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Abstract

Transform coding is a popular technique adopted for lossy signal compression, which
makes use of the energy compaction in the transform domain. The energy compaction
is dependent on the optimality of the transform to the given signal. Wavelet transform
is ideally suited for adaptive transform coding as the basis vectors are related to each
other and the representation of the basis vectors itself becomes simple unlike other

transforms.

As the coding gain is proportional to the energy compaction, a wavelet is termed
to be optimum to a signal if it can approximate the signal better at a coarser scale, as
compared to other wavelet transforms. We introduce a scheme which derives a multi-
scaling function adapted to a given signal. The so derived multi-wavelet basis, will
approximate the given signal better at a coarser scale, as compared to other bases in

the particular class of wavelets considered.

We introduce a multi-wavelet, that is better as compared to conventional wavelet
basis in the representation of collage error in Fractal Image coding scheme. This basis,
will restrict the block edge details of the collage error, to a coarser scale, which a
conventional wavelet basis would spread to all scales. Hence the truncation of the
coefficients at finer scales for coding gain, will not cause the block edge details to be
lost which would cause blockiness in the reconstructed image, which is very disturbing.
This scheme also permits us to provide lesser bits at block edges where the discontinuity
is less, and provide those bits for the representation of natural edges of the image. As
this new transform separates the details having different perceptual implications to

different bands, images can be reconstructed at a better perceptual quality.

We also consider a generalisation of the conventional Multi-Resolution Axioms.
A filter bank structure for the decomposition of signals in this basis was also derived.
However, this generalisation was later found to be a special case of a more general
multi-wavelet basis. This scheme with orthogonality constraint yields wavelets with

very low approximation order, and high fractal characteristics.






Chapter 1

Introduction

The approximation of a signal using minimal number of parameters is an im-
portant problem in many engineering applications like Signal compression, Matched
filtering etc. One popular approach to solve this problem is the linear transformation
with zonal sampling, where signal is approximated by the projection onto a finite di-
mensional subspace of the signal space, where the most of the desired information of
the signal is concentrated. The desired information can be quantified by the energy of
the signal, or by some perceptual measure. The popularity of this technique is mainly
due to the mathematical tractability and the ease of introducing perceptual measures

in the approximation of signals like audio, images etc.

The choice of the optimal subspace to which the signal is projected, so that the
approximation results in minimal loss of useful information, is highly dependent on the
characteristics of the signal considered and the norm of the error to be minimised (which
is dependent on the perceptual measure considered). The choice of the subspace, which
in-turn is determined by the choice of the transform, can be posed as a mathematical
problem and is solved in the case of Random Stationary signals . The solution with
the energy of the error in approximation as the performance measure, is the Karhunen
Loeve Transform(KLT), where the basis vectors of the transform are the eigen vectors of
the Auto-correlation matrix. In zonal sampling, the eigen vectors with maximum eigen
value are chosen, and hence the subspace turns out to be the space where maximum
energy of the signal is concentrated. The above solution is based on the assumption
that the signal considered is stationary, which is not true with most of the practical
signals. This calls for the adaptation of the transform to the local statistics of the

signals.



In signal compression applications, such a scheme where the transform is adapted
to the local statistics of signals, is not profitable due to the large overhead in the trans-
mission of the basis vectors. However if the transform basis vectors are constrained
to be related to each other, as in the case of the Wavelet Transform, the overhead
is not large as above. In the wavelet transform the basis vectors are the dilates of
each other and hence, from one basis vector all the basis vectors can be generated. So
such a transform is ideally suited for a signal adapted transform for signal compression

applications.

Wavelet transform has attracted the attention of many researchers both in the-
oretical and applied areas in the recent past. As compared to other transformations,
the basis vectors of the wavelet transformation, are localised in time and frequency,
while most of the other transformations are not localised in time. One of the reasons
for its success could be the constant “Q” nature of the basis vectors, being similar to
our perceptual mechanisms. Wavelet theory, witnessed a brisk activity in signal pro-
cessing since the work of Mallat[17] in 1989, where he introduced the relation between

Multi-Resolution Analysis(MRA) and wavelet analysis.

A relation between fractals and Multi-resolution analysis can easily be seen.
While MRA generates signals of coarser resolutions from signals of higher resolutions,
a fractal generator (eg. Fractal interpolator) generates signals at finer resolutions from
that of coarser resolutions. Hence the fundamental operator of an MRA can be seen
as an inverse operator of the fundamental operator of a fractal generator, at-least for

some simple operators of this class.

The wavelet spaces that satisfy the Multi-resolution axioms, have a scaling
function that is obtained by the iteration of the two-scale relationship. The two-scale
relationship is nothing but the Iterated Function System(IFS) which was suggested by
Barnsley[16] in 1985, for the generation of fractal objects.

The rest of the thesis is be organised as mentioned below.The Chapter 2 gives
a review of wavelet theory with the main focus being on its applications to signal ap-
proximation and compression. In the third chapter an extension of the conventional
multi-resolution analysis is discussed and a filter bank implementation of the above
analysis is presented. The approximation properties of the above analysis is also dis-
cussed in the above chapter. The fourth chapter introduces a new multi-wavelet which
localises the details corresponding to the block edges in the collage error in a Fractal
Image compression scheme to the lower resolution spaces. The implementation details

of a scalable fractal image coder based on the above multi-wavelet are also given in this



chapter. In Chapter 5, the optimisation of a multi-wavelet to a given signal, assuming
it to be generated by a fractal generator, is discussed. Conclusions and suggestions for
further work is presented in Chapter 6.



Chapter 2

Signal Compression Using Wavelets

2.1 Introduction

For a long time Fourier analysis was a very useful technique for the analysis of a signal.
But this technique has certain disadvantages as well. The basis functions (complex
exponentials) have an infinite support, and hence when we deal with quasistationary
signals like speech where the frequency content of the signal varies with time, the tem-
poral information in the signal is lost. Wavelet transform, which has basis functions
localised in time, retains this temporal information. Hence for dealing with nonstation-
ary signals like speech, wavelet transform has certain advantages over the conventional

transforms.

In this chapter a brief review of wavelet theory with focus on its application to

approximation of functions is presented.

2.2 The Discrete Wavelet Transform

The discrete wavelet transform of a signal is defined as the the mapping 7' :
L*(R) — L?(R) of the form

(TF )k =< f, g >= /% F (@) () da, (2.1)



where 1,  is

Uni(t) = a2(a "z — kb) (2.2)

Here the function 1 is called as the mother wavelet and satisfies the admissibility

condition given by,

0o |, 2
0 < / de < 00, where (2.3)

00 w

(w) is the fourier transform of the function 4 (z). This condition implies that

/_ " d(w)dw = 0 (2.4)

It also imposes an upper bound on the asymptotic decay of the Fourier transform of
the wavelet as the frequency w — oo.

Wavelet theory became popular in signal processing, after the work of Mallat[17]
where he introduced the relationship between wavelet analysis and Multi-resolution
analysis. This scheme gives a systematic approach for the understanding of wavelet

theory and the construction of wavelets for practical applications.

2.3 Multi-resolution Analysis

Definition 2.3.1 A multi-resolution analysis of L?*(R) is a sequence of closed sub-
spaces ...,V _1,Vy,V1,Vs,. .. such that

(M1) Vi C Vit

(M2) > . Vi is dense in L*(R) and o~ Vo =0

(M3) f(z) € Vo <= f(22) € Voou

(M4) f(z) €Vo <= flz—k)eW, VkeZ

(M5) There exists an isomorphism 1 from Vi onto (*(Z) which commutes with the
action of Z

In (M5), the action of Z over Vj is the translation of functions by integers whereas the
action of Z over £2(Z) is the usual translation. The approximation of a function f(z)

at resolution j is the orthogonal projection of f(z) onV; .



The operator I is an isomorphism from V; to £2(Z). Hence there exists a function
g(x) which satisfies

g(z) € Vy and I(g(x)) =e(n) , where

en) = 1 if n = 0 and
-0 if n # O

Since I commutes with translation of integers,
I(g(z — k) = e(n — k)

The sequence e(n — k)ez is a basis of £2(Z), and hence (g(x — k))rez is a basis of V.
An arbitrary function f(x) € V; can be expressed in terms of these basis functions as

o0

flz) = Z ag-g(x — k) (2.5)

k=—o0

where (a;) € ¢?(Z). Taking the Fourier transform on both the sides, interchanging the
summation and integration(which is permitted as Fourier transform is a continuous

operator) and by Lemma 3.1 of [9] we get

A~

fe) = As(€)-g(e) (2.6)

where Af € L%0,27r) and is given by Af(e) = >"° _ ax.exp(ike). We can also say that

f € V; only if (2.6) holds for some Ay € Lf .

The above mentioned basis functions form a Reisz basis for the above spaces,
but they need not be orthogonal. Orthogonality of the basis functions is certainly a
desirable feature. The paper by Heijmans[9] is a consolidated work on this topic.

2.4 Approximation Properties of the Wavelet Trans-

form

Assume that the orthogonal scaling functions are given by ¢(z). In this case, an
arbitrary function f(z) € L?(R) may be approximated by its projection onto the space
V;, given by >, by¢(27z—Fk). The accuracy of this approximation increases as the value

of 77” increases. The asymptotic accuracy of the representation for any signal, that is



differentiable more than p times, is decided by the number of polynomials 1, z, ..., 2P},

that can be exactly represented by a combination of the translates of ¢(x — k). The
approximation error will decrease as h? as h — 0, where h = 277. This is proved as

follows . Any p times differentiable function f(z) can be written as

1) @ =)
2

f(@) = f(=") + f (=) (@ —z*) + +. 4 0(lz—2)  (27)

In the above equation, f(z*) corresponds to the value of the function at the grid points
(277k),k € Z and z is an a intermediate point. At a particular resolution, the error
in the approximation is proportional to O(||z — z*||?) , where the term (z — z*) is
proportional to the distance between the grid points which at a resolution ”j” is given
by 277. Hence the above result. This result gives the asymptotic decay of the upper
bound of the error due the truncation of the wavelet fine scale coefficients. It is to
be noted that this is valid only for smooth functions which are p times continuously

differentiable. For a more rigorous proof refer to [3]

If a wavelet decomposition has an approximation order of p, the polynomials
1,z,...,2P can be represented exactly by the translates of the scaling function. This

in-turn implies that the the moments of the wavelet and scaling functions are as follows.

M, = /00 aP.p(x) # 0 (2.8)

—0o0

N, = /_00 2Pap(x) = 0 (2.9)

Here 1(z) is the mother wavelet.

As the scaling function is the basis of the MR space, it satisfies the twos scale

relation

$(x) = cr.¢(2z — k) (2.10)

k

The wavelet function satisfies the equation
Y(@) = dp.¢(2z — k) (2.11)
k

The coeflicients ¢, are called as the mask of the scaling function. In the orthogonal



case, the coefficients dj, are given by
dy = (—1)*.c_ps1 (2.12)

The condition (2.9) implies that the Fourier Transform of the wavelet ¢)(w) has a root
of multiplicity N at w = 0. As ¢(0) # 0, the above condition implies that D(w),
which is the Fourier transform of the sequence dy, has a root of multiplicity N at
w = 0. The condition ¢(0) # 0, is implied by the ”partition of unity” condition
which has to be satisfied for the MR spaces defined by the scaling function, to satisfy
(M2). This condition along with equation(2.12) implies that the filter transfer function
C(w) (Fourier Transform of the sequence c), has N roots at m. The above conditions
imply that the filter C'(w) can be factorised as

C(w) = (#) K(w), with K(0) = 0 and K(r) # 0. (2.13)

The above factorisation was the starting point of the construction of compactly sup-
ported wavelets[11]. Daubechies has shown in [10] that the above factorisation leads
to an upper bound on the asymptotic decay of (;Aﬁ(w) as w — oo, subject to some con-
straints on the function K(w). This implies an upper bound on the asymptotic decay
of the function ¢(w). The condition(2.9) indicates the decay of the function ¥(w) as
w — 0. These properties together imply that the wavelet becomes more band-limited
as the order of approximation increases. The increase in the order of approximation is
not without any price to pay. As the order of approximation increases, the support of

the function in the time domain increases.

Daubechies have shown in [12] that a function cannot simultaneously satisfy all

the desirable conditions for signal representation as,

Orthogonality.

Symmetry/Linear phase analysis filters.

Short support.

High approximation order.

The Daubechies wavelets, which are orthogonal wavelets with the shortest possible
support with a particular approximation order, are orthogonal but not symmetric,

and there exists a trade off between approximation order and support. This is the



motivation for the generalisation of the Multi-Resolution axioms to introduce multi-
wavelets. It is seen that there exist multi-wavelets that satisfy all the above desirable

conditions. The next section briefly discusses the theory of multi-wavelets.

2.5 Multi-wavelet Analysis of L%(R)

Multi-wavelets are obtained by the generalisation of the conventional Multi-

resolution axioms as below

Definition 2.5.1 A multi-resolution analysis of L?*(R) is a sequence of closed sub-
spaces ...,V _1,Vy,V1,Vs,. .. such that

(M1) V,, C Vi y

(M2) Uy . Vi is dense in L*(R) and (2
(M3) f(z) € Vo <= [(2z) € Vo

(M}) f(z) €Vo < f(z—k) €V, forallke Z

(M5) There erists an isomorphism I from Vi onto (2(ZN) which commutes with the

0

'IL_*OO

action of Z

It is to be noted that only the axiom (M5) is changed, while the others remain
the same. The new set of axioms imply that there exist scaling functions ¢1, ¢o, ..., dn
such that the translates of these functions will span the multi-resolution spaces. Now

the new two-scale relationship will be as under.
ZZCH )b; (22 — k) (2.14)

Correspondingly, the wavelet space will be spanned by the translates of N functions

which are obtained as
szw )b;(2z — k) (2.15)
The above equations can be written in the matrix form as
z) =Y Crp(2z—k) (2.16)
k
z) =Y Dp¢(2z — k) (2.17)
k



In the above equations, Cj and Dy are matrices which are given as [Cyli; = ¢ ;(k)
and [Dy);; = d; (k) respectively. In the implementation of the above analysis, there
will be multi-filters corresponding to scalar filters in conventional wavelet analysis.
The multi-filters are N-input, N-output filters. In the conventional wavelet analysis
of discrete signals(where we are provided with the samples of the actual signal), we
assume the signal which we analyse to be a function, whose projection on the translates
of the scaling function are the samples we have. However in multi-wavelet analysis, as
a vector input is needed, we need to split the given signal onto different bands. This
is done using a prefilter.

2.6 Approximation properties of Multi-wavelet Anal-

ysis

In multi-wavelet analysis also, as in the scalar wavelet case, we desire a good approxi-
mation order. This topic is discussed in depth in [2]. This section briefly discusses the
results.

An approximation order of p implies that polynomials of order up to p can be
represented in terms of the basis functions of the space V. Hence we can say that

there exists row vectors 7’ whose elements are yz such that,

D ylox+k) =2, forj=0,1,2,...,p—1 (2.18)
k
If we write 7/ as |. .., yg,y{, ...], then y/F(x) = z7., where
Fz) = [...,¢(x—1),6(z),...]" where (2.19)
d(x) = [p1(z), pa(T),- .., dNn(2)] (2.20)

Now it can be seen as,
. . €T €T. . o
YLE(z) =y F(35) = (5) =27y F(a) (2.21)
If the basis functions ¢;(z) are linearly independent, it can be seen that
YL =29y (2.22)

The above equation implies that the vector 77 is the left eigen vector of the matrix L,



where LF(2z) = F(z), and L;; = cy;_;, with the eigen value 277. The above men-
tioned analysis shows that an accuracy of p implies that the matrix L has p eigen values
1, %, ceey (%)p_l. Moreover, the coefficients yi being the projections of the function z7
on ¢(x — k), there is a structure to these coeflicients.

YF(x—1) = (x—1)7 (2.23)
J
= () (=05’ (2.24)
m=0
Hence
v o= [,
yto= v —uv—2u,. ... ]
v o= [, waw—204u,. ... ]

The above eigen vectors along with p eigen values as mentioned above implies that the
multi-wavelets have an approximation order of p. These conditions are modified to a

compact form in [2] as,

Theorem 2.6.1 Given the vectors y(()o), ey yép_l), then /L = 277y iff the following

two finite equations are satisfied for j =0,...,p — 1.

j
D @)= My Aj = 0 (2.25)
m=0
j : . .

D G2 (=1 Y S m = 248 (2.26)
m=0

where

N ' N '
A= (D, and ;=) Ko (2.27)
k=0 k=0

In terms of the symbol M(w) = 13" c,e%*%) the equations(2.27) are:

_ D(r)  an 2 ) ,
A, (_Z,)jM (m) d 5 (_i)]M (0) (2.28)

These conditions are applicable to scalar wavelets too in which the above con-

ditions simplify to the condition of p zeros at 7.



Chapter 3

Generalised Multi-resolution

Analysis

3.1 Introduction

The relation between the conventional Multi-resolution Analysis(MRA) and the
Wavelet Transforms was introduced by S.Mallat [17] in 1989. Since then, a large
number of wavelet bases, which fall in this class were introduced. But certainly, the
class of wavelet bases characterised by MRA is not complete (eg. Morlet wavelet cannot
be characterised using MRA as it does-not have a scaling function). Conventional
wavelets characterised using MRA have certain disadvantages as they cannot have
a high approximation order, linear phase property, short support and orthogonality
simeltaneously. If by extending the conventional Multi-resolution axioms, we can define
a wider class of functions which have all the above mentioned properties simeltaneously

it is very desirable.

In this chapter, we consider an extension of the conventional MR axioms to
define a larger class of wavelets. The motivation is to generate more regular wavelets

with a shorter support. The motivation for the scheme is explained below.

For a higher smoothness of the wavelet(and hence higher regularity), the decay
of the scaling function in the Fourier domain has to be sufficiently high. As a scaling
function is characterised by the two scale relationship (2.10), the asymptotic decay of
the scaling function is decided by the decay of the filter transfer function C'(w). If we

want to improve the decay of C'(w), it cannot be done without increasing the order of

12



the filter and hence the support of the scaling function. But if we have a multi-scale
relationship as in equation(3.4), we can have a faster decay for the scaling function
without the filters being constrained to have a fast decay by choosing C'(w) and D(w)
appropriately, as shown in figure(3.1). For this to happen the filters have to be low-pass
and high pass respectively, so that the high-pass components of C(w)@(w/2) will be
cancelled by that of D(w)¢(w/4).

Hence, we can hope to have wavelets with a shorter support and a higher regu-
larity, in this Generalised class of wavelets, if such filters satisfy those conditions along
with the conditions of orthogonality and the MR axioms. The succeeding sections

consider this problem.

3.2 Generalised Multi-resolution Axioms.

The Generalised Multi-resolution analysis(GMRA) is an extension of the conventional

MRA[17] . The new set of multi-resolution axioms are as under.

Definition 3.2.1 A Generalised Multi-resolution analysis of L*(R) is a sequence of

closed subspaces ..., v_1,vy,v1,V9,...such that

(M1) v, C Ujvzl Un—j

(M2) U2 vn is dense in L*(R) and (0 v, =0

(M3) f(x) € v, <= [f(22) € vy_1

(M4) f(z) € vy <= f(x—k) € vy for all k element Z

(M5) There exists an isomorphism 1 from vy onto (*(Z) which commutes with the

action of Z

The only difference of this Generalised MRA as compared to the conventional MRA
is in (M1). In (M5) the action of Z over vy is the translation of functions by integers
whereas the action of Z over ¢?(Z) is the usual translation. The approximation of a
function f(z) at resolution 27 is the orthogonal projection of f(z) on V; where

U Un—j (31)

N is referred to be the order of the MRA. The conventional MRA becomes a special
case of Generalised MRA when N =1

1>

Va



C (W) D(0/2)

D (w)P(wr/4)

C (W) P(02) + D () P(w/4)

Figure 3.1: Motivation for Generalised MRA.

3.3 Orthogonal basis of multi-resolution analysis.

The operator Z is as defined in chapter 2.Now the natural question arises whether
we can have a orthonormal basis for the above Generalised Multi-resolution spaces.
The following theorem [9] gives the existence of an orthonormal basis functions and

represents them in terms of the basis functions g(z — k).

Theorem 3.3.1 Let vg C L*(R) and let g € vy be such that (M4)-(M5) hold.
(a). If p € L*(R) is defined as

¢(e) = == , where (3.2)

L) = () |gle+2kr) )2 (3.3)

k=—00

Then the functions ¢(. — k) form an orthonormal basis of vg.
(b). If o € L*(R) is a 2w periodic function with |o(e)| = la.e. , and if 0 is defined as

~

O(e) = o(e).0(e€), then 0 € vy and O(. — k), k € Z is an orthogonal basis of vy

Conversely if 0 € vy is such that || 6 ||= 1 and the functions 0(. — k), k € Z
is an orthonormal basis of vy and 6(€) = o(€)d(e) where ¢ € L=(R) is a 2r periodic

function with | o(€) |= La.e.



(c). Let ¢ € vy be such that the system ¢(. — k), k € Z, is orthonormal, then

f: | (e + 2km) |*=1a.e. (3.4)

k=—00

This theorem gives an infinite set of orthonormal basis functions of v, satisfying
M4 and M5 depending on the choice of o(e).

3.4 Construction of the Scaling function

Theorem(3.3.1) gives a means of finding out the orthonormal basis functions
provided we have a multi-resolution space, which satisfies the multi-resolution axioms.
But practically, we find out a multi-resolution space, by the choice of the orthonormal
basis functions. The properties of the multi-resolution decomposition depends on the

choice of these functions.

For simplicity of analysis, in this work, the order of the MRA is restricted to
N=2.

Once the functions are chosen, the spaces v, are defined as the span of the
functions a,¢(2". — k), where a, are some constants chosen for normalisation. So
the problem of finding out a MRA simplifies into the choice of the orthonormal basis
functions so that the spaces v,, satisfies (M1) - (M5).

As we assumed orthogonality of ¢ with respect to the translates, we have
< and(2"x — k), a,d(2"x — 1) >=0(k, 1) (3.5)

where < .,. > represents the inner product of the two argument functions.

From the above equation, the constant a, turns out to be 2. Hence the or-
thonormal basis vectors of v, are 22¢(2". — k), k € Z

Here after for ease of representation, we will use the following notation as
(G, k)(z) = 22.f(2'z — k). According to the notation, the orthonormal basis vec-
tors of v, are {o(n, k)(x), k € Z}.

Assume that v,,n € Z defines a generalised multi-resolution analysis of L*(RR)
generated by the basis function ¢, and that {¢(. — k) | £ € Z} is an orthonormal



family. The function ¢(z) lies in vy and hence in vy |Jve due to (M1)
find sequences (cg,dy, k € Z) such that

dx) =v2 D (2 —k)+2. ) dig(dr —1)

k=—00 [=—o0

Taking the Fourier Transform of both the sides we get

D(w) = % Z d; exp(jwl)

[=—

. Hence we can

(3.6)

(3.7)

(3.8)

(3.9)

As the ¢ satisfies (3.6), which relates ¢ to the dilates of itself(scales) we call it as the

scaling function.

Equation (3.6) gives the constraint, to be satisfied by the orthogonal basis func-
tion ¢(x), so that the spaces spanned by 2 ¢(2/x — k) satisfy (M1). For the spaces to

satisfy (M2) we need to have lim;_, o, T;(f) = f for every function f

€ L*(R), where

T; is the projection operator to the space v;. The following theorem [17] gives the

condition under which this condition holds.

Theorem 3.4.1 Let g be a regular function and let the kernel K be given by K (x,y) =
Sore o 9l@—k)gly — k) Let Ty : L*(R) — L*(R) be the integral operator

(Tof)(@) = A / KA, ) f(y)dy

Then the following assertions are equivalent

(1). limyoo | Tonf — f ]2=0, Vf € L*(R)
(2). [ K(z,y)dy =1 Ve e R

Applying the above theorem to the scaling function, assuming regularity, so that the



spaces satisfy (M2), we get

> ow k) [ 3l By =30). Y 6~ k) =1
k=—o00 R k=—00
Integrating this expression over [0, 1] we get,
[ 6(0) ’=1 (3.10)

Once we assume that v, is generated by (22¢(2"z — k), k € Z), which is regular and
satisfies (3.6), (3.5) & (3.10), the spaces (v,,n € Z) give a Generalised Multi-resolution
decomposition of L*(R). The MR axioms (M3),(M4) and (M5) will be automatically
satisfied.

As mentioned before, the properties of the MRA will depend on the scaling
function chosen, satisfying the conditions above. Hence the choice of the MRA boils
down to the choice of the coefficients (cx and dx, k € Z ). We will now derive the
conditions the coefficients has to satisfy so that the scaling function will satisfy the
above conditions(GMR, Axioms along with the orthogonality constraint).

Equation(3.6) can be re-written as given below for simplification.

oé(x) = n(z) +y(z) where (3.11)
n(z) = 2. Z dyo(4x — k) and (3.12)
Y&) =v2 > a2z — k) (3.13)

As mentioned before {¢(j, k)(x),k € Z} are the basis functions of v;. We define two
new sequences of spaces (u;&wj,j € Z), where

u; = span{n(j —2,k)(x)} (3.14)
w; = span{y(j —1,k)(2)} (3.15)

This implies that u; and w; are the subspaces of v; due to equations (3.12) and (3.13)
as shown in figure(3.5).

As a special case we will consider the case where u; and v; are orthogonal to
each other, V5 € Z. This assumption will greatly simplify the following analysis. This

assumption imposes a constraint on the coefficients (¢, and dy, k € Z ). This constraint



is derived in Appendix A to be
D(w) = a(w)C(w + 7) (3.16)

where «a(w) is a 7 periodic function.

We can now see the constraint imposed by the orthogonality constraint given

by equation (3.5), on the coefficients ¢;’s and dy’s. Equation (3.5) implies that,
< dlx — k), plx — 1) >=6(k,1) (3.17)

Substituting from equation (3.6) we get

ZZcmco<¢(2x—2k—m),(/ﬁ(2x—2l—0)> +

mz&:dndp<¢(4x—4k—n),¢(4x—4l—p)> +

noop
ZZcmdP<¢(2x—2k—m),¢(4x—4l—p)> +
m p

YN codn < ¢(2z — 21— 0), $(dx — 4k —n) > = 5(k,1) (3.18)

In the above equation, the last two terms are the cross terms. it is shown in the

Appendix A that they vanish if equation (3.16) are satisfied and
C(w) =—-C(w+m),Vw (3.19)
So when equation (3.16) and equation (3.19) is satisfied, equation (3.18) simplifies to
ZZcmCO < o(2x —2k —m),¢(2x — 2l —0) > +
%: idndp < ¢4z — 4k —n), 64z — Al —p) > = (K, 1) (3.20)
nop

It is shown in Appendix A that in the Fourier domain equation(3.20) reduces to

O +10E +m)2+ IDE +1DE + T)P +
D&+ )P+ D&+ 2P =1



Substituting from (3.16) in the above equation we get
C(5 )|2+|C( + )2+ (2 DIl )|2+\C( +l’]
m
+\OA(Z+§)\2HC( )\2+|C( +—\ | = (3.21)

The above constraint is a coupled one and to find a set of filters that satisfy the above
constraint is difficult. We split the above constraint to two constraints such that the

filter transfer functions can be found out easily. They are as under

ICW)P+|Cw+m) = ki (3.22)

la(w)|” + |a(w + g)|2 = ko and as eqn(3.21) is to be satisfied (3.23)
1 1

- = 24

ko ok 2 (3.24)

If we choose k1 = 1, then the filters correspond to the ordinary uni-wavelet case. We

make an arbitrary choice of k1 = 5 & ko = 3

The constraints (3.22), (3.23), (3.19) & (3.16) are the sufficient conditions for
the solution of the two-scale relationship to satisfy the MR axioms M1, M3, M4 & M5
along with the orthogonality constraint (3.5).

Equation (3.10) is the sufficient condition for M2 to be satisfied and it will be
satisfied if ¢(w) = 1. This implies

= C(0)+a(0)C(r) = 1 (3.25)

By equation (3.22) we have

1

ICO)f +[C(m)|* = (3.26)
By the constraint (3.19) this reduces to
1
c0) ===
0)==;
From the above constraints it is clear that the only feasible solution is
C0)=-C(r) =3 3.27)
a(0) = —1,a(g) =0 (3.28)
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Figure 3.2: The basis vectors of the decomposition

So the constraints the coefficients have to satisfy, for the solution to satisfy the MR

axioms and orthogonality condition are,

Cw)l=3 (3.20)
arg(C(w)) = — arg(C(w + 1)) (3.30)
D(w) = a(w)C(w + ) (3.31)
@)+ |a(w+ ) = 1 (3.32)
a(w) = a(w + ) (3.33)

C(0) = —C(r) = % (3.34)

a(0) =1, a(g) =0 (3.35)

From the above equations it is clear that the filter C(w) reduces to a simple all
pass filter with the constraint (3.30) and (3.34).

As a(w) is 7 periodic, we can represent it as
a(z) = B(2%), with (3.36)

B+ 8w +m)* =1 (3.37)

It can be realised as in figure(2.5).



3.5 Construction of the Wavelet basis

As we move from a higher resolution to a lower resolution, we lose some infor-
mation. This lost information can be extracted as orthogonal projection to some space.
The lost information basically comprises of two parts:

(1) Subspace of v; which is not present in u;&w;. We call this space O1, and
assume it to be spanned by ¢ (j, k)(z).

(2) The basis vectors of u; and w; are given by (3.14) and (3.15) respectively.
The basis vectors of v; is obtained by adding the corresponding basis vectors of w;_;
and u;_o, t.e. y(j — 1,k)(x) and n(j — 2,k). Hence when we move from the space
wj—1 @Pu;j_2 to v; , we are taking the orthogonal projection onto v;. So the lost
information is given by the projection to the orthogonal compliment space of v; in
wj—1 P uj—2. We can call that space as 02;

As can be seen from the figure below O2; is spanned by ,(j, k)(z) where

$a(4; k) (2) = (4, k) () — n(, k) (z) (3.38)

Now we have to express 11 (4, k)(x) in terms of the dilates and translates of ¢’s.

From equation (3.12) we have
i(4w) = D(w).d(w)
and by equation (3.31) we have
)(dw) = a(w)C(w +7).9(w)
Now consider the function
6(2w) = C(w+m).(w)

According to [9] the space spanned by the functions 8(j — 1, k)(z) will span the orthog-
onal compliment space of w; in v;. We can call this space as t;, see figure(3.5) . From
this orthogonal compliment space ¢;, we extract the space u; spanned by n(j — 2, k)(z)

, where

i(2w) = B(w)f(w)



w; = span{y(j - 1, k)a}

O1; = span{y(j, k)z}

t
}span{ﬁ(’j —1,k)x}
u; = span{n(j — 2,k)z}

Figure 3.3: The decomposition of the space v,

whose orthogonal compliment space is spanned by the set of functions ¢ (j — 2, k)(x)

where

~

U1 (2w) = Blw + m)f(w)

Hence we have,

1) = a(w + 5)0w + )4 (w) (3.39)

For convenience this can be written as

~

pi(dw)  =Ew)pw)  where,
3.40)
Ew) =aw+3)Cw+m) (3.41)
Combining equation (3.38) and (3.39) in the matrix form we have
A E(% -
=] 0 FS) 00 where (3.42)
Clw) =D(3)




B(w) = Z:EZ;‘ and (3.43)
B(w) = ZEE; (3.44)

The multi-scale relationship can also be represented in the matrix form as

A

b(2) =| “ P

0 |(w)| (3.45)

Equations (3.42) and (3.45) imply that the Generalised Multi-resolution De-
composition is a special case of the multi-wavelet decomposition. Although we started
with the case where a particular resolution space is spanned by the translates of the
scaling function dilated to two different scales, there exists an equivalent orthogonal
multi-wavelet, which gives the same decomposition as in the above case. Such a multi-
wavelet has n(j — 1, k)(z) and ¢(j, k)(z) as the orthogonal multi-scaling functions.

3.6 Wavelet expansion and Filtering

In the Multi-resolution decomposition, we decompose the signal to different
resolutions, by projecting it to the space spanned by the wavelet vectors ¢ (j, k) and
1 (J, k) for different values of j and k. The amount of computation required for this can
be greatly reduced , if a method similar to Mallat’s algorithm is used . The algorithm
to achieve this is derived in this section.

We assume certain notations in this section for ease of representation. They are
stated below .

ap(f) = <f,é(nk)>
b1p(f) = < fivn(n, k) >
b2 (f) = < fia(n,k) >
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Figure 3.4: Implementation of Generalised Multi-resolution Decomposition.

%, Clw+m) 2 J

Figure 3.5: Implementation of the filters D(w) and E(w)



The projection operators to different spaces are given as

o0

P.(f) = Y ap(f)é(n. k)
QL(f) = > bIE(vi(nk)
Q2.(f) = > b2(f)va(n, k)

As given by (M1), v,—9 C v,—1 |Jv,. Hence if we know P,(f) and P,_;(f) we can find

out P, 5(f) in terms of the the previous functions.
A=< f,(n—2,k) >

Expanding the previous equation by substituting for ¢(n — 2, k) in terms of ¢(n —1,.)
and @(n,.) , we get

a']’;_Q :Z?i—oocl < f‘7 ¢(n_1,2k+l) > +
S dm < f,¢(n,4k +m) >, which is simplified as

m=—0Q

o o0
n—2 __ n—1 n
ay = E : Coilgy + E : d-mOgk_m

l=—o0 m=—00

This can be seen as

a" 2= (Exa™ ) o+ (dxa™) |4 (3.46)

where ‘*’ denotes convolution of the two sequences and |,; denotes down-sampling by

a factor M. ¢ denotes the sequence c_; and a"~! denotes the sequence a?‘l

Similarly it can be seen that

di"?=  (Exa™) |4 (3.47)

d2" ? = (Exa" 1) o — (d*a") |4 (3.48)

The Generalised Multi-Resolution decomposition is as given in Figure(2.4).



3.7 The Approximation order of the Generalised
MRA

As mentioned in Chapter 2, the approximation order of an MRA refers to the
degree of the highest degree polynomial that can be exactly represented by the trans-
lates of the scaling functions. The asymptotic accuracy of the approximation is decided

by the approximation order.

As it is seen from the above sections that the Generalised MRA is a special case
of the multi-wavelet MRA, we can borrow the results available on the approximation
order from the multi-wavelet theory. We consider the analysis of the equivalent orthog-
onal multi-wavelet formed by n(j — 1, k)(x) and ¢(j, k)(x) as mentioned above as the
approximation order of the equivalent system is the same as that of the Generalised
MRA. From equations (2.28), for j = 0 we have,

u.M(0) = wu, and, (3.49)
uM(m) = 0. (3.50)

where u is an some arbitrary vector. For the above mentioned equivalent orthogonal

multi-wavelet

M(w) = C(i(i)w) 5(0“’) (3.51)
Substituting in the conditions (3.49) and (3.50), we get
p(r) = 0 (3.52)
c(0) = %ﬂ((})? (3.53)
C(m) = 1:575((00))2 (3.54)

It can be easily seen that the only class of solutions that satisfy the orthogonality
constraints in equation(3.22) and equation(3.23), and has an approximation order of
one is the class of uni-wavelets. The orthogonal Generalised MRA fails to have high
approximation orders as the filters C(w) and D(w) are respectively all-pass and low-
pass contrary to he expectation that they are respectively low-pass and high-pass. It

is the orthogonality constraint that made it impossible for the wavelets to have a high



approximation order.

It can be quiet easily shown that the biorthogonal class, has a high approxima-
tion order, with possibly a shorter support as compared to the uni wavelets. But the
more general class, the class of multi wavelets have wavelets that exhibit all the above

properties simultaneously.

3.8 Conclusion

In this chapter, a possible extension to the conventional Multi-Resolution anal-
ysis was explored. The aim was to look for wavelets that have all the four desired

properties - orthogonality, short support, symmetry and high approximation orders.

It was found that the class of Orthogonal Generalised MRA wavelets do not
have even first order approximation property that is present in all uni-wavelets. This
is because the orthogonality constraint has over-constrained the filters to behave in
the desired manner. It is true that the bi-orthogonal GMRA wavelets do have high
approximation orders. As the GMRA orthogonal wavelets are very irregular , they
might be better to deal with irregular signals where the localisation in frequency is

minimal.

It was also found that the class of GMRA wavelets forms a subclass of the
Multi-wavelets. The class of multi-wavelets have elements that have all the desired

conditions simultaneously.



Chapter 4

Wavelet Transform Coding of
Collage Error

4.1 Introduction

Conventional Fractal Image coding, as described below, finds an optimal domain
block for each range block, so that the error in the representation of the range block
is minimised. Later this scheme was modified by Munro et al [4] , who represented
the residual error in the above mentioned representation using piecewise polynomial
functions, and estimated the parameters of the transform (contraction factor and pa-
rameters of the polynomials) so that the MSE is minimised. This scheme is termed as
Bath Fractal transform(BFT).

In this chapter we suggest a scheme in which the residual errors are represented
in a compact fashion in a transform domain. In this domain, different features of the
error signal with different perceptual implications get separated into different bands,
so that we can encode the error to yield a decoded image of a better perceptual quality.
This scheme also gives a more graceful degradation in performance as the compression

ratio is increased.

The remainder of this chapter is organised as follows. In the next section we
present a brief review of Fractal Image compression scheme and BFT. In the third
section an alternate interpretation of BF'T is mentioned . The fourth section gives a
justification of the choice of the particular transform in the encoding of the error, the

fifth section describes the method and the last section gives the results.
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4.2 Fractal Image Compression

We present a brief review of the mathematical foundations of Fractal Image

Compression in this section. For a detailed treatment refer [6].

In conventional Fractal Image compression, a given image is approximated as
the attractor of a contractive mapping. The definition of the contractive mapping, and

the uniqueness of its attractor are given below .

Definition 4.2.1 A sequence of points {x,} in a metric space is called a Cauchy

sequence if for every € > 0 there exists an integer N such that

d(Tm, Tn) <€, VYn,m >N (4.1)

In the above definition d(z,y) denotes the distance between the two elements z and y,

where x and y are the elements of the metric space.

Definition 4.2.2 A metric space x is said to be complete if every Cauchy sequence in

X converges to a limit point in x.

Definition 4.2.3 Let (x,d) denote a metric space. A map w : x — x is Lipschitz

with a Lipschitz factor s if there exists a positive real number s such that

d(w(A),w(B)) <sd(A,B), VA/BE€Eyx (4.2)

If the Lipschitz factor s < 1, then w is said to be a contractive mapping with a
contractivity s. The theorem given below, gives the uniqueness of the fixed point of a

contractive mapping.

Theorem 4.2.1 (The Contraction Mapping Fixed Point Theorem)
Let x be a complete metric space and w : x — x be a contractive mapping. Then there
exists a unique fixed point F' € x such that for any point P € x

F =w(F) = lim w™(P). (4.3)

n—oo

Such a point is called the fixed point or the attractor of w.

Definition 4.2.4 A collection wq,ws, ..., w, of contractive maps on a metric space
(x,d) is called an iterated function system(IFS).



Using the above concepts, we can see how an IFS can be used for the encoding of
images. Consider an image signal given by G € x. Further let
G =W(G) = lim W(P), VP ey (4.4)
n—oQ
where W is a contractive transformation, and d(G,G) is small. If we can determine
a ”W” such that the error given by d(G,G) is within some acceptable limits, and if

the contractive mapping W can be represented using fewer bits as compared to the

representation of (G, then we achieve compression.

Unfortunately, these theorems do not provide us with a method of arriving at

the map w. This problem is simplified to a large extent by collage theorem.

Theorem 4.2.2 Collage Theorem Let (x,d) be a metric space and W : x — x be
a contractive mapping with a contractivity s. Let G be the fized point of W. Then,

1

) <

4(G,W(G)). (45)

The above theorem gives an upper bound of the error in terms of the distance between
the actual image G and W(G). The above theorem implies that the error can be
minimised if d(G, W (G)) is minimised. Hence the problem of finding the fractal code

W for the image G can be restated as follows:
Find W such that d(G,w(Q)) is minimised.

For simplicity, W is assumed to be of the form

N
W= w, (4.6)
=1

where each w; is a contractive mapping. Now we can see a way of defining w;. Let us
assume that the region of support of the image is the unit square I3, = [0, M]x[0, M],
and the dynamic range of the grey level of the image is scaled to the interval I = [0, 1].

Then the parametric form of the transformations w; : I3,xI — I3,xI,i =1,...,N is
chosen as
T a; b; 0 T €;
wily |=|¢a d O y |+ fi | (4.7)
z 0 0 s z 0;

where (z,y) denotes the coordinates of a point in I3, and z = g(x,y) denotes the



intensity or grey level at (z,y). Associated with each w; is a range block R; € I2, and

a domain block D; € I%,;. The encoding scheme can be described as below.

e Divide the image into non-overlapping range blocks.

e Find the optimal domain block for each range block such that distance between
the range block and the one represented by the contractive mapping is minimised.

The so chosen optimal domain block for a range block, and the parameters obtained,

represents the IFS.

It is to be noted that in equation(4.7), a constant grey level is 0; added. This can
be extended to some parametric function in z & y so that the error in approximation
is minimised. In this case the number of parameters is increased. In the case where

the parametric function is a piecewise polynomial in z & y we get the BFT.

4.3 An alternate interpretation of the BFT

In BFT we approximate the image G € B(Iy) (Banach space of functions in the
interval [0, M] x [0, M]) as G, the solution of a Self affine system given by

i=[0,

(M, M]
G= U w;(S,, o G) (4.8)
[0,0]

Here S, is the block get operator, which selects a block in the interval [n;, n; +
[1,1]] and translates it to the interval I([0, 1] x [0, 1]). G is the attractor of the IFS
defined by {w;}, where w; is defined as

wi(z,y) = (ui(x).,vi(x,y)), where
ui(z) = (x;z)’ and

vi(z,y) = Ni(x)+ sy

It should be noted that the variables i, j, z are vectors of dimension 2. For the
above mapping to be a contractive mapping |s;| < 1,Vi. For each i, the parameters n;

and s; are chosen so that the mean square error of the approximation is minimised.

In BFT, the polynomial A\(x) is a first order polynomial of its arguments. It
should be noted that the above representation becomes an approximation only when



the A(z) is constrained to be an element of some finite dimensional space, as in the
case of BFT.

For the time being we will consider \;(z) to be elements of B(I), and for ease
of representation we call the direct product (Ago(z), Ao1(2), ..., Aum(z)) as A € B =
®jB(I). Also we set S = (Sgo, So1, - - -, Smamr) and N = (ngo, o1, - - ., narar). Let the
attractor , defined by a particular choice of the parameters(N and S) be called as
frto denote the dependence on A\. We state a theorem, which for conventional fractal

interpolation functions is proved in [15]
Theorem 4.3.1 The mapping )\i)fA is a linear isomorphism from B to B(Iy).

The proof can be obtained by following along the same lines as that of the theorem in
[15].

It is to be noted that the isomorphism is dependent on the choice of the parame-
ters N and S. So the parameter estimation in BF'T can be seen as choosing the optimal
isomorphism so that the projection of A onto the finite dimensional space(piecewise
polynomial space) is maximised. The parameter vector S can be estimated using a
closed form expression, while the parameter vector N can be estimated only using a

search in the entire parameter space.

In BFT, A is represented by the projection to the piecewise polynomial space,
and hence the number of parameters used for the representation of A remains a constant
irrespective of the amount of detail available at each section. It would be better if we
can reduce the number of parameters at smooth areas and provide more parameters
where there is more detail. This can be solved using adaptive subdivision, where we
solve the parameters again for smaller block sizes in region where the error is more,

but the computation complexity involved is more.

It is seen that transform techniques are very effective in coding of image infor-
mation. The question is whether we can use some transform technique to code the
collage error signal (\). The next section discusses this issue.

4.4 Choice of the Transform

The Error signal(\) has two significant features which will help us to decide on

the transform to be used.



e The error signal is discontinuous at the block boundaries. These discontinuities

if not represented will result in blockiness in the reconstructed image.

e The fractal encoding technique fails to capture the fine details of the image. This

contains the edge details of the image also.

The perceptual degradation of the reconstructed image due to the above features not
being represented, is different in both the cases. The blockiness of the reconstructed
image is a very disturbing feature, while the loss of fine details are not as disturbing.
The fine details themselves can be classified into details at different scales(eg. loss of
the edge details of the face of the Lena image is more disturbing than the loss of the
details of the texture of the hat).

The presence of edge details at different scales in the collage error signal, sug-
gest the use of a multi-resolution representation of the error. This multi-resolution
representation should separate out the above mentioned features to different scales so

that the features which cause the least perceptual disturbance can be attenuated.

It can be seen that the discontinuities that occur at the block boundaries are
abrupt discontinuities where the Lipschitz regularity parameter “a” is zero. These
discontinuities will cause the continuous wavelet transform to have a significant mag-
nitude at all scales, as shown below, whereas smooth signals ( where the Lipschitz

exponent > 0) will cause the CWT to decay exponentially.

In the approximation of the edges, it is better to consider the maximum er-
ror(sup norm), rather than the mean squared error. So to have an estimate of the
decay of the maximum error, we consider the analysis wavelet at the scale 's’ as,

1 =z
x) = —(— 4.9
bul@) = o) (4.9
Suppose we have a step function at x=a, given by f(z) = U(z — a). We have to

compute the continuous wavelet transform of this function at x=a. By the definition

of the continuous wavelet transform, the CWT of the step function is

Wofleis) = frnte) = 5 [0 (55 )dy (4.10)

S

It can be shown with some algebraic manipulation that

W.f(z,s) = iz —a), where (4.11)



uie) = [ vy (4.12)

Equation (4.11) implies that the peak magnitude of the continuous wavelet transform
coefficient is a constant, irrespective of the scale. This is because the peak magnitude
of the function 9! (z) is the same irrespective of s which is implied from equation(4.12)
. The constant magnitude of the CWT implies that the absolute magnitude of the
error caused by the truncation of the wavelet coefficients at a higher scales, decays

only linearly as s — 0.

But if careful choice of the wavelet is made, the Discrete wavelet coefficients
corresponding to the edge at © = a can be made to be zero at finer scales. This is
demonstrated as below. The DWT of the function f(z) at a scale j € Z is obtained
by the sampling of the CWT as

Wdf(ka.]) = ch(2_jka 2_j) (413)

Substituting in the above equation from equation(4.11) , we get

277k —a

) = Pk — 27a) (4.14)

Wdf(ka]) = 1/11(

In the collage error, the block boundaries occur at regular intervals. We will now

20+
om

It is to be noted that any value of @ € R+ can be represented in the above fashion; for

consider the effect of a particular step edge, that appears at a = for some [, m € Z.

some value of [ and m. We would like the effect of this edge, to be restricted to the
scale m of the DWT. From equation (4.14), the DWT of this edge is given as

Waf (k, j) = ¢'(k — 2V ™ (20 + 1)) (4.15)

Now suppose that the function 1!(x) has its peak value at some x = z;. It is desired
that some DW'T coefficient at the scale m — 1 captures this peak value. For this to

happen, the condition to be satisfied for some k = & is,

ki—Q2+1)2=21 <= z1= (Qn;l), for some n € Z. (4.16)

It is also desirable that only one DW'T coefficient, at scale m — 1, has a non zero value

due to this edge. This in turn implies,

F(k— (20 +1)/2) = 0,Vk # k.. (4.17)
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Figure 4.1: Haar Multi-scaling function and wavelet:1

For the DWTT coefficients at all scales [ > m to vanish, we need
Y k—-2"(21+1)=0,Vre N, Vke Z (4.18)
The desirable conditions (4.16), (4.17) and (4.18) together imply

YU(k)=0, VkeZ
Pk /2) =1, ki€Z (4.19)
YUk/2) =0, Vk+#k, ke Z.

From the above discussion, it is clear that if a function 9! (x) which satisfies the above
conditions exists, the corresponding DW'T will have only one non zero coefficient at
scale m — 1 and all the other coefficients at the higher scales are zeros, for an edge
at a = 2;—;;1 It can be seen that the sinc function is a function which satisfies the
above conditions(4.19) and hence its differential is a good choice for the wavelet. But
the support of this function is infinite and hence the mask required. Another function
which satisfies the above condition is the hat function. This choice corresponds to the
Haar wavelet. The Haar wavelet at the (m — 1)™ scale has an edge at a = Ztl and

hence can take care of the edge using a single function.

The Haar function, though it represents the edges well, suffers from a low ap-
proximation order. The approximation order can be increased by going for a multi-

wavelet extension of the Haar function. The 2" order extension has scaling functions
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x ——=

wavelet function #2
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Figure 4.2: Haar Multi-scaling function and wavelet:2

and wavelets as in figures (4.1) and (4.2).

As the 2™ order Haar multi-wavelet has the above mentioned desirable prop-
erties and has an approximation order of 2, we choose it for the representation of the
collage error. It is to be noted that the functions 1] (z) and 1;(z), corresponding

to the multi-wavelet basis, have sharper peaks as compared to the hat function, and

20+1

hence the wavelet coefficients at scale j < m corresponding to an edge at a = -,

are smaller than in the Haar wavelet basis. This implies that the effect of edges gets

localised more to a particular scale.

4.5 The Method

Usually, to represent a 2-D signal on a wavelet basis, we assume the 2-D wavelet
transform to be separable(i.e. we assume the 2-D basis as the product of the 1-D
basis functions). Here also, we assume the 2-D wavelet basis as a separable basis,
where the 1-D basis functions are the Haar multi-wavelet basis. Thus the basis of
the representation at a particular scale is obtained as the product of the 1-D Haar

multi-scaling functions as shown in figure(4.3).

As mentioned in section(4.3), the isomorphism from B(Iys) to B is determined
by the choice of the parameter vectors N and S. For simplicity of implementation, we

assume N to be fixed(i.e. we assume the domain corresponding to a range block as
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Figure 4.3: Separable 2-D Basis functions implied by the Haar multi-scaling function.

its parent block). The parameter S can be varied so that the projection of A onto a
particular resolution space of the wavelet multi-resolution representation is maximised.
The optimal parameter s; is obtained for each range block independently as the solution
of a system of linear equations. The system of linear equation arises in minimising the
energy of the projection of \; onto the kernel space of the projection operator, which

projects A; to the particular resolution space.

The collage error is now encoded using the above mentioned wavelet basis. As
the block edges in the collage error are represented at a lower scale itself, the wavelet
coefficients at a finer scale can be thresholded and can be neglected without the block
edge details being lost. The significant coefficients at the finer scales are retained and
the collage error is reconstructed from these coefficients. From this approximation of
collage error, an approximation of the actual signal is reconstructed by the iteration
of the IFS. As desired, the wavelet transform separates those portions of the error
which have different perceptual implications to different bands so that we can have an
efficient encoding scheme with minimal perceptual disturbance. We choose a simple
scheme in which the DW'T is weighted using an appropriate weighing function before

it is thresholded so that the coefficients corresponding to coarser scales are preferred.

In BFT, three parameters were allocated to each block irrespective of the am-
plitude of the block edges. If two neighboring blocks have almost the same value for

s; the block edges may not have large discontinuities. In such cases, the number of
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Figure 4.4: Prediction Gain Vs bits/pixel in the representation of s;; Block size -16x16

parameters in such areas can be reduced in the representation of the error. To accom-
modate this feature, the collage error is decomposed to a coarser scale and bits are
allocated to the wavelet coefficients corresponding to the block edges only if they are
above a certain threshold. In doing so, the bits which were wasted in BFT for the
representation of almost smooth block edges can be used for the representation of the
fine features, thereby increasing the fidelity.

The parameters s; are encoded using a u-law quantizer at five bits per parame-
ter. This is because the prediction gain Vs no of bits/parameter saturates at this value
as shown in figure(4.4).

The retained wavelet coefficients are also quantised using p-law . The number
of levels for the scaling function coefficients and that of the wavelet coefficients are
chosen to be different.

4.6 Simulation Results

The approximation of the collage error signal by truncated DWT, using the
Haar multi-filter, represents the block edges better at the cost of the fine details of the
signal. Hence the choice of SQNR as a figure of merit is not appropriate, as SQNR does
not distinguish between block edges and fine details. So, for the purpose of comparison

between the conventional wavelet compression techniques and the Haar multi-wavelet



scheme, we consider a scan line of the Collage error signal. The signal is decomposed to
5 levels using both the cases; The details of levels greater than 3 are neglected and the
signal is reconstructed . It can be seen from figures(??) and (??), which correspond to
two portions of the error signal zoomed, that the signal reconstructed using the Haar
multi-wavelet represents the edges much better than the Daubechies-2 uniwavelet. The
comparison is valid as both have an approximation order of 2. It is also to be noted

that in regions where there are fine fluctuations, the Daubechies-2 is marginally better.

In the actual situation, however the Daubechies-2 wavelet is likely to behave
slightly better, as we use thresholding of the coefficients, rather than truncation of
DWT as before. The decoded image at different compression ratios are shown in
figures(??) - (??). Figures(??) - (4.13) and (??) - (??) shows the decoded images at
the same compression ratio, but the wavelet decomposition being taken to different
levels. From these figures it can be seen that this scheme fail to capture the crisp edges
in the signal (eg. The shoulder of Lena) when we decompose the error signal upto
the 5t level. But as we threshold the wavelet coefficents for compression, this scheme
(with decomposition upto 5 levels) fail to capture the smooth block edges of the image
(eg. The bars in the Lena image exhibiting blockiness), leading to blockiness in those
areas. As the degradation of the crisp edges in the image as seen in figure(??) is a
disturbing artifact, the decomposition upto the 5 level is a preferred scheme. It can
be seen that the quality of the baboon image degrades much faster, as the compression
ratio is increased, as compared to the Lena image. This is due to the low amount of
redundancy present in that image and hence more information is present in the fine

detail coefficients.



4.7 Conclusion

The encoding of the collage error using the wavelet introduced, provides an easy al-
ternative for adaptive subdivision (reducing the range block size in areas of higher
complexity). It is also very flexible as compared to BFT. As the transform separates
the information present in the error signal, that has different perceptual implications,

into different bands, perceptual weighting becomes more easy.

The above technique also makes the fractal image compression scheme scalable,

making it possible for the signal to be observed at different resolutions.



Chapter 5

Signal Optimised Wavelets

5.1 Introduction

Wavelet Transform Coding is a popular technique adopted for the coding of
natural images. As in any other transform coding technique, we try to remove the
linear redundancies in the signal, for a possible coding gain. The linear redundancies
varies from signal to signal, and hence the transform to be used for the redundancy
removal has to be varied from signal to signal for a better coding gain. Adaptation of
a transform to the local characteristics of the signal is also a desirable aspect, but due
to the large overhead involved(transmission of the basis vectors), this is not a preferred
scheme. However in the Wavelet Transforms, as the basis vectors are related to each
other , it is ideally suited for adaptive signal coding. Hence the optimisation of wavelets
to the local characteristics of a signal is an issue to be resolved.

As coding gain is proportional to the energy compaction in the transform do-
main, a wavelet transform Optimised to a signal , should approximate the signal better

at a particular scale, as compared to other wavelets.

This issue was dealt indirectly by Daubechies[11], where she develops a class
of orthogonal wavelets with arbitrarily high approximation orders. A wavelet with
an approximation order of N has got the space of piecewise polynomials of order N
, as the subspace of the space spanned by the translates of its scaling functions (A
particular resolution space). This scheme performs well for signals that are sufficiently
smooth which can be approximated well as polynomials of order N. In this scheme,

the approximation order is increased at the cost of the support of the wavelet, which
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is desired to be small. It is to be noted that the piecewise polynomial space is only a
subspace of a particular resolution space and the signal to be coded might not have
any components of appreciable energy in the compliment subspace. So it is desired to

generate wavelets optimized directly to the signal.

The optimisation of the uni-wavelets to a given signal is dealt with by Tewfick
et al. in [1]. In the above paper, the authors parameterise wavelets and pose the
problem as a non-linear optimisation problem, where the cost function is the energy of
the error in a signal being represented at a particular resolution of the wavelet implied
by the above mentioned parameters . They also deal with a suboptimal scheme where
the upper bound of the error is minimised rather than the error itself, to reduce the

computational complexity.

As mentioned in the previous chapters, multi-wavelets do have certain desirable
characteristics as compared to the uni-wavelets. In this chapter, we discuss a scheme
to optimise a multi-wavelet to a given signal. As the uni-wavelet being a special case
of the multi-wavelets, this scheme is applicable to uni-wavelets too. In this scheme ,
our search space is not the complete space of multi-wavelets, but a particular subclass
of it. This scheme is that way a suboptimal scheme. We assume the given signal to
be piecewise fractal in nature(i.e. generated by a fractal interpolation functions with
piecewise polynomials as lift functions). The entire discussion in this chapter is based
on the scheme of generation of multi-wavelets discussed by Geronimo et al[15], [5], [7].

The next section briefly discusses on the this scheme.

5.2 Fractal Interpolation functions and Wavelets

Consider the dilation operator Dy : B.(R) — B.(R) and the translation oper-
ator T : B.(R) — B.(R) defined as below.

Dyf = f(/N), (5.1)
Tf = f(-1) (5-2)

Linear spaces that are invariant under the operators Dy and T (eg. function spaces

generated by integer translates of a single scaling function) define a multi-resolution



analysis. The spaces F' consisting of piecewise fractal interpolation functions , sug-

gested by Barnsley [16] , which satisfy the dilation equations of the form
fui(z —n) +n) = A i(z —n) + sp:f(2) (5.3)

forx € (n,n+1) and i =0,1,..., N — 1, where u;(z) = (x 4+ 4)/N and A, ;(z) is an
affine function of = and |maz(s,;)| < 1 are invariant to the operators Dy and T, and

hence imply a multi-resolution analysis .

A contractive mapping which converges to the above function was also defined

(@fa) (@) = Anilu; (%) + sfulu;  (2)), (5-4)

for all z € u;([0,1]),7=1,2,...,N and f, = f(z — n)|j0,1)-
Let B(I) denote the Banach space of bounded real valued functions on I =

[0,1) with the sup-norm and B = ®;Y:Bl B(I) its N-fold direct product. Let A, =
(An0s Anty - -« Annv—1) € B. We call the space A € B(I) as the lift space denoted as A.

Corresponding to each A, € B, for a fixed value of s;,,7=0,1,...,N — 1, we
have a f, € B(I). The following theorem [5] gives the basic correspondence between

the two spaces mentioned above.
Theorem 5.2.1 The mapping A 2, fx is a linear isomorphism from B to B(I).

The theorem implies that the dimensionality of the above mentioned spaces are the
same, and hence the number of basis vectors required for the representation are the
same. In the above theorem, the parameters s; are assumed to be constants. It is to be
noted that the isomorphism # mentioned in the above theorem implies an isomorphism
©:Q,B — Q,B(I). The next theorem [5], shows the correspondence between Dy
as defined in equation(5.1) and Ay : @Q, B — @ B defined as below.

(ANA)Nn+j = Anj, where );; is defined as (5.5)
)\i,j(ﬂf) = ()\z 0 Uj + (Si)‘j - Sj)‘i)) (,’13) (56)

Theorem 5.2.2 The following diagram commutes:

®,B "% Q,B
16 16



&, B.(R) X, B:(R)
T 7 (5.7)
B.(R) = B.(R)

where 7 : @, B(I) — B.(R) does the following mapping.

f L> EnEan(- - n)X[n,n—H)a (58)

where x4 is the characteristic function of A C R.

The other fundamental operator in B.(R) is the translation operator 7" as de-
fined in equation(5.2). It is the operator in the lift space corresponding to the operator
T is the right shift operator o : Q) , B — ), B given by

{/\n}neZ — {)\nfl}nEZ (59)

The above two theorems along with equation(5.9) prove that the space of piece-
wise fractal interpolation functions given by equation(5.8) are invariant to the operators
T and Dy.

Till now the elements of the lift space A were arbitary elements of B(I).
But the elements being defined arbitarly causes the attractor function as defined in
equation(5.8) to be highly discontinuous. As this space of attractor functions forms
a particular resolution space of the MRA defined by the above scheme, this space is
desired to span the space of C"(R) functions. The theorem given below [5] gives the

condition for which this happens.

Suppose the operators L™ (o) , L™ (o) be given as

L'\ = (1—sN™) ()‘onfz'(o) - )‘g,Li—l(l)) + (sN™) ()\(7)?0(0) - )‘(TN—l(l)) (5.10)
L™\ = (A(0) =A™ v 1(17)) (5.11)

Let (" be the set of all A which satisfies the below given equation for all values of n.

o"\ € ﬂ ((ﬁl Ker(L;.n)> N Ker(ZL)m) (5.12)

i=1

Theorem 5.2.3 Suppose that |s|N" < 1. Then (T 0 ) 'C"(R) = (".

This theorem gives the sufficient condition on the space of functions A so that the



space of piecewise fractal interpolation functions given by equation(5.8) are r times

continuously differentiable.

From the above theorems, we find that the space of piecewise fractal interpola-
tion functions(FIF) are dilation and translation invariant, and under the conditions of
the theorem 5.2.3, they are r times continuously differentiable also. The next problem
is the construction of the scaling functions so that the above mentioned space becomes
a particular resolution space of the implied MRA. We discuss the issue of optimising

the above mentioned space to the given signal.

In the above section, the space A was considered to be B([). If it is so, cor-
responding to any arbitary function f € B.(R), we have a A € Q, B(I) by theorem
5.2.1. As the dimensionality of such a A space is infinity and so is the number of basis

functions required to represent such a space.

So the space A is restricted as II' = II, N (", and N is chosen to be 2, where
I, = Q, ( ;i(l) 7Tn) and 7, is the set of all n'" order polynomials, whose domain is
[0,1). For simplicity, n is set as 1, and r as 1. It is to be noted that the dimension of the
space of functions H%-X[O,l) is three, and so is the dimension of the space of functions
f-Xjo,1- Hence we need three functions to span the space of functions f.x[,1). So to
span the entire space of functions whose domain is R, we need the translates of two
functions, which are the scaling functions. This is because the continuity constraint at

the integer points further reduces the dimension by one.

As mentioned in [7], such a function f.xo,1), is characterised uniquely by its
'3
vector y. As the function is defined uniquely by this vector, we can call a particular

values at 0,,17. Suppose the value of a function at these points are given by the
vector in this class as f,. So the basis functions of this space can be given as fy,, fy,, fy,>
where 49, y1, y2 correspond to some arbitary basis in R3. Let this basis be the vectors
vo = (1,¢,0), y1 = (0,1,0) & yo = (0,p,1). From the basis functions fy,, fy,, fy,, We

can generate the basis for the FIF space(scaling function) as given below.

(5.13)
0 elsewhere

o {fyl(m) z €[0,1)

fw(®) z€[0,1)
o1(z) = fro(r—1) z€ll,2) (5.14)
0 elsewhere



and the normalised scaling function ¢;(x) is given by,

%) = @ (>19)

For the scaling functions to be orthonormal, by [7] we have,

_ —(4—650—25150—432—4s2+353+35231)
p = 16+4soslf4sgj4s% — (5.16)
_ —(4—651—2s180— 452 —453+353+35250)
7 = T6+dsgsi—ds2-4s7 and, (5.17)
g(s0,81) =28} + 683 — TsPsg + 18s2sg — 28s% — Tsys] + 185153 (5.18)
—14s180 + 1251 + s¢ + 653 — 28s% + 1250 + 8 =0

5.3 Optimising the FIF space to the signal

As we constrain the A space as II], we are restricting the set of possible functions

in the FIF space. Hence every function in B.(R) will not have such a representation, as in
the case where the A space was the entire Banach space. So now the representation becomes
an approximation and the FIF space defines a multi-resolution space in the natural way. As
mentioned above, we have to look for a better approximation of the signal at a lower scale

itself. In other words, we have to optimise the FIF space to the signal space.

This approximation can be seen as below. The given function f € B.(R), by the
isomorphism @', which in turn is defined by the parameters so & s; maps the signal onto
A € A as given by the theorem(5.2.1). It should be noted that the A space here refers to
the entire B.(R) space and not the space II]. Now the mapped function is projected onto
the II], space. The quality of the approximation indeed depends on the projection of A onto
the II7 space. So it is desired that the given function is mapped onto a A whose projection
onto the II" space is a maximum. This is done by varying the isomorphism 6!, which is
parameterised by so & s; . Hence, the formulation of the problem becomes similar to that

in chapter 4.



5.3.1 The Method

The minimisation of the error in the projection of §~1(f) to the II", space is posed as

e A constrained Non-linear optimisation scheme, where the constraint is the orthogonal-
ity constraint defined by equation(5.18). In this case, the solution will be an orthogonal
multi-resolution space spanned by two scaling functions. The scaling functions are ob-
tained from equations (5.13), (5.14) & (5.15). The functions fy,, fy,, fy, are uniquely
specified by p & ¢ values defined by equations(5.16) & (5.17).

e An unconstrained optimisation scheme, where the orthogonality constraint is not im-
posed. In this case we can get closed form expressions for the optimal parameters
sg & s1,. This scheme gives a bi-orthogonal multi-resolution space, where the scaling
functions are given still by (5.13), (5.14) & (5.15). But here the parameters p & ¢ can
be set arbitarly. We set these values to be %, so that the scaling functions will be more

smoother.

It was shown above that the spaces form an MRA, and hence the basis functions of a

particular resolution space (scaling functions) will satisfy the two scale relationship given as

®(z) = X3 ,C;®(2z —1i) ,where (5.19)
| do(=)
O(x) = [4)1(@] (5.20)

Now the multi-filter coefficients C; can be easily found out, by solving the equation(5.19),
at £ =14/4, 1 =1,2...,8. The values of ®(z) at these points are obtained from the scaling
function values at these points, which in turn are characterised yg, y1, y2 and the parameters
S0 & S1-

To have the complete MRA decomposition of L?(R) we need the multi-filter corre-
sponding to the wavelet part also. In the case of orthogonal MRA, these parameters might

be found out using the algorithm mentioned in [8]. This part was not attempted.

It is to be noted that in the unconstrained optimisation scheme, the problem becomes

very similar to the scheme in chapter 4.
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5.4 Simulation Results

Both the schemes were tried out on three sets of data. They are

e The sound of a bell ringing. This is a highly harmonic sound. The results are given in
figure (?7)& (77?).

e The utterance of the vowels "aaeeuu”. This, being a voiced sound, has predominant
amplitude in the frequency domain around the formant frequencies. The simulation

results are as in figures (?7)& (77).

e The utterance of the unvoiced sound ”ssshhh”. This sound is a broad band sound and
is supposed to have some fractal nature as it is generated by turbulence of air. The

results are in plots (??)& (?7?).

The results as given in the plots correspond to the scheme being optimised to 4** and 5%
levels of decomposition respectively. It can be seen from the plots that the optimal coefficients
are scattered along the line joining (-0. 2, -0. 2) and (0, 0) in the first four plots. This line
corresponds to the parameters for which the multi-wavelets are symmetric(ie. the filters are
linear phase). This indicates that , for a better approximation at a lower scale, symmetry of

the wavelet is a desired condition in the case of harmonic sources.

It can also be observed that in the first two cases, the optimal coefficents drift towards
the point (-0. 2, -0. 2) as the levels of decomposition is increased(ie. at higher compression
ratios). This is expected as for harmonic sources, a smooth approximation is always better as
compared to rough ones(which arises if the points are far from the above mentioned point).
But in the case of unvoiced sounds, the parameter values does not change much, as the levels
of decomposition is increased. This can be seen from the plots (??)& (?7), and is justified
by the fractal nature of turbulent sounds. The high values of the coefficents implies a high

amount of self similarity.

It is to be noted that solid curve is the one corresponding to the zeros of the orthog-
onality constraint imposed by equation(5.18). It can be seen from the plots (??)& (?7), that
when the orthogonality constraint is imposed, the optimal points drift towards (-0. 2, -0. 2).
In these cases the orthogonality constraint is a severe constraint that it takes the parameters
far away from optimality. In such cases bi-orthogonal multi-wavelets is a good choice for
better approximation of such signals. It is to be noted that as the continuity constraint is

imposed, the absolute value of the optimal coefficents are upper bounded by 1.



5.5 Conclusion

The optimisation of multi-wavelets to a given signal is the theme of this chapter. The signals
were assumed to be piecewise fractal in nature, generated by fractal interpolation functions,

and the wavelets were optimised to span this class of functions.

By simulations it was found that for harmonic sounds, wavelets that are smooth are
more optimal as compared to rough ones. So, a high approximation order is desired in the
representation of harmonic sounds. It is also seen that for harmonic sounds, symmetry of the
wavelets is also a desired character, as the optimal coefficents are seen to cluster along the

line corresponding to symmetric multi-wavelets.

However, for unvoiced sounds generated by turbulence of air, has some self-similarity,
that is indicated by high values of the coefficents. In these cases the desired multi-wavelets
are bi-orthogonal ones as the orthogonality imposes a serious constraint, which makes the

system drift from optimality.



Chapter 6

Conclusions

The main focus of this thesis was on optimising wavelets to a given signal. The
aim was to generate optimal wavelet basis for signal compression, that would yield higher
compression ratios. We assumed that a wavelet is optimal for the representation of a signal,
if the projection of the signal to a particular resolution of the wavelet basis, is a better
approximation to the signal as compared to the projection to the corresponding space of

other wavelet bases.

In Chapter 3 we explored on a possible extension to the conventional Multi-Resolution
Analysis. The aim was to look for a wavelet basis that is more regular for a particular
support length. The new MR axioms were stated, and a filter bank structure that satisfies
the new axioms were suggested. But it was found that when the orthogonality constraint is
imposed, the wavelets ceased to have even the first order approximation property. If the above
constraint was not imposed, the wavelets have the desired properties - short support and high
approximation orders.But later it was observed that the new wavelet bases form a special
case of a more general class of multi-wavelet bases. As the new class of wavelets are highly
irregular (high fractal dimension), probably they might be optimal for the representation of

more fractal signals.

In Chapter 4 we introduced a new multi-wavelet basis for the encoding of collage error
in a Fractal Image Compression scheme. This basis will restrict the information corresponding
to the block edges, intrinsic in the collage error( as we assume the signal to be block-wise
fractal), to the lower resolution spaces of the wavelet decomposition. Conventional smooth
wavelets smear this information to all scales. This information of the block edges, if not
represented, will lead to blockiness in the reconstructed image which is a very disturbing
artifact. The loss of fine details of the image will not be as disturbing as blockiness. As the
new transform separates the information present in the signal that has different perceptual

implications to different bands, the ease of applying a perceptual criterion in the encoding of
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the error becomes easy. In the new scheme,the thresholding of the wavelet coefficients, which
is a commonly used scheme in transform coding, becomes a simpler alternative to adaptive

subdivision which is used in conventional fractal image coding.

In the above scheme, we reconstructed the collage error from the retained wavelet
coefficients and iterated the IFS to yield the attractor which is an approximation to the
signal. The iteration generates fine scale details from coarse scale coefficients. Hence a
scheme can be thought of where we incorporate the iteration also to be performed by using

a new reconstruction strategy.

The optimisation of multi-wavelets to a given signal is the central theme of the Chap-
ter 5. The signals were assumed to be piecewise fractal interpolation functions and the
multi-wavelet basis is optimised to span this space. In this scheme, we restricted the search
space to be a subclass of the entire multi-wavelet family. Simulation results on speech shows
that for vowel sounds, which are almost harmonic in nature, the GHM wavelets are almost
optimal. However for fricative sounds, that are generated due to the turbulence of air, multi-
wavelets which are biorthogonal in nature are better suited. For the representation of all class
of signals , symmetry seems to be a requirement for optimality. We derive a scheme to find
out the low-pass mask of the scaling function. However the complete filter bank structure

and the derivation of the high-pass filters from this mask are yet to be investigated.



Appendix A

Some results used in Chapter 3

A.1 To show that the u; L w; = equation (3.16).

Consider an arbitrary function f(z) € uy .It can be represented as

o
x
@)=Y wnls -
k=—00

for some set of coefficients (ax, k € Z).

Taking the Fourier transform of both the sides we get,

fw) = A(dw)i(dw)
= A(4w)D(w)¢(w)

where A(w) is the discrete Fourier transform of the sequence (ag, k € Z)

(A1)

By the assumption u; L w; we have f(z) orthogonal to every basis vector of wy. ie
to (y(—1,k)(z),Vk € Z). This has to hold good for all f(z) € ug. All possible functions in ug

being orthogonal to one basis vector of wy implies that they are orthogonal to all the basis

vectors of wy.

From (3.12) ,the Fourier transform of the basis vector y(5) is given by

F(w) = C(w)-$(w)
Let S : Vo — L2[0,2x] be the unitary operator given by
S(Aw)$(w)) = A(w)
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To show that f(w) is orthogonal to 4(2w),it is sufficient to show that S(f(w)) is
orthogonal to S(%(2w)), as S being unitary. Hence,

f027r A(4w)D(w)C(w)dw = 0 =

7" A(4w)[D(w)C(w) + Dw+ 5)C(w+5) +
D(w+m)C(w+7) + D(w + 3)C(w + 2F)]dw = 0

As the above equation has to hold for all A(w), the above equation implies

[D(@)C(w) + D(w+ 5)Cw+7) +
D(w+m)C(w+ ) + D(w + 34 \Cl(w 32)] ~ 0 (A.3)

The above equation will be satisfied if
D(w)C(w)+ D(w+7)Cw+m) =0 ,Vw

D(w) _6((4) + )
= D(w+m) C(w) (4-4)

This in-turn implies that there exists a = periodic function a(w) such that

D(w) = a(w)C(w + 7) (A.5)

A.2 To show that the cross terms in equation(3.18)
vanish if equation(3.16) and equation(3.19) hold.

Consider the third term of the equation (3.18).It can be shown to be zero as shown below.

SN emdy < $23 — 2k —m), p(4z — 4l —p) > =

m P

D em < P2z —2k—m), > dpp(dz —4l —p) > =
m p

Zcm < ¢(2z — 2k —m),n(z —1) >



By using equation (3.11),the above equation reduces to
Zcm <n2zx—2k—m),n(z—-10)> = 0
m

This is because n(z — [) is a basis function of us and y(2z — 2k — m) is a basis function of
w1 ,,which are orthogonal spaces .Now substituting for n(x — ) from equation (3.12) and by

a similar argument ,the above equation reduces to
ZZcmdp <nx —2k—m),n(dx —4l—p)> = 0
m p

Substituting for 7(2z — 2k —m) and n(4z — 4l — p) in terms of their inverse Fourier transform

and reducing we get,
(e e]
| o)D" @n@o)ntw) exp(—jw (e — ) =0
—00

Using the periodicity of C'(2w) ,changing the infinite integral to be from 0 - 7 we get,

/07r C(2w)[D*(w) + D*(w + )] Z (2w + km)n(w + k)] exp(—jw(4k — 41)) =0

k=—o00

This equation is satisfied if [D*(w)+D*(w+m)] = 0, Yw. This in-turn implies o* (w)[C* (w) +
C*(w+ m)] = 0. Hence if the term C*(w) + C*(w + ) = 0 the cross term vanish.In
similar lines it can be shown that the other cross term also vanishes if the above condition is

satisfied. Hence the condition for the cross term to vanish is

C(w) = -C(w+ m),Yw

A.3 To show that equation (3.20) <= equation(3.21)

Consider the first term of equation (3.20).

ZZcmco < ¢(2z — 2k —m), p(2x — 2l — 0) >

Substituting for ¢(2z — 2k — m) and ¢(2z — 2l — o) by the inverse Fourier transform of ¢(w)

at the corresponding points and then after a little algebra we get,

| 10@PBP exp(int ~ Do =

—0oQ



27 00
/0 ICW)* D 1dw + 2k7) | exp(2jw(k —1))dw =

k=—o0

/ HC@I +1Cw 4P S 19w + k) exp(@iuo(k 1))

k=—o

Substituting for 2w as w and by the fact that < ¢(x — ), p(x — k) >= 6(k,l) <=
S B+ 26 = 1 we get

27 W, o w 9
| ICCE + 10 +m)Plex(is(s - D)
Similarly the last term of equation (3.20) correspond to

)\2+

%)F] exp(je(k — 1))de (4.6)

27 9 w

| 1pr+ ¢ +
0

2 w

ID(4 +m)"+ D +

Combining the integrals as in equation (3.20) and taking the inverse Fourier transform of

both the sides we get,

C(5 )|2+|C( +m? + |D( )17+ 1D
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