measurements are corrupted with noise. However, it is shown
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1 ; : : : be corrupted by additive noise. This characteristic {of

minimization algorithms is calledtability. Specifically, if we
0.8 1 let B;(s) denote the smallest possible error (in thenorm)
that can be achieved by approximating a signlay ak-sparse
588 1 vector z:
< 0af ] Br(s) := inf{l|s — zl¢,, [|z]le, <k},
then the vecto§ produced by the/;-reconstruction method
0-27 | is almost optimal in the sense th#s — §||,, < CBk(s)
for some constantC independent ofs. An implication of
% 02 0.4 / 0.6 048 1 stability is that small perturbations in the signal causgd b
mi/n

noise result in small distortions in the output solution.eTh
Fig. 11. The phase transition of the BP method for recontitnucof the previous result means thatsfis notk-sparse, thes is close
sparse vector from Gaussian random measurement mattiesgrabability of  t0 the k-sparse vectos;, that has thes-largest components of
perfect reconstruction for the pairs éjg and 7 that stand above and below g |n particular, ifs is k-sparse, themz = s. This stability
the curve are respectivel, and 1 asymptotically. property is different from the so callembustnesswhich is
another important characteristic that we wish to have in any
reconstruction algorithm. Specifically, an algorithmriadust
if small perturbations in the measurements are reflected in
small errors in the reconstruction. Both stability and rstbu
ness are achieved by thg-minimization algorithms (after a
minimize ||s|l;,  subjecttoy = & - ¥ -s (23) slight modification of (22), see [84], [92]). Although, thed
concepts of robustness and stability can be related, they ar
The interesting part is that the number of required samplgst the same.
to replace’y with ¢;-minimization has the same order of mag- In compressed sensing, the degree of stability and robust-
nitude as the one for the invertibility of the sampling scleemness of the reconstruction is determined by the charatitsris
Hences can be derived from (22) using-minimization. Itis of the sampling matrixp. We say that the matri® has RIP
worthwhile to mention that replacement 6f-norm with £5-  of orderk, when for allk-sparse vectors, we have [30], [76]:
norm, which is faster to implement, does not necessarily pro 9
q : @ -sllz
uce reasonable solutions. However, there are greedy oeetho 1-6, < 2
(Matching Pursuit as discussed in Sec. VIl on SCA [40], [89]) HSHZ
which iteratively approach the best solution and competh wiwhere0 < 6, < 1 (isometry constant). The RIP is a sufficient
the /,-norm optimization (equivalent to Basis Pursuit methodsondition that provides us with the maximum and minimum
as discussed in Sec. VIl on SCA). power of the samples with respect to the input power and
To show the performance of the BP method, we haensures that none of thesparse inputs fall in the null space
reported the famous phase transition diagram from [90] &f the sampling matrix. The RIP property essentially states
Fig. 11, this figure characterizes the perfect reconsuctithat everyk columns of the matrix®,,., must be almost
region with respect to the parametefsand 2. In fact, the orthonormal (these submatrices preserve the norm witten th
curve represents the points for which the BP method recasenstantsl + §;). The explicit construction of a matrix with
ers the sparse signal measured through a Gaussian randagh a property is difficult for any givem k& andm =~ klogn;
matrix with probability50%. The interesting point is that the however, the problem has been studied in some cases [37],
transition from the high probability region (below the ceyv [93]. Moreover, given such a matri#, the evaluation ok
to the low probability one (above the curve) is very shar@r alternativelyx) via the minimization problem involves
and whenn — oo the plotted curve separates the regions fetumerical methods (e.g., linear programming, GPSR, SPGL1,
probabilities0% and 100%. The empirical results show thatFPC [44], [94]) forn variables andn constraints which can
by deviating from the Gaussian distribution, the curve doég computationally expensive.
not change while it is yet to be proved [90]. However, probabilistic methods can be used to construct
A sufficient condition for these methods to work is that then x n matrices satisfying the RIP property for a givenk
matrix ® - ¥ must satisfy the so calleRestricted Isometric andm = klogn. This can be achieved using Gaussian random
Property (RIP) [75], [84], [91]; which will be discussed in the matrices. If® is a sample of a Gaussian random matrix with
following subsection: the number of rows satisfying (20% - ¥ is also a sample
RIP: It is important to note that thé;-minimization al- of a Gaussian random matrix with the same number of rows
gorithm produces almost optimal results for signals that aand thus it satisfies RIP with high probability. Using matsc
not k-sparse. For example, almost sparse signadenpress- with the appropriate RIP property in thg-minimization, we
ible signalg are more likely to occur in applications thanguarantee exact recovery éfsparse signals that are stable
exactly k-sparse vectors, (e.g., the wavelet transform of and robust against additive noise.
image consists mostly of small coefficients and a few large Without loss of generality, assume thétis equal to the
coefficients). Moreover, even exacthrsparse signals may identity matrix/, and that instead oP-s, we measur@®-s-+v,

in [83] and later in [76], [88] that minimization of afy-norm
results in the same vecterfor many cases:

<1+ (24)
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wherev represents an additive noise vector. Sidees + v Similarly, the above signals have one degree of freedom in
may not belong to the range spaced®bver k-sparse vectors, eachTs period of time (the coefficients;). A more general
the ¢, minimization of (25) is modified as follows: definition for the degree of freedom is introduced in [3] and
is named theRate of InnovationFor a given signal model,

if we denote the degree of freedom in the time interval of
ta] by C,(t1,t2), the local rate of innovation is defined by
C.(t1,t2) and the global rate of innovatiop)(is defined

minimize ||s|,,  subjecttoly — ®-s|l,, <€  (25)

wheree? is the maximum noise power. Let us denote the reSLLfﬂl’
of the above minimization foy = ® - s + v by §. With the #—#&
above algorithm, it can be shown that as )

18 —slle, < e (26) p=Jtm o Colt —mt+T) (29)

T—r00

This shows that small perturbations in the measuremeRfQVided that the limit exists; in this case, we say that the
cause small perturbations in the output of theminimization Si9nal has finite rate of innovation [3], [27], [103], [10Hs
method (robustness). an example, for the lowpass signals with bandwidthwe

b- Combinatorial: Another standard approach for recongave” ~ 2Br'] V_Vh'Chf |shthe sarr:_e as the Nyquist rate. In fa<_:t
struction of compressed sampling is combinatorial. As teefo hy proper ¢ 0|cef0ht e Sanl\llng p;ocess, we aLe ext.ractlr?g
without loss of generalityy — I. The sampling matrix® is the innovations of the signal. Now the question that arises i

found using a bipartite graph which consists of binary estri whether the uniform sampling theorems can be generalized to

i.e., entries that are eithdror 0. Binary search methods arethe signals with finite rate of innovation. Answer is positiv

then used to find an unknowksparse vectos € R", see 1;(:)r a %IIaSShOf ?()lr-bgndlimitetlj §ignals including the St gsac
e.g., [85], [95]-[101] and the references therein. Typycadhe onsider the following signals:

binary matrix® hasm = O(k logn) rows, and there exist fast R t—t,

algorithms for finding the solutior from them measurements z(t) = Z Z Cir - pr( T ) (30)
(typically a linear combination). However, the constrantiof i€z r=1 s

@ is also difficult. where {¢,(t)}F_, are arbitrary but known functions and

¢- Information Theoretic:A more recent approach is adap—{ti}iEZ is a realization of a point process with meanThe
tive and information theoretic [102]. In this method, thgrgl free parameters of the above signal model{atg } and{¢;}.
s € R" is assumed to be an instance of a vector randofherefore, for this class of signals we have= 2; however,
variable s = (s1,...,s,)", where ()" denotes transposethe classical sampling methods cannot reconstruct thets ki
operator, and th&” row of @ is constructed using the value ofy¢ signals with the sampling rate predicted py There are
the previous samplg; . Tools from the theory of Huffman many variations for the possible choices of the functipn&);
coding are used to develop a deterministic construction of@netheless, we just describe the simplest version. Let the

sequence of binary sampling vectors (i.e., their companeRignal(t) be a finite mixture of sparse Dirac functions:
consist of 0 or 1) in such a way as to minimize the average

number of samples (rows @) needed to determine a signal. b
In this method, the construction of the sampling vectors can z(t) = Zci ot —ti) (31)
always be obtained. Moreover, it is proved that the expected =l
total cost (number of measurements and reconstruction coffere{¢;} is assumed to be an increasing sequence. For this
bined) needed to sample and reconstrugtsparse vector in case, since there akeunknown time instants ankl unknown
R™ is no more tharklogn + 2k. coefficients, we have’,(t1,¢,) = 2k. We intend to show
that the samples generated by proper sampling kerpgls
can be used to reconstruct the sparse Dirac functions. tn fac

C. Sampling with Finite Rate of Innovation we choose the kernel(t) to satisfy the so called Strang-Fix
The classical sampling theorem states that: condition of order2k:
2(t) = Y 2(==) - sind2Bt — i) (27) vOsrs2k=1 3{anibes:
i€Z, 2B Z ar it —i) =1t" (32)

where B is the bandwidth ofx(¢) with the Nyquist interval N e ) ) _
T, = L. These uniform samples can be regarded as tfge above condition for the Fourier domain becomes:
degrees of freedom of the signal; i.e., a lowpass signal with tI)(Q = 0) #0
bandwidth B has one degree of freedom in each Nyquist M (Q=2mi)=0, Vi£0€Z

interval T,. Replacing thesinc function with other kernels r=0,...,2k—1 (33)
in (27), we can generalize the sparsity (bandlimitedness) i )
the Fourier domain to a wider class of signals known as tHéere ®(€2) denotes the Fourier transform of(¢), and the

Shift Invariant (SI) spaces: superscrip(r) represents the'!” derivative. It is also shown
that such functions are of the forg(t) = f(¢)* B2k (¢), where
z(t) = ch. . (p(i — 1) (28) Pax(t) is the B-spline of ordeRk!™ and f(t) is an arbitrary

ez T function with nonzero DC frequency [103]. Therefore, the
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function By (t) is itself among the possible options for the This reconstruction method can be used for other types of

choice ofp(t). signals satisfying (30) such as the signals represente@bgp
We can show that for the sampling kernels which satisfy ttveise polynomials [103] (for large enough then! derivative

Strang-Fix condition (32), the innovations of the sign@l) of these signals become delta functions). An importantissu

(31) can be extracted from the samplg§j|): nonlinear reconstruction is the noise analysis; for theppse

of denoising and performance under additive noise the reade

is encouraged to see [27].

k
. t .
yli] = (x(t) * W(_i))‘t:j-n =D _civlti = j) A nice application of sampling theory and the concept of

=t (34) sparsity is error correction codes for real and complex rensb
[106]. In the next section, we shall see that similar methods
Thus, can be employed for decoding block and convolutional codes.
A .
Tr = Zamy[j] IV. ERRORCORRECTIONCODES. GALOIS AND
ez REAL/COMPLEX FIELDS

= Xk:cizamsﬁ(ti —j)= Xk:qt;« (35) The relation between samplin_g and channel coding is the
— result of the fact that over-sampling creates redundan@g][1
This redundancy can be used to correct for “sparse” impeilsiv
In other words, we have filtered the discrete samplégXin noise. Normally, the channel encoding is performed in finite
order to obtain the values; (35) shows that these values ar€salois fields as opposed to real/complex fields; the reason is
only a function of the innovation parameters (amplitudes the simplicity of logic circuit implementation and insetsty
and time instantg;). However, the values, are nonlinearly to the pattern of errors. On the other hand, the real/complex
related to the time instants and therefore, the innovatiofigid implementation of error correction codes has stabilit
cannot be extracted from. using linear algebfa However, problems with respect to the pattern of impulsive, quatitza
these nonlinear equations form a well-known system whiethd additive noise [52], [59], [74], [107]-[110]. Nevertass,
was studied byProny in the field of spectral estimation (seesuch implementation has found applications in fault talera
Sec. V-A) and its discrete version is also employed in bodbmputer systems [111]-[115] and impulsive noise removal
real and Galois field versions of Reed-Solomon codes (sgém 1-D and 2-D signals [31], [32]. Similar to finite Galois
Sec. IV-A). This method which is called tlnihilating filter  fields, real/complex field codes can be implemented in both

i=1 jez

is as follows: block and convolutional fashions.
The sequencg,.} can be viewed as the iO|utiOU of a A discrete real-field block code is an oversampled signal
recursive equation. In fact if we definé(z) = >, h;z* = with n samples such that, in the transform domain (e.g., DFT),

Hle(z —t;), we will have (see Sec. IV-A and Appendices la contiguous number of high frequency components are zero.
Il for the proof of a similar theorem): In general, the zeros do not have to be the high frequency
components or contiguous. However, if they are contiguous,
the resultanin equations (from the syndrome information do-
(36) _ X
main) andm unknown erasures form a Vandermonde matrix,
_ o _ ~ which ensures invertibility and consequently erasurevego
In order to find the time instants, we find the polynomial The DFT block codes are thus a special case of Reed-Solomon
H(z) (or the coefficientsh;) and we look for its roots. A (RS) codes in the field of real/complex numbers [106].
recursive relation for, becomes: Fig. 12 represents convolutional encoders of e finite
n . T hy et constrz_;unt length [10(_5] and |nf|n|_te precision per symbad. F
R s Te hy et 12(a) is a systematic convolutional encoder and resembles
. =—| . (37) an oversampled signal discussed in Sec. Il if the FIR filter
N : : : acts as an ideal interpolating filter. Fig. 12(b) is a non-
Tk Thk+1 .- T2k—1 b, T2k systematic encoder used in the simulations to be discussed
By solving the above linear system of equations, we Obtawbsequently. In the case of add_|t|ve_ |mpuIS|ye naise,reio
- . . . - could be detected based on the side information that there ar
coefficientsh; (for a discussion on invertibility of the Ieft]c i th inal led sianal
side matrix see [103], [105]) and consequently, by findinée?huee?c;?loga}ﬁs Isn bseegtr'lcg)]rlga (;\:_eorsgrgr gr't?r?]rsla:‘o(rsgg?)%m
the roots of H(z), the time instants will be revealed. It owing suf lons, various aigorn 9
along with simulation results are given for both block and

should be mentioned that the choice 4t ..., 7 in (37), convolutional codes. Some of these algorithms can be used in
can be replaced with ar8k consecutive terms ofr; }. After volutionai ¢ ' gori e used |
other applications such as spectral and channel estimation

determining{¢;}, (35) becomes a linear system of equations
with respect to the valuegc;} which could be easily solved.
A. Decoding of Block Codes- ELP Method
“Note that the Strang-Fix condition can also be used for ammamial |terative reconstruction for an erasure channel is idahtic
polynomial assuming the delta functions are non-uniforpdyiodic; in that . . . .
to the missing sampling problem [116] discussed in Sec.

caser, in equation (35) is similar td&Z, the DFT of the impulses, as defined ) -
in Appendices | and II. I1I-A.1 and therefore, will not be discussed here. Let us

k

V Tl Tr4k = — E hi *Tr44—1
i=1
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(b) we can use the Sorted DFT (SDHT1], [59], [117], [118]
instead of the conventional DFT. The simulation results for

Fig. 12. Convolutional Encoders (a) A real-fie_ld systematinvolutional “block codes with erasure and impu]sive noise channels are
encoder of rate%; f[i]s are the taps of an FIR filter; (b) A non-systematic

. : iven in the following two subsections.
convolutional encoder of ratg, f1[i]s andf2[:]s are the taps df FIR filters. 9 . . .
5 1l f2li P 1) Simulation Results for Erasure Channelshe simula-

tion results for the ELP decoding implementation foe 32,

. ) ) p = 16, andk = 16 erasures (a burst a6 consecutive missing
assume that we have a finite discrete signal;[i], where samples from positiof to 16) are shown in Fig. 13; this figure
i = 1,...,1. The DFT of this sequence yieldscomplex gshows we can have perfect reconstruction up to the capacity
coefficients in the frequency domaiX{,ig[j], 7 =1,...,0). of the code (up to the finite computer precision which is above
If we insertp consecutive zer@_sto getn = | +p samples 39 dB: this is also true for Figs. 16 and 18). By capacity we
(X[j], j = 1,...,n) and take its inverse DFT, we end UPmean the maximum number of erasures that a code is capable
with an oversampled version of the original signal with ¢ correcting.
complex samplesi(i, i = 1,...,n). This oversampled signal  gjnce consecutive sample losses represent the worst case
is real if Hermitian symmetry (complex conjugate symmetrykqg] [117], the proposed method works better for random
is preserved in the frequency domain, e.g., the @ebf gamples. In practice, the error recovery capability of this
p zeros is centered at. For erasure channels, the sparsgchnigue degrades with the increase of the block and/at bur
missing samples are denoted by,,] = x[in], Whereins gjze due to the accumulation of round-off errors. In order to
denote the positions of the lost samples; consequently, faljuce the round-off error, instead of the DFT, a transform
i # im, eli] = 0. The Fourier transform ot[i] (called pased on the SDFT, or Sorted DCT (SDCT) can be used [1],

E[j], j = 1,...,n) is known for the syndrome positior. [59] [117]. These types of transformations act as an iatemr
The remaining values dEfj] can be found from the following 4 preak down the bursty erasures.
recursion (see Appendix I): 2) Simulation Results for Random Impulsive Noise Chan-

nel: There are several methods to determine the number,
B B L 38 locations and values of the impulsive noise samples, namely

[r] = " hn Z [+t (38)  Modified Berlekamp-Massey for real fields [119], [120], ELP,
IMAT, and Constant False Alarm Rate with Recursive Detec-
r]t&on Estimation (CFAR-RDE). The Berlekamp-Massey method
for real numbers is sensitive to noise and will not be disedss
here [119]. The other methods are discussed below.

where his are the ELP coefficients as defined in (36) a
Appendix I, is a member of the complement 6f, and the

index additions are imnod(n). After finding E[j] values, the "
spectrum of the recovered oversampled sighdj] can be  FLP Method [105]: When the number and positions of
found by removing[;] from the received signal (see (99) in"€ impulsive noise samples are not know, in (38) is
Appendix I). Hence the original signal can be recovered BjPt known for anyt; therefore, we assume the maximum
removing the inserted zeros at the syndrome positiod$ [gF. OSS|an(3lnumbe_r of _|mpuIS|\_/e noise sgmples per block, i.e.,
The above algorithm, called the Error Locator Polynomié{l = ["5"] as given in (96) in Appendix I‘_ To solve fd[t
(ELP) algorithm, is capable of correcting any combinatio® need to know only fl samples pr in the positions
of erasures. However, if the erasures are bursty, the abd{ere zeros are added in the encoding procedure. Once the
dlues ofh, are determined from the pseudo-inverse [105],

algorithm may become unstable. To combat bursty erasur\-%1 : - ) . )
the number and positions of impulsive noise can be found

SWe call the set of indices of consecutive zeros syndrometipnsi and 6The kernel of SDFT isxp (2%@ q), whereg is relatively prime w.r.tn;
denote it by®; this set includes the complex conjugate part of the Fourighis is equivalent to a sorted version of DFT coefficientsoading to amod
domain. rule, which is a kind of structured interleaving pattern.
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from (98) in Appendix I. The actual values of the impulsive Full Error Correction Capacity

noise can be determined from (38) as in the erasure chan 2ol — CFAR and Soft-Decision
case. For the actual algorithm, please refer to Appendi&dl. ___Simple thresholding
we are using the above method in the field of real numbe 35 | IEESISOIEBEE 5 Ol

exact zeros of H}, which are the DFT of h;}, are rarely o
observed; consequently, the zeros can be found by thresbolc 5/257
the magnitudes off. Alternatively, the magnitudes df;, can 0

be used as a mask for soft-decision; in this case, thresigpld
is not needed.

CFAR-RDE and IMAT Methods [31]:;The CFAR-RDE . ‘ ‘
method is similar to the IMAT with the additional inclusion 0 R - 10 15
of the CFAR module to estimate the impulsive noise; CFAK
is extensively used in radars to detect and remove clutig§. 15. Comparison of CFAR-RDE and a simple soft decisionERBr
noise from data. In CFAR, we compare the noisy signal witPFT block codes.
its neighbors and determine if an impulsive (sparse) nase i
present or not (using soft decision [31]After removing the

impulsive noise in a “soft” fashion, we estimate the signal - T
using the iterative method for an erasure channel as destcrib hil 0

in Sec. lllI-A.1 for random sampling or using the ELP method. P[] 0

The impulsive noise and signal detection and estimation go hi2] A1]

through several iterations in a recursive fashion as shown i 02 P[]

Fig. 14. As the number of recursions increases, the ceytaint : :
about the detection of impulsive noise locations also ases; G=| filn] filn—-1] ... (40)
thus, the soft decision is designed to act more like the hard fa[n]  faln —1]
decision during the later parts of the iteration steps, Wwhic 0 fi[n]

yields the error locations. Meanwhile, further iteratica® 0 fa[n]
performed to enhance the quality of the original signal esinc 0 0
suppression of the impulsive noise also suppresses thiealrig . :
signal samples at the location of the impulsive noise. The L : -

improvement of using CFAR-RDE over a simple soft decision An iterative decoding scheme for this matrix representatio
RDE is shown in Fig. 15. is similar to that of Fig. 7 except that the operaférconsists
of the generator matrix, a mask (erasure operation) and the
transpose of the generator matrix. If the rate of erasures doe
not exceed the encoder full capacity, the matrix form of the
B. Decoding for Convolutional Codes operatorG can be shown to be a nonnegative definite square
matrix and therefore its inverse exists [51], [60].

The performance of convolutional decoders depends onf9- 16 shows that the SNR values gradually decrease as

the coding rate, the number and values of FIR taps for tife rate of erasure reaches its maximum (capacity).
encoders, and the type of the decoder. Our simulation eesult2) Decoding for Impulsive Noise Channelset us consider

are based on the structure given in Fig. 12(b), and the tapsofNdy as the input and the output streams of the encoder,
the encoder are respectively, related to each other through the generadtnim

G asy = Gx.

Denoting the observation vector at the receivershywe
f1=11,2,3,4,5,16], havey = y + v, wherev is the impulsive noise vector.
f2=1[16,5,4,3,2,1] (39) Multiplying y by the transpose of the parity check matrix

HT, we get

T & T
The input signal is taken from a uniform random distribution Hy=Hwv (41)
of size 50 and the simulations are rurD00 times and then Multiplying the resultant by the right pseudo-inverse oé th
averaged. The following subsections describe the sinamatiH”, we derive:
results for erasure and impulsive noise channels.
, HH'H)'H'y = HH'H)'H'v = » (42)
1) Decoding for Erasure Channelgzor the erasure chan-
nels, we derive the generator matrix of a convolutional deco ~ Thus by multiplying the received vector B(H”H)'H”
(Fig. 12(b) with taps given in (39)) as shown below [4] (projection matrix into the range space Hif), we obtain an
approximation of the impulsive noise. In the IMAT method, we
apply the operatoH(H”H)~'HT in the iteration of Fig. 9;
This has some resemblance to soft decision iteration footaodes [110]. the threshold level is reduced exponentially at each itarat



17

Impulsive
Noise
v
| Threshold | | Mask |
Signal -+
s I____JE___l = o
5 | @ I \ 4 I
+ - } > Th?:;il d > Dei?sfiton 1 Iterative Method > §
- v | l I I
e - - J L
Detection Block Estimation Block
Estimated
Estimated Signal

Noise

Fig. 14. CFAR-RDE method with the use of adaptive soft thoédihg and an iterative method for signal reconstruction.
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Fig. 16. Simulation results of a convolutional decoderngsihe iterative Fig. 18. Simulation results by using the IMAT method for d¢ireg the
method with the generator matrix, aftéd CG iterations (see [72]); SNR vs. |ocation and amplitude of the impulsive noise= 1.9.
the relative rate of erasures (w.r.t. full capacity) in aaserre channel.

of wideband signals, where some others are better for the
Vetiyr > HHTH T | hroshld | —1—>{ WEHHT [->@) *** extraction of ngrrow-band components. Since our focus is
on sparse signals, it would be reasonable to assume sparsity
in the frequency domain, i.e., we assume the signal to be a
combination of several sinusoids plus white noise.
Conventional methods for spectrum analysis are non-

step. The block diagram of IMAT in Fig. 9 is modified agParametric methods in the sense that they do not assume any

Fig. 17. The modified diagram of the IMAT method from Fig. 9.

shown in Fig. 17. model (statistical or deterministic) for the data, excépt it is
For simulation results, we use the generator matrix sho@#ro or periodic outside the observation interval. For exiem
in (40), which can be calculated from [4]. the periodogrampP.,(f) is a well known nonparametric

In our simulations, the locations of the impulsive noisgethod that can be computed via the FFT algorithm:

samples are generated randomly and their amplitudes have 1 m—1 2
Gaussian distributions with zero mean and variance equal to Ppe,‘(f) = Ts Z xpe I (43)
1, 2, 5 and 10 times the variance of the encoder output. The mT r=0

results are shown in Fig. 18 afté00 iterations. This figure \yherem, is the number of observationg., is the sampling
shows that the high variance impulsive noise has a betigferyal (usually assumed as unity), ang is the signal.
performance. Although non-parametric methods are robust with low compu-
tational complexity, they suffer from fundamental limitats.
V. SPECTRAL ESTIMATION The most important limitation is their resolution; too s
In this section, we review some of the methods whicbpaced harmonics cannot be distinguished if the spacing is
are used to evaluate the frequency content of data [7]-[18inaller than the inverse of the observation period.
In the field of signal spectrum estimation, there are severalTo overcome this resolution problem, parametric methods
methods which are appropriate for different types of signalre devised. Assuming a statistical model with some unknown
Some methods are more suitable to estimate the spectmpanameters, we can increase resolution by estimating the
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TABLE XIlI

parameters from the data at the cost of more computational
BASIC PRONY ALGORITHM

complexity. Theoretically, in parametric methods, we can

resolve closely spaced harmonics with limited data lenfjth i
infini 1) Solve the recursive equation in (47) to evaluats.
the SN.R goe_s to Inﬁmﬁ( . . 2) Find the roots of the polynomial represented in (46);
In this section, we _shall dlscu_ss three parametric appesach these roots are the complex exponentials defineg a
for spectral estimation: the Pisarenko, the Prony, and the in (44).
MUSIC algorithms. The first two are mainly used in spectral 3) Sbo"’e (44) to obtain the amplitudes of the exponentials
estimation, while the MUSIC algorithm was first developed (biS).

for array processing and later has been extended to spectral

estimation. It should be noted that the parametric methods

unlike the non-parametric approaches, require prior kadgé  The Prony method is sensitive to noise, which was also ob-
of the model order (the number of tones). This can be decidserved in the ELP and the annihilating filter methods disediss
from the data using the Minimum Discription Length (MDL)in Sections IV-A and IlI-C. There are extended Prony methods
method discussed in the next section. that are better suited for noisy measurements [10].

A. Prony Method N _ B. Pisarenko Harmonic Decomposition (PHD)
The Proqy method was originally proposed. fqr modeling The PHD method is based on the polynomial of the
the expansion of gases [121]; however, now it is known "F"Srony method and utilizes the eigen-decomposition of the

a general spectral estimation method. In fact, Prony treed ata covariance matrix [10]. Assurre complex tones are
fit a weighted mixture ofc damped complex exponentials to

ok d Th qinal hi | Olpresent in the spectrum of the signal. Then, decompose the
at_a measurements. € original approach 1S re ate covariance matrix ok + 1 dimensions into &-dimensional
the noiseless measurements; however, it has been extemd

. . al subspace and ladimensional noise subspace that are
produce the least squared solutions for noisy measuremep ogonal to each other

We focus only on the noiseless case here. The signal iszy jciyding the additive noise, the observations are given
modeled as a weighted mixture &f complex exponentials by:

with complex amplitudes and frequencies:
Yr = Tp + Uy (48)

k
Tr = Z bz (44) wherey is the observation sample ands a zero-mean noise
) _ =1 ) ~ term that satisfie2{v,v,1;} = o2§[i]. By replacingz, =
wherez, is the noiseless discrete sparse signal consisting,of_ ;, in the difference equation (47), we get
k exponentials with parameters

k k
bi = aiejei Z hiyr—i = Z hin—i (49)
=0 =0

2 = ed2mfiTs (45)
. : which reveals the Auto-Regressive Moving Average (ARMA)
where a;, 6;, f; represent the amplitude, phase and the fretructure (orden(k, k)) of the observationg,. as a random

quency (ilsa complex_number n ge”er‘?")’ respectively. L(l%rocess. To benefit from the tools in linear algebra, let us
us define the polynomial (z) such that its roots represen

the complex exponential functions related to the sparsestorllje}cme the following vectors

(see Sec. llI-C on FRI, (38) on ELP and Appendix I): Yy = [y ooy yri]”
k k s h = [1, hy, ..., h]?
H(z) =[] (z—2) =) hiz"" (46) Vo= [ e]” (50)
=1 =0
By shifting the index of (44) and multiplying by the paranmeteNow (49) can be written as
h; and summing ovej we get: vHh = vfh (51)
k k k
hiz, =S biz" *S h.2F T =0 47) Multiplying both sides of (51) by and taking the expected
JZ::O T ; ’ JXZ:O o 7 value, we getF{yy” }h = E{yv" }h. Note that
wherer is indexed in the rangk+ 1 < r < 2k. This formula BE{yy"} = Ry, (52)

implies a recursive equation to solve fags [8]. After the

evaluation of theh;s, the roots of (46) yield the frequency

components. Hence, the amplitudes of the exponentials can E{yv™} = E{(x+v)v} = E{wvf} = 5’1 (53)
be evaluated from a set of linear equations given in (44). The ) )

basic Prony algorithm is given in Table XIII. We thus have an eigen-equation

_ 2
8Similar to array processing to be discussed in the nextmgctve can Ryyh =o0"h (54)
resolve any closely spaced sources conditioned on 1) birstepshots and L . . .
infinite SNR, or 2) limited SNR and infinite number of obseiwas, while which is the key equation of the Pisarenko method. The eigen-

the spatial aperture of the array is kept finite. equation of (54) states that the elements of the eigenveétor
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TABLE XIV TABLE XV

PHD ALGORITHM MUSIC ALGORITHM
1) Given the model ordek (number of sinusoids), find 1) Find the autocorrelation matrix of the noisy obserya-
the autocorrelation matrix of the noisy observatiohs tions Ryy) with the available size as shown in (57).
with dimensionk + 1 (Ryy). 2) Using a given value ok or a method to determink
2) Find the smallest eigenvaluey) of Ry, and the (such as MDL), separate th& — k smallest eigen-
corresponding eigenvectoh). values of Ry, and the corresponding eigenvectors
3) Set the elements of the obtained vector as the cpef- (Vi41s---5 Vi)
ficients of the polynomial in (46). The roots of this 3) Use (58) to estimate the spectral content at frequency
polynomial are the estimated frequencies. w.

the covariance matrix, corresponding to the smallest eigeifh€re the length of data is taken as> k and the elements
value ¢2), are the same as the coefficients in the recursi®t A are
equation ofzx,. (coeﬁigients of the ARMA model in_ (49)). apg 2P V9 for 1<p<m,1<q<k (56)
Therefore, by evaluating the roots of the polynomial repre- ) ] _
sented in (46) with coefficients that are the elements of thié1ere v represents the noise vector. Since the frequencies
Although we started by eigen-decompositionRfy, we @ k-dimensional signal subspace, while the second term is
observed that only one of the eigenvectors is required; tiee g@ndomly distributed in both signal and noise subspaces; i.
that corresponds to the smallest eigenvalue. This eigdmvedm“ke the first term, it is not confined to a subspace of lower
can be found using simple approaches (in contrast to eigéwnensmn. The correlation matrix of the observations i&qgi
decomposition) such as power method. The PHD method ¥
briefly shown in Table XIV. - R = Abb”AH 4+ 521 (57)
A different formulation of the PHD method with linear o _ _ _
programming approach (refer to Sec. II-B for descriptioWhere the noise is assumed to be white with varianée
of linear programming) for array processing is studied if We decomposeR into its eigenvectorsk eigenvalues
[122]. The PHD method is shown to be equivalent to gorresponding to thé-dimensional subspace of the first term

geometrical projection problem which can be solved uging Of (57) are essentially greater than the remaining— &
norm optimization. values, o2, corresponding to the noise subspace; thus, by

sorting the eigenvalues, the noise and signal subspaces can
be determined. Assume is an arbitrary frequency and
C. MUsSIC e(w) = [1,e*, ... e/(m=Dw] The MUSIC method estimates
MUItiple Slgnal Classification (MUSIC), is a method orig-the spectrum content of the signal at frequendyy projecting
inally devised for high resolution source direction estiora the vectore(w) into the noise subspace. When the projected
in the context of array processing that will be discussed ugctor is zero, the vectog(w) falls in the signal subspace
the next section [123]. The inherent equivalence of arr@nd most likely,w is among the spectral tones. In fact, the
processing and time series analysis paves the way for freguency content of the spectrum is inversely proporfitma
employment of this method in spectral estimation. MUSIthe ¢2-norm of the projected vector:
can be understood as a generalization and improvement of the 1
Pisarenko method. It is known that in the context of array Pryy(w) = efl (w)Ie(w) (58)
processing, MUSIC can attain the statistical efficiéhicythe
limit of asymptotically large number of observations [11]. m
In the PHD method, we construct an autocorrelation matrix mt = Z vivi (59)
of dimensionk 4+ 1 under the assumption that its smallest i=kt1
eigenvalue ¢?) belongs to the noise subspace. Then we USgerev,s are eigenvectors dR corresponding to the noise
the Hermitian property of the covariance matrix to CO”CIUdﬁjbspace.
that the noise eigenvector should be orthogonal to the bigna|pe 1. peaks of Py

eigenvectors. In MUSIC, we extend this method, using & the sparse signal. The determination of the number of
noise subspace of dimension grea.ter than one '.[0 improve fnfquencies (model order) in MUSIC is based on the MDL and
performance. We also use some kind of averaging over nojgg,ixe nformation Criterion (AIC) methods to be discussed

eigenvectors to obtain a more reliable signal estimator. i, the next section. The MUSIC algorithm is briefly explained
The data model for the sum of exponentials plus noise CglTaple XV.

be written in the matrix form as

(w) are selected as the frequencies

Fig. 19 compares the results (in the order of improved
performance) for various spectral line estimation methdte
first upper figure shows the original spectral lines, and the f

9Statistical efficiency of an estimator means that it is asytigally other flgures show the results for Prony* PHD, MUSIC: an_d
unbiased and its variance goes to zero. IMAT methods. We observe that the Prony method (which is

Ymx1 = Amxibrxi + Vmx1 (55)
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=r ‘l 1 A | of the signal is used to extract the direction of the signal
0 . - . .
0O 50 100 150 200 250 300 350 400 450 500 (spatial frequency). As a far-field approximation, the sign
Frequency (KHz) wavefronts are assumed to be planar. Consider a signaihayriv

. . . o with angle ¢ as in Fig. 20. Simultaneous sampling of this
Fig. 19. A comparison of various spectral estimation meshfut a sparse f h il hibi h h f th
mixture of sinusoids (the top figure) using Prony, Pisarend®SIC and waveiront on the array will exhibit a phase change of the

IMAT methods (in the order of improved performance); inpimSis 5dB signal from sensor to sensor. In this way, discrete samgles o
and256 time samples are used. a complex exponential are obtained, where its frequency can
be translated to the direction of the signal source. Theoresp

similar to ELP and annihilating filter of Sec. IlI-C and (38))Of a Uniform Linear Array (ULA) to a wavefront impinging

does not yield good results due to its sensitivity to noideai|ev on the array from directiop is

the IMAT method is the best. The application of IMAT to  a(p) = [1, /2755in(0) | eiln—1)2r5sin(e)] (60)

spectral estimation is a clear confirmation of our contentio . . . :

that we can apply tools developed in some areas to other ar\élggred Is the m_ter-element spacing of the arrdy,is the

for better performance. wavglength, ana is the number of sensors in the array. When
multiple sources are present, the observed vector is the sum

of the response (sweep) vectors and noise. This resemigles th

Th three t f ing: 1- Estimati spectral estimation problem with the difference that samgpl
ere are three types ot array processing. 1- ESUmation Gy, o array elements is not limited in time. In fact in array

Multi-Source Location (MSL) and Direction of Arrival (DOA) processing, an additional degree of freedom (the number of

2- Sparse Array Beam-_formlng a_nd Design, and_ 3- _SpargFements) is present; thus, array processing is more denera
Sensor Networks. The first topic is related to estimating tl?ﬁan spectral estimation

.direction.s "?‘”d’or the locations of multiple targets; thismgm Two main fields in array processing are MSL and DOA for
is very S|m|_lar to the_problem of s_pectral esnmauon_deathw estimating the source locations and directions, respegtiv
in the previous section; the relations among sparsity, tISEmecfor both purposes, the angle of arrival (azimuth and elewti

estimation and array processing were discussed in [1223][1 should be estimated while for MSL an extra parameter of range

The second topic is related to the design of sparse arraps W also needed. The simplest case is th® ULA (azimuth-
some missing and/or random array sensors. The last to%ﬁiy) for DOA estimation

depending on the type of sparsity, is either similar to the For the general case df sources with angles, .. ., oy

second topic or related to CS of sparse signal fields in\/\ﬂ'th respect to the array, the ULA response is given by the
network. Below, we will only consider the first kind.

VI. SPARSEARRAY PROCESSING

matrix A(p) = [a(¢1), ..., a(px)], where the vectorp of
_ o DOA’s is defined ag = [¢1, ..., ¢&]. In the above notation,
A. Array Processing for MSL and DOA Estimation A is a matrix of sizen x k anda(p;)s are column vectors.

Among the important fields of active research in arrapow, the vector of observations at array element§]) is
processing are MSL and DOA estimation [123], [126], [127hiven by
In such schemes, a passive or active array of sensors isased t , , .
locate the sources of narrow-band signals. Some applitsatio ylil = Asli] + v[i (61)
may assume far-field sources (e.g., radar signal procgssindpere the vectos|i] represents the multi-source signals and
where the array is only capable of DOA estimation, while[:] is the white Gaussian noise vector. Source signals and
other applications (e.g. biomedical imaging systems) rassuadditive noise are assumed to be zero-mean and i.i.d. normal
near-field sources where the array is capable of locatipgocesses with covariance matricBsand %1, respectively.
the sources of radiation. A closely related field of study M/ith these assumptions, the observation vegtif will also
spectral estimation due to similar linear statistical niedéhe follow an n-dimensional zero-mean normal distribution with
stochastic sparse signals pass through a partially knoweaii the covariance matrix
transform (e.g., array response or inverse Fourier tramgfo R = E{yy"} = APAY 4 571 (62)
and are observed in a noisy environment.

In the array processing context, the common temporal the field of DOA estimation, extensive research has been ac
frequency of the source signals is known. Spatial samplitgmplished in 1) source enumeration, and 2) DOA estimation
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methods. Both of the subjects correspond to the determimativhere H(s) is the entropy of the signal. This implies that
of parameterg: and . the minimum average code length is obtained only for the
Although some methods are proposed for simultaneocsrrect source distribution (model parameters); in otherds,
detection and estimation of the model statistical charact¢he choice of wrong model parameters (distribution furrgtio
istics [128], most of the literature is devoted to two-stageads to larger code lengths. When a particular model with
approaches; first, the number of active sources is deteatd the set of parameter8 is assumed for the data a priori,
then their directions are estimated by technigues such as Egch time a sequencg is received, the parameters should
timation of Signal Parameters via Rotational Invarianceh¥e first be estimated. The optimum estimation method is usually
niques (ESPRITY [129]-[133]. Usually the joint detection- the ML estimator which results ily;,. Now, the probability
estimation methods outperform the two-stage approachts wdistribution for a received sequenge becomesp(y|€ys1)
the cost of higher computational complexity. Below we willvhich according to information theory, requires an average
describe Minimum Description Length (MDL) as a powerfutode length of—log (p(y|6a.(y))) bits. In addition to the
tool to detect the number of active sources. data, the model parameters should also be encoded which
Minimum Description Length (MDL):One of the most in turn requires$ log(m) bits wherer is the number of
successful methods in array processing for source enuimreraindependent parameters to be encoded in the modeharsd
is the use of the MDL criterion [134]. This technique ighe number of data points Thus, thetwo part MDL selects
very powerful and outperforms its older versions includinthe model that minimizes the whole required code length
AIC [135]-[137]. Hence, we confine our discussion to MDIwhich is given by [140]:
algorithms. . K
Preliminaries: MDL is an optimum method of finding the —log (p(ylOn1)) + 5 log(m) (65)

model_ order and parameters for the most compressed "eR¥fie first term is the ML term for data encoding and the second
sentation of the observed data. For the purpose of stalhstl[:erm is a penalty function that inhibits the number of free

modeling, the MAP probability or, the suboptimal criteri0|('ébc?rameters of the model to become very large.

of ML is used; more precisely, conditioned on the observ JExample of Using MDL in Spectral Estimatiohn example

data, the maximum prqbability among the possible optionsfﬁ)m spectral estimation can help clarify how the MDL method
found (hypotheses testing) [138]. When the model parametgr, o (for more information refer to the previous section

are not known, the MAF.) and_ ML C”t_ef'a result in the mos&n spectral estimation). The mathematical formulationhaf t

complex approach; consider fitting a finite sequence of dma[:}roblem is as follows:

a polynomial of unknown degree [33]: If there arek (unknown) sinusoids with various frequencies,
y(t:) = P(t;) +v(t:), i=1, ..., m (63) ampl_itudes and phase3k( unknown p_argmet_ers) observed in

a noisy data vector (sampled atn distinct time slots), the

where P(t) = ag + ait + --- + axt*, v(t) is the observed Maximum Likelihood function for this observed data with

Gaussian noise and is the unknown model order (degreeadditive Gaussian noise is as follows:

of the polynomial P(t)) which determines the complexity.

Clearly, m — 1 is the maximum required order for unique 1 (or— 5K _a sin(uw; 46,2

description of the datan{ observed samples) and the ML L(0,z) = ——= He_ 202 , (66)

criterion always selects this maximum valde (, = m — 1); (2mo?)= ]

i.e., the ML method forces the polynomidP(t) to pass where 0, = {a;,w;,6;}%_, are the unknown sinusoidal

through allthe points. MDL, on the otherhand,y|eldsas&pxarsparameters to be estimated to compute the likelihood term
solution ¢rrpr < m — 1).

h . ¢ addit L , . in (65), which in this case is computed from (66). The
?ui th the e>|<|sten(_:e| O. 2 d itive n|0|se, I'I1t IS q#'tﬁ r‘T‘t'om?llnidentified parameters are estimated by the grid seareh, i.
to look for a polynomial with degree less thamwhich also 5 possible values of frequency and phase (amplitude can be

E)ikﬁzv\fht% f;%rgggé:tﬁhzri%Bfgxﬁjcgr‘j{; :2 é\/(l) IrDrI(_),W?; fir%egstimated using the assumed frequency and phase by using
Yix(t)sin(W;t+
L ¢)2 [141] are tested and the

information theory: Given a specific statistical distriout, we nﬂq's rempm% T S (a(t) sin(W;t )2 - i
can find an optimum source coding scheme (e.g., Huffm2R€ Maximizing the likelihood function (66) is selected las t
coding) which attains the lowest average code length for thESt estimate.

symbols. Furthermore, i, is the distribution of the source 10 find the number of embedded sinusoids in the noisy
and g, is another distribution, we have [139]: observed data, it is initially assumed thiat= 0 and (65)

is calculated, ther is increased and by using the grid search,
H(s) = —/(ps log ps)ds < —/(ps log s )ds (64) the maximum value of the I_|keI|hood for the as_sumleds
calculated from (66) and this calculated value is then used
to compute (65). This procedure should be followed as long
10The array in ESPRIT is composed of sensor doublets with tmeesa gg (65) decreases and Consequent|y aborted when it starts to

displacement. The parameters of the impinging signals eaastimated via . sl L. .
a rotational invariant property of the signal subspace. Tbmmplexity and rise. Thek minimizing (65) is thet; selected by MDL method

storage of ESPRIT is less than MUSIC; it is also less vulrlerab array
imperfections. ESPRIT, unlike MUSIC results in an unbiaBgdA estimate; LFor a video introduction to these concepts, please refer to
nonetheless, MUSIC outperforms ESPRIT, in general. http://videolectures.net/icmlQ§runwald.mdl

n
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and hopefully reveals the true number of the sinusoids in t

noisy observed data. It is obvious that the sparsity caomiti

i.e. k << n, is necessary for the efficient operation of MDL

In addition to the number of sinusoids, MDL has apparent
estimated the frequency, amplitude and phase of the emted 1

sinusoids. This should make it clear why such methods ¢ 08 =t:2

called detection-estimation algorithms. ' Etzg
The very same method can be used to find the numb 2 os -

position and amplitude of an impulsive noise added to a lo &

pass signal in additive noise. If the samples of the add £ °*

impulsive noise are statistically independent from eadteigt 02

the high pass samples of the Discrete Fourier Transform JDF

of the noisy observed data with impulsive noise should t 0 S5

taken and the same method applied. 12345 10 ° SNRinds

. . 12
MDL Source Enumerationtn the source enumeration prob-

lem, our model is a multivariate Gaussian random proce..
with zero mean and Cova.nance of the. type shown in (62l9i . 21.  An MDL example; the vertical axis is the probabiliof order
where the number of active sources is unknown. In SOM&ection. And the other two axes are the number of sourcésten SNR
enumeration methods (other than MDL), the exact form of (GQ?Iues. The MDL method estimates the number of active seufwéich is
is employed which results in high computational complexity) corectly when the SNR value is relatively high.

In the conventional MDL method, it is assumed that the

model is a covariance matrix with a spherical subspaoé

dimensionn — k. Suppose the sample covariance matrix is
k n
m o 1 N
. log(\; — k)1 Ai
R:lZXiXiH 67) mZ} og(\i) + m(n )Og(n_k‘z )
m p 1= 1

+ —log(m) (71)

and the MDL criterion becomes:

and assume the ordered eigenvalueRafreA; > A, > -+ > _ _ o
An, While the ordered eigenvalues of the exact covarianwderer is the number of free parameters in the distribution.

matrix R are \; > --- > A\ > AMyq1 = -+ = A\, = o2. This expression should be computed for different values of
The normal distribution function of the received complexada0 < k¥ < n — 1 and its minimum point should bépr.
x is [130] Note that we can subtract the term)_"_, log(};) from the
) expression, which is not dependent/oto get the well known
‘R)= — —___—tr{RT'R} 68) MDL criterion [130]:

1 n A
where tr(.) stands for the trace operator. The ML estimate  m(n — k) log L:’f“l)\z
of signal eigenvalues iR are \;, ¢ = 1, ..., k with H?:k-l,-l AF
the respective eigenvectofs;}* ;. Since A1 = -+ =
A = o2, the ML estimate of the noise eigenvaluesi§,; =
ey ) S A and Vil are all noise eigenvectors.
Thus, the ML estimate oR givenR is

+ glog(m) (72)

where the first term is the likelihood ratio for the spheyicit
test of the covariance matrix. This likelihood ratio is adtion

of arithmetic and geometric means of the noise subspace
eigenvalues [142]. Fig. 21 is an example of MDL performance

k n in determining the number of sources in array processing.
Ry ZZS\NN?%—&?\M Z Vvl (69) It is evident that in low SNRs, the MDL has a strong
i=1 i=kt+1 tendency to underestimate the number of sources, while as

SNR increases, it gives a consistent estimate. Also at high
fSNR’s, underestimation is more probable than overestomati

. Now we compute the number of independent parameters
it is easy o Show (.4 iy the model. Since the noise subspace is spherical,

In fact, since we know thaR has a spherical subspace o
dimensionn — k, we correct the observed to obtainR .
Now, we calculate— log (p(x|Raz));

that: the choice of eigenvectors in this subspace can accept any
Z1 4 arbitrary orthonormal set; i.e., no information is reveale
tr{R;/; R} = 70 e
T{ ML } " (70) when these vectors are known. Thus, the set of parameters
which is independent ¢f and can be omitted in the minimiza-iS {A1, -, Ax,0%,v1, ..., vi}. The eigenvalues of a

tion of (65). Thus, for the first term of (65) we only need th&ermitian matrix (correlation matrix) are all real whileeth

determinantR ;.| which is the product of the eigenva|ue5?igenveptors are nor_mal complex vectors. Therefore, thenei
values (includingr?) introducek + 1 degrees of freedom. The

12gpherical subspace implies the eigenvalues of the autdation matrix first eigenvector hagn — 2 degrees of fre_edom (since its first
are equal in that subspace. nonzero element can be adjusted to unity); while the second,
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due to its orthogonality to the first eigenvector, Has— 4 indicate that joint optimization through some form of sairc
degrees of freedom. With the same argument, it can be shogirannel matching and local node cooperation can result in
that there ar@(n — i) free parameters in thé" eigenvector; significant system performance improvement [144]-[148].

hence 1) How sparsity can be exploited in a sensor network:
k Sparsity appears in many applications for which sensor net-
k=14+k+ Z 20n —i)=n2n—k)+1 (73) works are deployed, e.g., localization of targets in a large
=1 region or estimation of physical phenomena such as tempera-
where the last integer can be omitted since it is independenture fields that are sparse under a suitable transformatam.
of k. example, in radar applications, under a far-field assumptio

The two-part MDL, despite its very low computationafhe (_)bservatior_1 system is linear and can be expressed as a
complexity, is among the most successful methods for sour®&trix of steering vectors [149], [150]. In general, spgrsi
enumeration in array processing. Nonetheless, this metH! arise in a sensor network from two main perspectives:
does not reach the best attainable performance for finitel) Sparsity of node distribution in spatial terms
number of measurements [143]. The new version of MDL, 2) Sparsity of the field to be estimated
calledone-partor Refined MDLhas improved the performance Although nodes in a sensor network can be assumed to be

for the cases of finite measurements which has not be@gularly deployed in a given environment, such an assumpti
applied to the array processing problem [33]. is not valid in many practical scenarios. Therefore, the-non

uniform distribution of nodes can lead to some type of sparsi
B. Sparse Sensor Networks in spatial domain that can be exploited to reduce the amount
' of sensing, processing, and/or communication. This issue i

fW|reIess sgnsor netwﬁrkj_typg:allyt/jconsst of a Iarg?r,numbg"ubsequently related to extensions of the nonuniform sampl
of sensor nodes, spatially distributed over a region orese o hniques to two-dimensional domains through proper-inte

th"’.‘t o_bserve some p_hyS|caI_ enwro_nmgnt |r_1clud|pg aCQUStﬂ’folation and data recovery when samples are spatially spars
seismic, and thermal fields with appllc_atlons In a V‘_"de ramige 34], [151]. The second scenario that provides a propersbasi
areas such as health care, geographical monitoring, hathel r exploiting the sparsity concepts arises when the fieldeto

secun_ty, and_hazard _detgcnon. The way sensor networks 8fimated is a sparse multi-dimensional signal. From thistp
used in practical applications can be divided into two gahelyt iy jdeas such as those presented earlier in the cootext
categories: compressed sensing (Sec. 111-B) provide the proper framlewo
1) There exists a central node known as the Fusion Cqg-address the sparsity in such fields.
ter (FC) that retrieves relevant field information from Spatia] Sparsity and |nterpo|ation in Sensor Networks:
the sensor nodes and communication from the sensgithough general two-dimensional interpolation techmisiu
nodes to FC generally takes place over a power- agge well-known in various branches of statistics and signal
bandwidth-constrained wireless channel. processing, the main issue in a sensor network is exploring
2) Such a central node does not exist and the nodegper spatio/temporal interpolation such that commuitina
take specific decisions based on the information they\d processing are also efficiently accomplished. Whileethe
obtain and exchange among themselves. Issues sygh wide range of interpolation schemes (polynomial, Feuri
as distributed computing and processing are of higthd least squares [152]), many of these schemes are not
importance in such scenarios. directly applicable for spatial interpolation in sensotwerks
In general, there are three main tasks that should be igue to their communication complexity.
plemented efficiently in a wireless sensor network: sensing Another characteristic of many sensor networks is the non-
communication, and processing. The main challenge in designiformity of node distribution in the measurement field.
of practical sensor networks is to find an efficient way oAlthough non-uniformity has been dealt with extensively in
jointly performing these tasks, while using the minimuncontexts such as signal processing, geo-spatial datagsioge
amount of system resources (computation, power, bandwidémd computational geometry [1], the combination of irregul
and satisfying the required system design parameters gsictsensor data sampling and intra-network processing is a main
distortion levels). For example, one such metric is theated challenge in sensor networks. For example, reference [153]
energy-distortion tradeoff which determines how much gperaddresses the issue of spatio-temporal non-uniformityem s
the sensor network consumes in extracting and deliverisgr networks and how it impacts performance aspects of a
relevant information up to a given distortion level. Altlghu sensor network such as compression efficiency and routing
many theoretical results are already available in the cédseaverhead. In order to reduce the impact of non-uniformity,
point-to-point links in which separation between sourced arthe authors in [153] propose using a combination of spatial
channel coding can be assumed, the problem of efficientipta interpolation and temporal signal segmentation. Akm
transmitting or sharing information among a vast number ofterpolation wavelet transform for irregular samplingigé
distributed nodes remains a great challenge. This is dueigoan extension of th@-D irregular grid transform ta3-D
the fact that well-developed theories and tools for digteéd spatio-temporal transform grids is also proposed in [154].
signal processing, communications, and information théor Such a multi-scale transform extends the approach in [155]
large-scale networked systems are still under developmeamid removes the dependence on building a distributed mesh
However, recent results on distributed estimation or diebec within the network. It should be noted that although wavelet
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compression allows the network to trade reconstructiotlityua
for communication energy and bandwidth usage, such ene
savings are naturally offset by the overhead cost of comguti
the wavelet coefficients.

Distributed wavelet processing within sensor networks
yet another approach to reduce communication energy &
wireless bandwidth usage. Use of such distributed procgss
makes it possible to trade long-haul transmission of rava de
to the FC for less costly local communication and processil Recewve Anterns Blang
among neighboring nodes [154]. In addition, local collabor
tion among nodes decorrelates measurements and results fy.&2. Computation of CS projections through superpmsitif radio waves
sparser data set. of randomly weighted values directly from the nodes in themoek to the

Compressive Sensing in Sensor Networkdost natural FC (Tom [164D.
phenomena in SN's are compressible through representation

in a natural basis [87]. Some examples of these applications ) o ] ]
are imaging in a scattering medium [149], MIMO radar [150 omputing the digital differences of the data at differamaties.

and geo-exploration via underground seismic data. In su H_e coefﬁcients at_the first scale are differences between
cases, it is possible to construct a highly compressedarers'€ighboring data points, and those at subsequent spaaiassc

of a given field, in a decentralized fashion. If the correlasi @re computed by first aggregating data in neighborhoods and
between data at different nodes are known a-priori, it f§€n computing differences between neighboring aggregsti
possible to use schemes that have very favorable powER€ resulting graph wavelet coefficients are then defined by
distortion-latency tradeoffs [144], [156], [157]. In suchses, 299regated data at different scales, and computing diftexe
distributed source coding techniques, such as Slepiafi-wlgtween the aggregated data [165]. In the latter scheme,
coding, can be used to design compression schemes with@ifftiSion wavelets are based on construction of an orthoabr

collaboration between nodes (see [156] and the referenb@Sis for functions supported on a graph and obtaining a
therein). Since prior knowledge of such correlations is n&pStom-designed basis by analyzing eigenvectors of asisfu

available in many applications, collaborative, intrawatk Matrix derived from the graph adjacency matrix. The resglti
processing and compression are used to determine unknd¥@giS Vectors are generally localized to neighborhoods of
correlations and dependencies through information exgharY@ying size and may also lead to sparse representations of
between network nodes. In this regard, the concept of cofif@ on a graph [166]. One example of such an approach is
pressive wireless sensing has been introduced in [148] Wpere the node data correspond to traffic rates of routers in a
energy-efficient estimation at the FC of sensor data, based @@MPUter network.
ideas from wireless communications [144], [146], [157B91  Implementation of CS in a wireless SNwo main ap-
and compressive sampling theory [29], [75], [160]. The maiproaches to implement random projections in a SN are dis-
objective in such an approach is to combine processing agigssed in the literature [164]. In the first approach, the €6 p
communications in a single distributed operation [161§3JL jections are simultaneously calculated through supetipasi
Methods to obtain the required sparsity in a SMrhile of radio waves and communicated using amplitude-modulated
transform-based compression is well-developed in tramtti coherent transmissions of randomly-weighted values tjrec
signal and image processing domains, the understandingfrem the nodes in the network to the FC (Fig. 22). This
sparse transforms for networked data is not as trivial [164icheme, introduced in [148], [158] and further refined in7[16
There are methods such as associating a graph with a gii@ased on the notion of so-calledatched source-channel
network, where the vertices of the graph represent the nodg@mnmunicatior{157], [158]. Although the need for complex
of the network, and edges between vertices represent réfuting, intra-network communications, and processing ar
tionships among data at adjacent nodes. The structure of @l¢viated, local phase synchronization among nodes is an
connectivity is the key to obtaining effective sparse tfans issue to be addressed properly in this approach.
mations for networked data [164]. For example, in the case ofln the second approach, the projections can be computed
uniformly distributed nodes, tools such as DFT or DCT caand delivered to every subset of nodes in the network using
be adopted to exploit the sparsity in the frequency domain. gjossip/consensus techniques, or be delivered to a singié po
more general settings, wavelet techniques can be extendedsing clustering and aggregation. This approach is tyfical
handle the irregular distribution of sampling location®4]. used for networked data storage and retrieval applications
There are also scenarios in which standard signal transforthis method, computation and distribution of each CS saiisple
may not be directly applicable. For example, network manitoaccomplished through two simple steps [164]. In the firgh,ste
ing applications rely on the analysis of communicationfitaf each of the sensors multiplies its data with the correspandi
levels at the network nodes where network topology afféas telement of the compressing matrix. Then, in the second
nature of node relationships in complex ways. Graph waselatep, the resulting local terms are simultaneously aggeega
[165] and diffusion wavelets [166] are two classes of trangand distributed across the network using randomized gossip
forms that have been proposed to address such complexitj@68], which is a simple iterative decentralized algoritfon
In the former case, the wavelet coefficients are obtained bgmputing linear functions. Because each node only exasang
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information with its immediate neighbors in the network, Noise
gossip algorithms are more robust to failures or changes in

the network topology and cannot be easily compromised by, —f \—, WIUN \— yilil
eliminating a single server or fusion center [169]. si] = Mixing —> Unmixing —> vl

Finally, it should be noted that in addition to the encod- M _) . _» yalil
ing process, the overall system performance is signifigantl - ~—/ Xmlll N\l

affected by the decoding process [44], [89], [170]; thisdgtu
and its extgnsions to_sparse_SN's_ remain as challenging.ta%. 23. The BSS concept; the unobservable sousgéd, ..., sn[i] are

2) Sensing CapacityDespite wide-spread development ofnixed and corrupted by additive zero mean noise to generateliservations
SN ideas in recent years, understanding of fundamentadiperfzili, -.., zm[il. The target of BSS is to estimate an unmixing system to
mance limits of sensing and communication between sens5igVe e original sources [, ..., yn[i)
is still under development. One of the issues that has rlgcent

attracted attention in theoretical analysis of sensor oeksy sources can be made. Such an assumption on the sources may

is the concept of sensor capacity. The sensing capacity Was,ncorrelatedness, statistical independence, lack ¢ahu
initially introduced for discrete alphabets in applicasosuch formation, or disjointness in some space [18], [19], [49]

as target detection [171], and later extended in [14], [172 The signal mixtures are often decomposed into their con-

[1I73] (tjo thﬁ contlljrlluousf case.l_The fquestlons_ In tlh's area iftyent principal components, independent componendser
related to the problem of sampling of sparse signals, [Z8],[ geparated based on their disjoint characteristics destiiba
[160] and sampling with finite rate of innovation [3], [104].q jitaple domain. In the latter case, the original sourcesish

In the contgxt of the CS,_senS|_ng capacity prqwdes boungé sparse in that domain. Independent Component Analysis
on the maximum signal dimension or complexny per sens rCA) is often used for separation of the sources in the farme
measurement that_ can l:_)e recovered to a pre-defined (_je_gre agE whereas SCA is employed for the latter case. These two
accuracy. Alternatively, it can be interpreted as the mimim o ematical tools are described in the following sections

number of sensors necessary to monitor a given region G eq by some results and illustrations of their appiimas.
desired degree of fidelity based on noisy sensor measurement

The inverse of sensing capacity is the compression rate; i.e )
the ratio of the number of measurements to the number Bf Independent Component Analysis (ICA)
signal dimensions which characterizes the minimum rate toThe main assumption in ICA is the statistical independence
which the source can be compressed. As shown in [14], sefabthe constituent sources. Based on this assumption, I@A ca
ing capacity is a function of SNR, the inherent dimensidgaliplay a crucial role in the separation and denoising of signal
of the information space, sensing diversity, and the désir€8SS).
distortion level. There has been recent research interest in the field of

Another issue to be noted with respect to the sensing capB&S due to its practicality in a wide range of problems.
ity is the inherent difference between sensor network and €8r example, BSS of acoustic signals measured in a room is
scenarios in the way in which the SNR is handled [14], [173pften referred to as the Cocktail Party problem, which means
In sensor networks composed of many sensors, fixed SKgparation of individual sounds from a number of recordings
can be imposed for each individual sensor. Thus, the sen#@cn echoic and noisy environment. Fig. 23 illustrates the
SNR per location is spread across the field of view leadif@SS concept, wherein the mixing block represents the multi-
to a row-wise normalization of the observation matrix. Oa thpath propagation model between the original sources and the
other hand, in CS, the vector-valued observation corregipgn microphone measurements.
to each signal component is normalized by each column.Generally, BSS algorithms make assumptions about the en-
This difference has led to different regimes of compressiofifonment in order to make the problem more tractable. There
rate [173]. In SN, in contrast to the CS setting, sensirije typically three assumptions about the mixing mediune Th
capacity is generally small and correspondingly the numb@ost simple but widely used case is the instantaneous case,
of sensors required does not scale linearly with the targihere the source signals arrive at the sensors at the same
sparsity. Specifically, the number of measurements is géiper time. This has been considered for separation of biological
proportional to the signal dimension and is weakly dependefignals such as the EEG where the signals have narrow
on target density sparsity. This issue has raised questionsbandwidths and the sampling frequency is normally low [174]
compressive gains in power-limited SN applications based dhe generative model for BSS in this case can be easily
sparsity of the underlying source domain. formulated as:

x[i] = H - s[i] + v[i] (74)

VIlI. SPARSECOMPONENTANALYSIS: BSSAND SDR )
where s[i], x[i], and v[i] denote respectively the vector of

A. Introduction source signals, size x 1, observed signals size: x 1, and
Recovery of the original source signals from their mixturesoise signals sizen x 1. H is the mixing matrix of size
without having a priori information about the sources anth x n. Generally, the mixing process can be nonlinear (due
the way they are mixed, is called Blind Source Separatida inhomogenity of the environment and that the medium
(BSS). This process is impossible if no assumption about then change with respect to the source signal variations; e.g
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stronger vibration of a drum as a medium, with loudenefers to thd!” path. The unmixing process will be formulated
sound). However, in an instantaneous linear case where #imilarly to the anechoic one. For a known number of sources,
above problems can be avoided or ignored, the separatamaccurate result may be expected if the number of paths is
is performed by means of a separating matiW, of size known; otherwise, the overall number of observations in an
n x m, which uses only the information contained %}i] echoic case is infinite.

to reconstruct the original source signals (or the indepahd The aim of BSS using ICA is to estimate an unmixing

components) as: matrix W such thatY = WX best approximates the
W xli 25 independent sourceS, where Y and X are respectively

ylil =W -x[i (75) " matrices with columngi] = [ylr[ri]’ wolil, ..., yali]]” and
where y[i] is the estimate for the source signgl]. The x[i] = [z1[i], x2[i], ..., @n[i]] . Thus the ICA separation

early approaches in instantaneous BSS started from the walforithms are subject to permutation and scaling ambeguit
by Herault and Jutten [175] in 1986. In their approaclin the output components, i.éW = PDH™!, where P
they considered non-Gaussian sources with equal numberaofl D are the permutation and scaling (diagonal) matrices,
independent sources and mixtures. They proposed a solutiespectively. Permutation of the outputs is troublesome in
based on a recurrent artificial neural network for sepanatio places where either the separated segments of the sigeals ar
the sources. to be joined together or when a frequency-domain BSS is
In the cases where the number of sources is known, gpgrformed.
ambiguity caused by false estimation of the number of saurce Mutual information is a measure of independence and max-
can be avoided. If the number of sources is unknown,imizing the non-Gaussianity of the source signals is edeinta
criterion may be established to estimate the number of esur¢o minimizing the mutual information between them [178].
beforehand. In the context of model identification, this is In those cases where the number of sources is more than
referred to asvlodel Order Selectioand methods such as thethe number of mixtures (underdetermined systems), theeabov
Final Prediction Error (FPE), AIC, Residual Variance (RV)BSS schemes cannot be applied simply because the mixing
MDL and Hannan and Quinn (HNQ) methods [176] may b@atrix is not invertible, and generally the original sowsce
considered to solve this problem. cannot be extracted. However, when the signals are sparse,
In acoustic applications, however, there are usually tiniee methods based on disjointness of the sources in some
lags between the arrival times of the signals at the sensatemain may be utilized. Separation of the mixtures of sparse
The signals also may arrive through multiple paths. Thiignals is potentially possible in the situation where, athe
type of mixing model is called a convolutive model [177]sample instant, the number of nonzero sources is not more
The convolutive mixing model can also be classified inthan a fraction of the number of sensors (see Table II, row
two subcategories: anechoic and echoic. In both cases, @l column 6). The mixtures of sparse signals can also be
vector representations of mixing and separating procesmses instantaneous or convolutive.
modified asx[i| = H[i] = s[i] + v[i] andy[i] = W][i] * x]i], _
respectively, where denotes the convolution operation. In ar- Sparse Component Analysis (SCA)
anechoic model, however, the expansion of the mixing pces While the independence assumption for the sources is
may be given as: widely exploited in the design of BSS algorithms, the pos-
" sible disjointness of the sources in some domain has not
z.[i] = Z hyjsili — 0,4 + vpfi], forr=1,...,m (76) been considered. In SCA, this property is directly employed
i1 Blind Source Separation by sparse decomposition has been
. , addressed by Zibulevsky and Pearlmutter [179] for both-over
where the attenuation,. ;, and delay,.; of source; to sensor determined/exactly-determined and underdeterminecisysst

r would be determined by the physical position of the sour%\sing the maximum a posteriori approach. One way of for-

rﬁlanve to the ?Ielrjlsor_s. Then. the unmixing process to eumml”hulating SCA is by representing the sources using a proper
the sources will be given as: signal dictionary:

yilil = Z Wjrxe[i — 5., forj=1,...,n (77) seli] = Z cradyli] (79)
r=1 =1
where thew; s are the elements V. In an echoic mixing wherer = 1,..., m andn is the number of basis functions in

environment, it is expected that the signals from the sartfee dictionary. The functiong, [¢] are called atoms or elements
sources reach the sensors through multiple paths. Therefof the dictionary. These atoms do not have to be linearly
the expansion of the mixing and separating models will bedependent and may form an overcomplete dictionary. The

changed to sparsity property requires that only a small number of the
n coefficientsc,; differ significantly from zero. Based on this

2, ]i] = Zzhlrjé’j[i — 6l J+wlil, r=1,...,m (78) definition, the mixing and unmixing systems are modeled as
o= follows:

where L denotes the maximum number of paths for the x[i] = Asli]+ vl

sources, [i] is the accumulated noise at sensorand (.)! sli] = C®J] (80)
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There are many cases for which the sources are disjoint in
other domains, rather than the time-domain, or when they can
be represented as sum of the members of a dictionary which
can consist for example of wavelets or wavelet packets. In
these cases the SCA can be performed in those domains more
efficiently. Such methods often include transformatiorinuet
frequency domain followed by a binary masking [182] or a
BSS followed by binary masking [177]. One such approach,
(b) called Degenerate Unmixing Estimation Technique (DUET)

[182], transforms the anechoic convolutive observations i
the time-frequency domain using a short-time Fourier trans
form and the relative attenuation and delay values betwwsen t
two observations are calculated from the ratio of corredpan
time-frequency points. The regions of significant ampksid
o ) (atoms) are then considered to be the source components in
wherev|i] is anm x 1 vector. A and C can be determined yho time-frequency domain. In this method only two mixtures
by optimization of a cost function based on an exponentighye heen considered and as a major limit of this method, only
distribution for ¢; ; [179]. In places where the sources argne source has been considered active at each time instant.
sparse and at each time instant, at most one of the_ sources hg%r instantaneous separation of sparse sources, the common
significant nonzero value, the columns of the mixing matri,,.,ach ysed by most researchers is to attempt to maximize
may be calculatgd individually, WhICh makes the solution e sparsity of the extracted signals at the output of the
the underdetermined case possible. separator. The columns of the mixing matex assign each

The SCA problem can be stated as a clustering problesBserved data point to only one source based on some measure
since the lines in the scatter plot can be separated bagggroximity to those columns [183], i.e., at each instanlyon

on their directionalities by means of clustering. A numbejne source is considered active. Therefore the mixing syste
of works on this method have been reported [18], [180¢an be presented as:

[181]. In the work by Liet al [181], the separation has been .
erformed in two different stages. First, the unknown ngxin , .
P Y X xp i) = Zajyrsj[z] , T
Jj=1

-15 .
15 -1 -05

1 15

xi[i] 05

(@)

Fig. 24. (a) the scatter plot and (b) the shortest path froenotfigin to the
data point,z[i], extracted from [15].

=1,....m (81)

matrix is estimated using the k-means clustering method.
Then, the source matrix is estimated using a standard linear
programming algorithm. The line orientation of a data sey mavhere in an ideal case,; . = 0 for r # j. Minimization of
be thought of as the direction of its greatest variance. OHee ¢1-norm is one of the most logical methods for estimation
way is to perform eigenvector decomposition on the covaganof the sources as long as the signals can be considered sparse
matrix of the data, the resultant principal eigenvecter, the ¢1-norm minimization is a piecewise linear operation that
eigenvector with the largest eigenvalue, indicates thection partially assigns the energy offi] to the m columns of A
of the data, since it has the maximum variance. In [180], GA&oundx/[i] in R" space. The remaining — m columns are
statistics as a metric which measures the distance betw@ghigned zero coefficients, therefore thenorm minimization
the total variance and cluster variances, has been usedc@ be manifested as:
estimate the number of sources followed by a similar method
to Li's algorithm explained above. In line with this apprbac
Bofill and Zibulevsky [15] developed a potential function detailed discussion of signal recovery usifignorm mini-
method for estimating the mixing matrix followed By-norm mization is presented by Takigaved al [184] and described
decomposition for the source estimation. Local maxima ef thhelow. As mentioned above, it is important to choose a domain
potential function correspond to the estimated directiohs that sparsely represents the signals.
the basis vectors. After the mixing matrix is identified, the On the other hand, in the method developed by Pedersen
sources have to be estimated. Even whtenis known, the et al[177], as applied to stereo signals, the binary masks are
solution is not unique. So, a solution is found for which the estimated after BSS of the mixtures and then applied to the
norm is minimized. Therefore, fak[i] = >~ a;s;[i], >, |s;| microphone signals. The same technique has been used for
is minimized using linear programming. convolutive sparse mixtures after the signals are transédr
Geometrically, for a given feasible solution, each sourde the frequency domain.
component is a segment of length;| in the direction of  In another approach [185], the effect of outlier noise has
the corresponding; and, by concatenation, their sum definebeen reduced using median filtering then hybrid fast ICArfilte
a path from the origin toc[i]. Minimizing }, [s;| amounts ing, and¢;-norm minimization have been used for separation
therefore to finding the shortest path @] over all feasible of temporomandibular joint sounds. It has been shown that fo
solutionsj =1, ..., n, wheren is the dimension of space such sources, this method outperforms both DUET and Li's
of the independent basis vectors [18]. Figure 24 shows thlgorithms. The authors of [186] have recently extended the
scatter plot and the shortest path from the origin to the ddB&ET algorithm to separation of more than two sources in an
point z[i]. echoic mixing scenario in the time-frequency domain.

min ||s[é]|le, subject to A -s[i] = x]i] (82)
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TABLE XVI

Y
SCA STEPS fie 1 fie Vi V,
sk X

1) Consider the modet = A -s, we need a linear transt V Q °

formation that applies to both sides of the equation| to Vi Sz v,

yield a new sparse source vector.
2) Estimate the mixing matriXA. Several approaches are > >

presented for this step, such as natural gradient ICA X X

approaches, and clustering techniques with variants of

k-means algorithm [18], [188].
3) Estimate the source representation based on the spar- (a) (b)

sity assumption. A majority of proposed methods are

primarily based on minimizing some norm or pseudo-

norm of the source representation vector. The most Fig. 25. Obj2ect|ve funct|o2n: @ = d2(J;1’V2) +d?(f2, V1) + d*(f3, 1)
effective approaches are Matching Pursuit [38], [188], and (b)e = d°(f1, V2) +d*(f3, V2) + d*(f2, V1). Configuration ofV1, V2
Basis Pursuit, [86], [179], [189], [190], FOCUSS [46], in (a) creates the partitior’y = {f1} and P, = {f2, f3} while the
IDE [73] and Smoothedo-norm [47]. configuration in (b) causes the partitidh = {f1, f3} and P, = {f2}.

[18]-[20], [40], [75], [191]. A related problem is the signa

In a very recent approach, it has been considered that braindeling problem in which the classis to be modeled by a
signal sources in the space-time frequency domain areimtisjounion of subspacest = Uﬁzl V; where eaclV; is a subspace
Therefore, clustering the observation points in the spgimee- of R™ with the dimension oV; < k wherek < n [49]. If the
frequency-domain can be effectively used for separation sfibspaces; are known, then it is possible to pick a bagis=
brain sources [187]. {e}; for eachV; and construct a dictionarf) = Ui:l E'in

As it can be seen, generally, BSS exploits independencevdiich every signal oS has sparsity: (or is almostk sparse).
the source signals whereas SCA benefits from the disjoistn@he modelM = Uli:1 Vi can be found from an observed set
property of the source signals in some domain. While the B®$ dataF' = {f1,..., fm} C S by solving (if possible) the
algorithms mostly rely on ICA with statistical propertiefstioe  following non-linear least squares problem:
signals, SCA uses their geometrical and behavioral priggert Find subspace¥i, ..., V, of R that minimize the expres-
Therefore, in SCA, either a clustering approach or a maskisgpn
procedure can result in estimation of the mixing matrix.c0ft m
an¢;-norm is used to recover the source signals. Generally, in ~ ¢(F, {V1,....Vi}) = min d*(f;,V;) (83)

. £ 1<5<1
places where the source signals are sparse, the SCA methods i=1
often result in more accurate estimation of the signals withver all possible choices df subspaces with dimension of
less ambiguities in the estimation. V; < k < n. Hered denotes the Euclidian distancel®® and
k is an integer withl < k < n for i = 1,...,l. Note that

D. SCA Algorithms e(F,{Vi,...,V;}) is calculated as follows: for eacf € F
nd fixed{V1, ..., V;}, the subspac¥; € {Vi,...,V;} closest

There are three main steps for the solution of an S : . . :
problem as shown in Table XVI [188]. The first step of Table" fi is found and the distanc?(f;, V;) is computed. This
ocess is repeated for afi € F and the squares of the

XVI shows a linear model for the SCA problem, the Se.con(%{stances are added together to find”, {V1,...,V;}). The
step consists of estimating the mixing matAxusing sparsity : . : .

. . . . f . optimal model is then obtained as the unign = J, V,°,
information, and finally the third step is to estimate therspa where {V Ve} minimize the expression (83)1 V(/hen
source representation based on the estimat& ¢f7]. Loeees Ml P '

A brief review of major approaches that are suggested flor: 1 this problem reduces to the cIasspaI Ieast_ squares
the third step was given in Sec. II. problem. However, whei > 1 the setlJ, V; is a nonlinear

set and the problem is fully non-linear (see Fig. 25). A more
eneral nonlinear least squares problem has been studied fo
nite and infinite Hilbert spaces [49]. In that general seffi

the existence of solutions is proved and a meta-algorithm fo
A signal x € R™ may be sparse in a given basis but natearching for the solution is described.

sparse in a different basis. For example, an image may bd~or the special finite dimensional case Bf* in (83),

sparse in a wavelet basis (i.e., most of the wavelet coeftigiethe search algorithm is an iterative algorithm that altersa

are small) even though the image itself may not be sparse (ileetween data partition and the optimization of a simplestlea

many of the gray values of the image are relatively largedquares problem. This algorithm, which is equivalent to the

Thus, given a clas§ c R, an important problem is to find a k-means algorithm, is summarized in Table XVII.

basis or a frame in which all signals & can be represented In some new attempts sparse representation and the com-

sparsely. More specifically, given a class of signéls. R™, pressive sensing concept have been extended to solving

it is important to find a basis (or a framd) = {wj}jzl multichannel source separation [192]-[195]. In [192], 319

(if it exists) for R™ such that every data vectarc S can be separation of sparse sources with different morphologéss h

represented by at mokt< n linear combinations of elementsbeen presented by developing a multichannel morphological

of D. The dictionary design problem has been addressedcomponent analysis approach. In this scheme, the signals

E. Sparse Dictionary Representation (SDR) and Signal M
eling
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TABLE XVII

SEARCH ALGORITHM 1
o 08
e Input: g
— initial partiion {F}, ..., F}'} =R
— Data setF € 04
o <
o lterations:
1) Usethe SVD to find V!, ..., V;'} by minimiz- 2
ing e(F},V;!) for eachi, and computel’; = 0
Zi E(Fz‘lv Vil ; 0 2 4 8
2) Setj =1; o Delay (u s)
3) While T; = Xe(F V) > (@)
e(F AVY,...,V/'}) v v
4) Choose a new partitiofy "', ..., F/ "} that
satisfies,f € F/ "' implies thatd(f, V) < 1
d(f, Vi), h=1,...,1; 08
5) Use SVD to find and choose <}
J+1 j41 A =
{V§ LY } by minimizing 206
e(F/T',V;) for each i, and compute =
D = X e(FIL V), <
6) Incrementj by 1, i.e.,57 — 7+ 1; 0%
7) End while )
o Output: 0
- ) v ) 0 2 4 6 8
- {F,. .. F/}yand{V],...,V/}. Delay (u s)
(b)

26. The impulse response of two typical multipath cledsin(a) Brazil-D

are considered as combination of features from diﬁereﬁ% (b) TUB channel profiles

dictionaries. Therefore, different dictionaries are assd for
different sources. In [194] inversion of a random field from _ _ _ _
pointwise measurements collected by a sensor networkTige sparse time varying multipath channel is modeled as:

presented. In this paper, it is assumed that the field hasraespa k-1
representation in a known basis. To illustrate the approach h(t,7) = Zal(t)g(q- —7(t)) (84)
the inversion of an acoustic field created by the superpusiti 1=0

of a discrete number of propagating noisy acoustic souses,jnerer: is the number of tapsy, is thel*" complex path gain,

considered. The method combines compressed sensinge(sp%n is the corresponding path delay. At timethe transfer
reconstruction by -constrained optimization) with distributeds,nction is given by:

average consensus (mixing the pointwise sensor measutemen oo

by local communication among the sensors). [195] addresses H(t, f) = / h(t,7)e 27 dr (85)
source separation from a linear mixture under source gparsi —o0

and orthogonality of the mixing matrix assumptions. A twoThe estimation of the multipath channel impulse response is
stage separation process is proposed. In the first stageerecovery much similar to the determination of analog epochs and
ing a sparsity pattern of the sources is tried by exploitimg t amplitudes of discontinuities for finite rate of innovatias
orthogonality prior. In the second stage, the support islusshown in (31). Essentially, if a known train of impulses is
to reformulate the recovery task as an optimization problemansmitted and the received signal from the multipath oean
Then a solution based on alternating minimization for savi is filtered and sampled (information domain as discussed in

the above problems is suggested. Sec. llI-C), the channel impulse response can be estimated
from these samples using an annihilating filter (the Prony or
VIIlI. M ULTIPATH CHANNEL ESTIMATION ELP method) [27] defined with th&-transform and a pseudo-

In wireless systems, channel estimation is required for t¥€'Se matrix inversion, in principle Once the channel
compensation of channel distortions. The transmitted atigdMPUlSe response is estimated, its effect is compensated; t
reflects off different objects and arrives at the receiverfr PTOCESS can be repeated according to the dynamics of the time

multiple paths. This phenomenon causes the received Sigy%qying channel. ) _
to be a mixture of reflected and scattered versions of theA_‘ sp_emal case of multlpath channel is an OFDM channel,
transmitted signal. The mobility of the transmitter, reegj Which is widely used in ADSL, DAB, DVB, WLAN, WMAN,

14 i i earri o
and scattering objects results in rapid changes in the ean@d WIMAX™. OFDM is a digital multi-carrier transmission
nigue where a single data stream is transmitted over sev

response, and thus the channel estimation process becof'ﬁ‘é? b ior f - hi b i
more complicated. Due to the sparse distribution of sdatier era ;u r;carrleir requerlllmes to ac |(Ieveﬁ_ro_ ustnels;6agiéh;
objects, a multipath channel is sparse in the time domain tpath channels as well as spectral efficiency [196]. nne
shown .in Fi_g. 26. By tak_ing §Par5ity into consideration,reha  13similar to Pisarenko method for spectral estimation in SeB.

nel estimation can be simplified and/or made more accuratel*These acronyms are defined in Table Il at the end of Sec. I.
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estimation for OFDM s relatively simple; the time instanceand Linear Minimum Mean Squared Error (LMMSE) [199],
of channel impulse response is now quantized and instg200], [203] techniques are among some of these methods.
of an annihilating filter defined in th&-transform, we can However, none of these techniques use the inherent sparsity
use DFT and ELP of Sec. IV-A. Also, instead of a knowwf the multipath channdi, and thus, they are not as accurate.
train of impulses, some of the available sub-carriers irheac 2) Sparse OFDM Channel Estimatiorin the following,
transmitted symbol are assigned to predetermined pattemye present two methods that utilize this sparsity to enhance
which are usually called comb-type pilots. These pilot ®ong¢he channel estimation process.
help the receiver to extract some of the DFT samples of theCS Based Channel Estimatiorthe idea of using time-
discrete time varying channel (84) at the respective fragies domain sparsity in OFDM channel estimation has been pro-
in each transmitted symbol. These characteristics make fhssed by [204]-[206]. There are two main advantages in in-
OFDM channel estimation similar to unknown sparse signeluding the sparsity constraint of the channel impulsesasp
recovery of Sec. IlI-A.1 and the impulsive noise removal dh the estimation process:
Sec. IV-A.2. Because of these advantages, our main exampl@|) Decrease in the MSE: By applying the sparsity con-
and simulations are related to OFDM channel estimation. straint, the energy of the estimated channel impulse respon
will be concentrated into a few coefficients while in the

A. OFDM Channel Estimation conventional methods, we usually observe a leakage of the
For OFDM, the discrete version of the time varying chann&€rgy to the neighboring coefficients of the nonzero taps.
of (85) in the frequency domain becomes Thus, if the sparsity-based methods succeed in estimating t

support of the channel impulse response, the MSE will be
improved by prevention of the leakage effect.

(I) Reduction in the overhead: The number of pilot sub-
carriers is in fact, the number of (noisy) samples that we
obtain from the channel frequency response. Since the pilot

hlr, 1) = h(rTy,ITs) (87) sub-carriers do not convey any data, they are considered as
) ) ~ the overhead imposed to enhance the estimation process. The
where 7y and n are the symbol length (including cyclicheoretical results in [204] indicate that by means of spars
prefix) and number of sub-carriers in each OFDMlsy.mbO&ased methods, the perfect estimation can be achieved with
respectivelyAf is the sub-carrier spacing, afd = z7 IS an gverhead proportional to the number of non-zero channel
the sample interval. The above equation shows that for'the taps (which is considerably less than that of the the current
OFDM Syr’nbOL.E[[T7 Z] is the DFT th[’f‘, l] Standards)_

Two major methods are used in the equalization processy the sequel, we present two iterative methods which
[197]: 1) zero forcing and 2) Minimun Mean Squared Errogyp|ojt the inherent sparsity of the channel impulse respon
(MMSE). In the zero forcing method, regardless of the noisg improve the channel estimation task in OFDM systems.
variance, equalization is obtained by dividing the recgive |ierative Method with Adaptive Thresholding (IMAT) for
OFDM symbol by the estimated channel frequency respongg:py Channel Estimation [207]:Here we apply a similar
while in the MMSE method, the approximation is chosen suGfyrative method as in section IV-B for the channel estiorati
that the MSE of the transmitted data vec{d?[[|X — X||*]) problem in (88). The main goal is to estimatefrom H;

is minimized, which introduces the noise variance in th&ven thath has a few non-zero coefficients. To obtain an

equations. initial estimateh,, we use the Moore-Penrose pseudo-inverse
1) Statement of the ProblemThe goal of the channel F, which yields a solution with minimunt,-norm:

estimation process is to obtain the channel impulse regpons

n—1
_ j2mil

Hir,i] & H(rTy, iAf) =Y hlr,lje” = (86)
=0

where

from the noisy values of the channel transfer function in the hy = F/ ﬁip =F'F, h+F/v,

pilot positions. This is equivalent to solving the followin 1 . " o !

equation forh. = yFiFi h + ~Fi Vi, (89)
~ ———
Hip = Fiph + v, (88) GnrxN

wherei, is an index vector denoting the pilot positions in thevhere we used:

frequency spectruntl;, is a vector containing the noisy value N . T B

of the channel frequency spectrum in these pilot positions F,,"=F;, (F,F;) = N (90)

———

and F;, denotes the matrix obtained from taking the rows
of the DFT matrix pertaining to the pilot positions; is the
additive noise on the pilot points in the frequency domain. The non-zero coefficients di are found through a set of
Thus, the channel estimation problem is equivalent to figpdinterations followed by adaptively decreasing thresholds:
the sparse vectdi from the above set of equations for a set

L1
N NpXNp

of pilots. Various channel estimation methods [198] haverbe h, = /\(flg -G- f}i,l) +hi (91)
used with the usual tradeoffs of optimality and complexity. A hi(k)  |hi(k)| > Be*
The Least Square (LS) [198], Maximum Likelihood (ML) hi(k) = , (92)

[199], Minimum Mean Squared Error (MMSE) [200]-[202], 0 otherwise
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TABLE XVIII

> >

b

MIMAT A LGORITHM FOROFDM CHANNEL ESTIMATION
~ 4
ho——>| G |- -[)—blThreshoId G |—d Threshold
3 A

> o Initialization :
— Find an initial estimate of the time domain channe

Fig. 27. Block diagram of the IMAT method. using linear interpolationh(®) = Ay, cqr
o lterations:
1) Set Thresholdge®?.
where \ andi are the relaxation parameter and the iteration 2) Using the threshold from the previous step,
b tivelvi: is the index of channel impulse re- find the locations of the tapg by threshold-
number, respec 'Vely]£ ! . / . p ing the time domain channel from the previoys
sponse andG = NF{;{Fip is defined in (89). The block iteration( (i—1)).
diagram of the proposed channel estimation method is shown 3) Solve for the values of the non-zero impulses
. . using MMSE:
in Fig. 27.

Modified IMAT (MIMAT) for OFDM Channel Estimation hi=SNR-FH(F.SNR-FH £+ 1) (94)
[23]: In this methoq, the spectrum .of the channel is |n|t|§1IIy 4) Find the new estimate of the chann(®{) by
estimated using a simple interpolation method such asrlinea substituting the taps in their detected positions.
interpolation between pilot sub-carriers. This initialieste is 5) Stop if the estimated channel is close enouygh

to the previous estimation or when a maximum

further improved in a series of iterations between time (&pa number of iterations is reached

and frequency (information) domains to find the sparsest
channel impulse response by using an adaptive thresholding
scheme; in each iteration, after finding the locations of the
taps (locations with previously estimated amplitudes &rgh
than the threshold), their respective amplitudes are agai
found using the MMSE criterion. In each iteration, due to
thresholding, some of the false taps that are noise samjttes w

10°

L 4

10 F

amplitudes above the threshold are discarded. Thus, the ne % 10 +ggesa;'merp'

iteration starts with a lower number of false taps. Morepver —v— OMP

because of the MMSE estimator, the valid taps approach the 0% | —a—vAT

actual values in each new iteration. In the last iteratibve, t | | o Exact Est.

actual taps are detected and the MMSE estimator gives the | ‘ ‘ ‘

respective values. This method is similar to RDE and IDE 0 s 10 15 20

methods discussed in Sections IV-A.2 and II-F. The main CNR (dB)

advantage of this method is its robustness against sidé-bapy. 28. SER (Symbol Error Rate) vs. CNR (Carrier to Noiseidjdor the
zero-paddian. ideal channel, linear interpolation, GPSR,OMP and the IMAIT the Brazil

Table XVIIl summarizes the steps in the MIMAT algorithm Shannel at"d = 0 without zeropadding effect.

In the threshold of the MIMAT algorithmp and 5 are
constants which depend on the number of taps and initial

powers of noise and channel impulses. In the first iteratioﬁ\,/a"able’ this solution can be modified and a better esiimat

the threshold is a small number, and with each iteration it obtained; howe\_/er, this_ makes the approximation process
is gradually increased. Intuitively, this gradual increasf more complex. This algorithm does not need many steps of

the threshold with the iteration number, results in a graduI eratlons;_ the pos_|t|on§ of the non-zero impulses areqpéiy
etected in3 or 4 iterations for most types of channels.

reduction of false taps (taps that are created due to ndise).
each iteration, the tap values are obtained from:

I:ILSip —H,; +vi = F-h + vi, (93) B Simulation Results and Discussions

. . . For OFDM simulations, the DVB-H standard was used with
wheret denotes the index of nonzero impulses obtained fro{lqe16-QAM constellation in thek mode @' FFT size). The
the previous step anH is obtained fromF; by keeping the '

. . . channel profile was the Brazil channel D. Fig. 28-31 show the
columns determined by The amplitudes of nonzero impulse . ; .
: . . . . ymbol Error Rate (SER) versus the Carrier-to-Noise Ratio
can be obtained from simple iterations, pseudo-inverseher

. . CNR) after equalizing using different sparse reconstonct
MMSE eql_Jgtlon (.94) of Table XVIll that yields better reSUItémethgds suchqas Ort%ogongl Matching pPursuit (OMP) [89]
un.?ﬁ; aed(:::g\t/if)nmt)r:sa? ﬁ;:';gngegéls\'/ed in (93) is usuall c)veC_ompressive Sampling Matching Pursuit (CoSaMP) [41], Gra-
°q . . Hally éiﬁnt Projection for Sparse Reconstruction (GPSR) [44ATM
_deter_mmed which helps the suppression of the noise N €& MIMAT. Also the standard linear interpolation in the
ot e NS S o ooao EGUEDEy domai using e oy ot sl is St
X . - O G these simulations, we have considered the effects of zero
discrete impulses are known. If further statistical knalge is padding and Doppler frequency in the SER of estimation. As
15|n current OFDM standards, a number of subcarriers at bagesdf the  Can be seen in Fig. 28-31, the SER obtained from the sparsity-

bandwith are set to zero to ease the process of analog banfilpsng. based algorithms reveal almost perfect approximation ef th
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10° ‘ ‘ ‘ 10°

O
& o' | —=— Linear Interp. | x i | 7= Linear Interp. |
%) GPSR n GPSR h
—v— CoSaMP N : —v—OMP

—a— |[MAT —A&— MIMAT
....... Exact Est. s o Exact Est. _
2 . ‘ ‘ , ‘ ‘ ‘ %
105, 5 10 15 20 9% 5 10 15 20

CNR (dB) CNR (dB)

Fig. 29. SER (Symbol Error Rate) vs. CNR (Carrier to Noiseidjafor ~ Fig. 31.  SER (Symbol Error Rate) vs. CNR (Carrier to Noiseidafor
the ideal channel, linear interpolation, GPSR,CoSaMP aedIMAT for the  the ideal channel, linear interpolation, GPSR, OMP and tHEIAT for the
Brazil channel atF'd = 50H z without zeropadding effect. Brazil channel at’'d = 50H z including zeropadding effect.

10°

¥

coding has, moreover, been shown to be a discrete version of
the annihilating filter used in sampling with a finite rate of

innovation and the Prony method in spectral estimation; the
Pisarenko and MUSIC methods are further improvements of

10 "

@ +(L3igesa"£ Interp. the.Prony me.thod when additive noise is also consi_dered. .
| Linkages W|th_ emergent areas such as compressive sensing
—a— MIMAT and channel estimation have also been considered. In aaditi
...... EE it has been suggested that the linear programming methods

‘ ‘ ‘ ; developed for compressive sensing and SCA can be applied
0 5 10 15 20 to other applications with possible reduction of sampliatgr

CNR (dB) As such, this tutorial has provided a route for new applioai
Fig. 30. SER (Symbol Error Rate) vs. CNR (Carrier to Noiseid}dor the of sparse signal processing to emerge, which can potentiall
ideal channel, linear interpolation,GPSR,CoSaMP and th®IAT for the reduce computational complexity and improve performance
Brazil channel at"d = 0 including zeropadding effect. quality. Other potential applications of sparsity are ia #reas
of sensor networks and sparse array design.

10°°

hypothetical ideal channel (where the exact channel freque

response is used for equalization). APPENDIX|
ELP DECODING FORERASURE CHANNELS [59]
IX. CONCLUSION For lost samples, the polynomial locator for the erasure
o . . . samples is
A unified view of sparse signal processing has been pre-

sented in tutorial form. The sparsity in the key areas of k areig k et
sampling, coding, spectral estimation, array processing)- H(z) = H (Z% - ) = th Zi (95)
ponent analysis, and channel estimation has been carefully m=1 t=0
exploited. Some fprm of unlfor_m or random sampllng has been H(z )=0, m=1,2. .k (96)
shown to underpin the associated sparse processing methods
used in each of these fields. The reconstruction methods usétbre z; = ¢/“%". The polynomial coefficientd,, ¢ =
in each application domain have been introduced and the ..,k can be found from the product in (95); it is easier to
interconnections among them have been highlighted. find h; by obtaining the inverse FFT df (z). By multiplying

This development has revealed; for example, that the ite(@6) by eli,,] - (zim)r (wherer is an integer) and summing
tive methods developed for random sampling can be applieder m, we get
to real-field block and convolutional channel coding for im- k &
pulsive noise (salt-and-pepper noise in the case of images) Z By - Z (e[im] . (Zi )k+r—t) —0 (97)
moval, SCA, and channel estimation for orthogonal freqyenc P "
division multiplexing systems. These iterative reconsian ince the inner summation is the DFT of the missing samples
methods have been shown to be naturally extendablet)

o . elinm], we get

spectral estimation and sparse array processing due to thei
similarity to channel coding in terms of mathematical madel k
with significant improvements. Conversely, the minimum de- Z hi - Elk+r—1t]=0 (98)
scription length method developed for spectral estimatiod t=0
array processing has potential for application in otheasrewhere E[] is the DFT ofe[i]. The received samplegl][i],
The error locator polynomial method developed for channean be thought of as the original over-sampled signal,

m=1



minus the missing samplesi,,|. The error signalgli], is the
difference between the corrupted and the original overpdaan
signal and hence is equal to the values of the missing sampléé]
for ¢ = i, and is equal to zero otherwise. In the frequency 2]
domain, we have

(3]
E[j]=X[jl=D[l, j=1,...,n (99)
(4]
Since X[j] = 0 for j € © (see the footnote on page 15), 5
then 5]
. . . [6]
E[j]=-D[j], j€© (100)
The remaining values of[j] can be found from (98), by (7
the following recursion:
(8]
—1 k
Blr] = 4~ ; hi—t E[r + ] (101)
. " . [10]
wherer ¢ © and the index additions are inod(n).
(11]
APPENDIXII [12]
ELP DECODING FORIMPULSIVE NOISE CHANNELS [31],
[105]
(13]

For all integer values of such thatr € © andr + k € O,
we obtain a system of equations witht + 1 unknowns f;
coefficients). These equations yield a unique solution tier t [14]
polynomial with the additional condition that the first nena
h; is equal to one. After finding the coefficients, we need to
determine the roots of the polynomial in (95). Since the soot[15]
of H(z) are of the forme’“5™, the inverse DFT (IDFT) of
the {h,,, }%,_, can be used. Before performing IDFT, we haveyy 6]
to padn — 1 — k zeros at the end of thgh,,, }%,_, sequence
to obtain ann-point signal. We refer to the new signal (after
IDFT) as{H;}!,. Each zero in{H;} represents an error in
r[é] at the same location.

(17]
(18]
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