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Introduction

Generalized Sampling
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� Choice of ' ()

� Bandlimited,

� Spline

� Wavelet representations

� Well developed theory for L2 (R)

�

Easily extendable to periodic case by

periodization of ' and ~' [Chuang]
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Quantitative Error Analysis

�

Sharp Error Esti-

mates [Blu et. al.]
!

Quanti�cation of Ap-

proximation Error
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)
Optimal choice of sampling step, basis

functions and algorithms

�
Square modulus of Fourier

transform not de�ned
) Extension
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Sampling of Periodic Signals

� Representation of closed curves

� Signal representation with boundary condi-

tions(eg. periodic boundary conditions)

Synthesis and analysis equations
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Approximation Operator
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Projection $ Consistent Sampling i� 'p and

~'p are biorthogonal.
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Computation of the Square Error

� Reconstruction in V' :
Not shift invariant

in general

Error is dependent on

1. Time shift of the function | �

s(t)! s�(t) = s(t� �)

2. Number of samples | N

Mean Square Approximation Error

[
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2 =
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2
dt

= jjs� �QNs� jj
2
L2(0;T ]

T = Nh ) 
s (�;N) is h periodic in �

Phase is unknown in

most applications
!

An average measure

of error is desirable
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Average Approximation Error
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Here,

â'(!) =

1X
k=�1

j'̂(!+ 2n�)j2

and

'̂d(!) =
'̂(!)

â'(!)

� �s(N) independent of � ) No alias terms

� Kernel identical to L2 (R) case

� Error formula is a discrete sum as compared

to an integral in L2 (R)

� ~' = 'd) E (!) = Emin (!) (orthogonal projection)

�s(N) = �s;min(N); 8N i� ~'= 'd
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Asymptotic Performance

Analysis of �s (N) as N !1

Is linked to the behavior of the kernel as ! ! 0

Rate of Decay

of Error
()

Di�erentiability of the

kernel at the origin

Strang Fix Conditions of Order L
�
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��
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(n)(2k�) = 0; 8k 2 Z n f0g

for n= 0;1 : : : L� 1

! ' is called an L
th order scaling function

9



Theorem 2 : Let ' and ~' be bi-orthonormal

' is an L
th

order generating function
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� Similar expression as [Unser] for functions in

L2(R)
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Minimum attainable constant

Independent of the analysis function
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Experimental Validation

Reference shape

Map of Switzerland represented as a polygon

with 807 edges

Represented using two periodic functions x(t)

and y(t)

Experiment

a) Initial model resampled

b) Interpolated with

1) Cubic spline

2) Sinc , Fourier

representation

c) Error compared with theoretical prediction
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Actual Map
Cubic Spline
Sinc
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b) Performance Gain of Spline interpolation over Fourier

Conclusions

� Exact expression of approximation error for

periodic signals

� Allows the optimization of ' and ~'

� Experimental veri�cation of the error for-

mula

� Asymptotic performance
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