
Quantitative orientation analysis

The aim is to characterize the orientation and isotropy properties of a region of interest (ROI) in

an image. To that end, we first define the weighted inner product
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w(x, y) " 0  is a weighting function that specifies the area of interest. It is typically a
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where
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"f = ( fx , fy ) is the gradient of the image under consideration. We are now interested in

finding the direction 
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u along which the directional derivative is maximized over the ROI. It is

given by
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A standard inner-product manipulation then yields
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is the so-called structure tensor, which is a 2 x 2 symmetric positive-definite matrix. The solution

of the optimization problem (2) is obtained by setting the derivative of 
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u to zero, which yields the eigenvector equation:
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This implies that the first eigenvector of 
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J  gives the dominant orientation of the ROI; the

corresponding eigenvalue is 
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. Conversely, the directional derivative is

minimized in the orthogonal direction given by the second eigenvector; i.e., 
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This clearly shows that the structure tensor contains all the relevant directional information. The

features are:

! Orientation: 
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C " 0..1[ ]

! Gradient Energy: 

! 

E =Trace(J)

The coherency indicates if the local image features are oriented or not: C is 1 when the local

structure has one dominant orientation and C is 0 if the image is essentially isotropic in the local

neighborhood.


