

# An Error Analysis for the Sampling of Periodic Signals

#### M. Jacob, T. Blu and M. Unser

Biomedical Imaging Group\* Swiss Federal Institute of Technology, Lausanne

14<sup>th</sup> May 2001

\*http://bigwww.epfl.ch

# Outline

- 1. Introduction
- 2. Sampling of Periodic Signals
- 3. Computation of Square Error
- 4. Asymptotic Performance
- 5. Experimental Validation
- 6. Conclusions

# Introduction

## Generalized Sampling

$$s(t) \longrightarrow h(t) = \frac{1}{h}\tilde{\varphi}\left(-\frac{t}{h}\right) \longrightarrow c_{k}$$

$$\sum_{k} \delta(t - kh)$$

$$c_{k} = \left\langle s(t), \frac{1}{h}\tilde{\varphi}\left(\frac{t}{h} - k\right) \right\rangle$$

$$s_{h}(t) = \sum_{k=-\infty}^{\infty} c_{k}\varphi\left(\frac{t}{h} - k\right)$$

- Choice of  $\varphi \iff$  Spline
  - Wavelet representations
- Well developed theory for  $L_2(\mathbb{R})$
- Easily extendable to periodic case by periodization of  $\varphi$  and  $\tilde{\varphi}$  [Chuang]

### Quantitative Error Analysis

• Sharp Error Estimates [Blu et. al.]  $\rightarrow$  Quantification of Approximation Error

$$MSE(h) \approx \sqrt{\frac{1}{2\pi} \int |\hat{s}(\omega)|^2 E(h\omega) d\omega}$$



Optimal choice of sampling step, basis functions and algorithms

 ● Square modulus of Fourier transform not defined
 ⇒ Extension

# Sampling of Periodic Signals

Representation of closed curves

• Signal representation with boundary conditions(eg. periodic boundary conditions)

Synthesis and analysis equations

$$s_N(t) = \sum_{k=0}^{N-1} c_k \varphi_p \left(\frac{t}{h} - k\right)$$
$$c_k = \int_0^T s\left(\xi\right) \tilde{\varphi}_p \left(\frac{\xi}{h} - k\right) d\frac{\xi}{h},$$

where

$$\varphi_p(t) = \sum_{l=-\infty}^{\infty} \varphi(t - lN); \quad T = Nh$$

Approximation Operator

$$s_N(t) = \mathcal{Q}_N s(t)$$
  
=  $\sum_{k=0}^{N-1} \left[ \int_0^T s(\xi) \tilde{\varphi}_p \left( \frac{\xi}{h} - k \right) d \frac{\xi}{h} \right] \varphi_p \left( \frac{t}{h} - k \right)$ 

Projection  $\leftrightarrow$  Consistent Sampling iff  $\varphi_p$  and  $\tilde{\varphi}_p$  are biorthogonal.

## Computation of the Square Error

• Reconstruction in  $V_{\varphi}$  : Not shift invariant in general

Error is dependent on

- 1. Time shift of the function  $\tau$  $s(t) \rightarrow s_{\tau}(t) = s(t - \tau)$
- 2. Number of samples N

Mean Square Approximation Error

$$[\gamma_{s}(\tau, N)]^{2} = \frac{1}{T} \int_{0}^{T} |s_{\tau}(t) - \mathcal{Q}_{N} s_{\tau}(t)|^{2} dt$$
  
= 
$$||s_{\tau} - \mathcal{Q}_{N} s_{\tau}||^{2}_{L_{2}(0,T]}$$

 $T = Nh \Rightarrow \gamma_s(\tau, N)$  is h periodic in  $\tau$ 

Phase is unknown in  $\rightarrow$  An average measure most applications of error is desirable <sub>5</sub> Average Approximation Error

$$\eta_s(N) = \sqrt{\frac{1}{h} \int_0^h \left[\gamma_s\left(\tau, N\right)\right]^2 d\tau}$$

Theorem 1 :

$$\eta_s(N) = \sqrt{\sum_{k=-\infty}^{\infty} |S(k)|^2 E\left(\frac{2\pi k}{N}\right)}$$

$$E(\omega) = \left| 1 - \hat{\varphi}(\omega)^* \hat{\varphi}(\omega) \right|^2 + \left| \hat{\varphi}(\omega) \right|^2 \sum_{\substack{n \neq 0}} |\hat{\varphi}(\omega + 2n\pi)|^2$$
$$= \underbrace{1 - \frac{|\hat{\varphi}(\omega)|^2}{\hat{a}_{\varphi}(\omega)}}_{E_{\min}(\omega)} + \underbrace{\hat{a}_{\varphi}(\omega)}_{E_{res}(\omega)} \left| \hat{\varphi}(\omega) - \hat{\varphi}_d(\omega) \right|^2,$$

$$S(k) = \frac{1}{M} \int_0^M s(x) e^{j\frac{2\pi kx}{M}} dx$$

6

Here,

$$\hat{a}_{\varphi}(\omega) = \sum_{k=-\infty}^{\infty} |\hat{\varphi}(\omega + 2n\pi)|^2$$

and

$$\widehat{\varphi}_d(\omega) = \frac{\widehat{\varphi}(\omega)}{\widehat{a}_{\varphi}(\omega)}$$

•  $\eta_s(N)$  independent of  $\tau \implies$  No alias terms

- Kernel identical to  $L_2(\mathbb{R})$  case
- Error formula is a discrete sum as compared to an integral in  $L_2(\mathbb{R})$
- $\tilde{\varphi} = \varphi_d \Rightarrow E(\omega) = E_{\min}(\omega)$  (orthogonal projection)

$$\eta_s(N) = \eta_{s,\min}(N); \ \forall N \quad \text{iff} \quad \tilde{\varphi} = \varphi_d$$



Error kernels for cubic B-Spline and Sinc interpolation

## Asymptotic Performance

Analysis of  $\eta_s(N)$  as  $N \to \infty$ 

Is linked to the behavior of the kernel as  $\omega \to 0$ 

Rate of Decay of Error

 $\iff \begin{array}{l} \mathsf{Differentiability} \quad \mathsf{of} \quad \mathsf{the} \\ \mathsf{kernel} \quad \mathsf{at} \quad \mathsf{the} \quad \mathsf{origin} \end{array}$ 

Strang Fix Conditions of Order  $L\left(E(\omega) = \mathcal{O}\left(\omega^{2L}\right)\right)$ 

 $\widehat{\varphi}(0) \neq 0$ 

$$\widehat{\varphi}^{(n)}(2k\pi) = 0, \ \forall k \in \mathbb{Z} \setminus \{0\}$$

for n = 0, 1 ... L - 1

 $\rightarrow \varphi$  is called an  $L^{th}$  order scaling function

9

#### **Theorem 2** : Let $\varphi$ and $\tilde{\varphi}$ be bi-orthonormal

 $\varphi$  is an  $L^{\text{th}}$  order generating function

$$\uparrow$$

$$\eta_s(N) \underset{N \to \infty}{=} C_{\varphi, \tilde{\varphi}} || (2\pi k)^L S(k) ||_{l_2} \left(\frac{1}{N}\right)^L$$
$$= C_{\varphi, \tilde{\varphi}} T^L ||s^{(L)}||_{L_2[0,T)} \left(\frac{1}{N}\right)^L$$

$$C_{\varphi,\tilde{\varphi}} = \frac{1}{L!} \sqrt{|m_{\varphi_d}^L - m_{\tilde{\varphi}}^L|^2 + \sum_{k \neq 0} |\hat{\varphi}^L(2\pi k)|^2}$$

• Similar expression as [Unser] for functions in  $L_2(\mathbb{R})$ 

• 
$$m_{\varphi_d}^L = m_{\tilde{\varphi}}^L \Rightarrow C_{\varphi,\tilde{\varphi}} = C_{\varphi}^-$$

Minimum attainable constant

Independent of the analysis function

# Experimental Validation

### Reference shape

Map of Switzerland represented as a polygon with 807 edges

Represented using two periodic functions x(t) and y(t)

## Experiment

a) Initial model resampled

|                      | 1) Cubic spline                 |
|----------------------|---------------------------------|
| b) Interpolated with | 2) Sinc \leftrightarrow Fourier |
|                      | representation                  |

c) Error compared with theoretical prediction







-65

-70

-75 <sup>L</sup> 1

13



# Conclusions

- Exact expression of approximation error for periodic signals
- Allows the optimization of  $\varphi$  and  $\tilde{\varphi}$
- Experimental verification of the error formula
- Asymptotic performance