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ABSTRACT

The emerging field of compressed sensing deals with the techniques of combining the two
blocks of sampling and compression into a single unit without compromising the perfor-
mance. Clearly, this is not feasible for any general signal; however, if we restrict the signal
to be sparse, it becomes possible.

There are two main challenges in compressed sensing, namely the sampling process and the
reconstruction methods. In this thesis, we will focus only on the deterministic sampling pro-
cess as opposed to the random sampling. The sampling methods discussed in the literature
are mainly linear, i.e., a matrix is used as the sampling operator. Here, we first consider
linear sampling methods and introduce some deterministic designs. The constructed matri-
ces are derived from OOC, BCH and non-binary BCH codes. The cyclic property of BCH
codes enables us to implement fast reconstruction methods by using the FFT algorithm.
The channel coding matrices are based on the finite Galois field algebra, which restricts the
number of rows in such matrices to some subsets of the integer numbers. We also introduce
means to combine these matrices to obtain sampling matrices with arbitrary number of

rN()(‘)x;lb—'linear sampling methods are discussed in this thesis for the first time. When the sparsity
domain is unknown at the time of sampling, no linear sampling method can guarantee
perfect recovery; however, we show that non-linear methods can be used to recover \-sparse
signals. Furthermore, if the sparsity domain is known, non-linear methods can reduce both
the number of required samples and the reconstruction complexity. The drawback of these
methods is their sensitivity to additive noise.

Sparsity and compressibility are fundamental concepts in the field of compressed sensing.
Although it is straightforward to define these concepts for finite dimensional vectors, the
generalization to the infinite dimension and continuous domain is completely different.
On the other hand, in order to be able to apply compressed sensing results to the real
world problems, we need to consider continuous signals. Here we show that sparsity
and compressibility concepts can be generalized to infinite deterministic and random
sequences. Although the generalization from discrete to continuous signals is the main goal
in many research works, the well-known generalization deals with substituting the vectors
with matrices. For the latter case, instead of the zero/non-zero status of the elements,
sparsity is usually defined through the rank of the matrix. In the last part of this the-
sis, we show how low-rank matrices can be retrieved from their point-wise distorted versions.
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