

Exact Computation of Area Moments for Spline and Wavelet Curves

M. Jacob, T. Blu and M. Unser

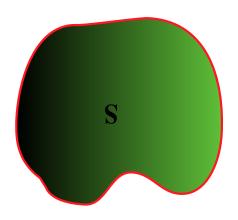
Biomedical Imaging Group*
Swiss Federal Institute of Technology,
Lausanne

6th September 2000

*http://bigwww.epfl.ch

What are Area Moments ??

$$I_{m,n} = \int_{\mathbf{S}} x^m y^n dx dy$$



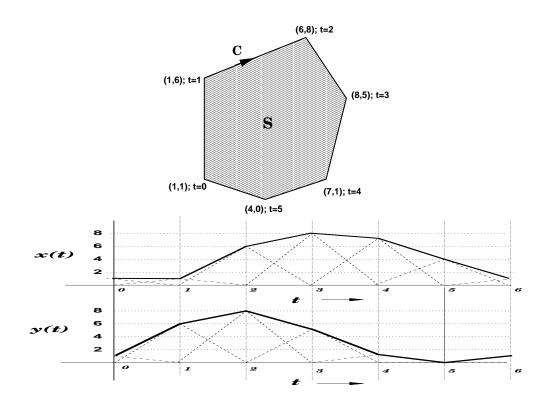
Why Moments ??

- Moment Invariants
 Widely used in Pattern classification.
- Extraction of Elliptic shape parameters
 Computer Vision and Medical Imaging

How are Moments extracted ??

$$Image \rightarrow \begin{bmatrix} Segmen-\\ tation \end{bmatrix} \rightarrow \begin{bmatrix} Moment\\ Computation \end{bmatrix} \rightarrow Features$$

Parametric Representation of Curves



$$x(t) = \sum_{k=0}^{M-1} c_k \varphi_p(t-k)$$
$$y(t) = \sum_{k=0}^{M-1} d_k \varphi_p(t-k),$$

where

$$\varphi_p(t) = \sum_{k=-\infty}^{\infty} \varphi(t - kM)$$

Alternate Wavelet Representation

(by Chuang et. al., Wang et. al.)

 φ builds a Multiresolution analysis (Mallat) \Rightarrow

$$x(t) = \sum_{i} \sum_{k} c'_{i,k} \psi_{i,k}$$
$$y(t) = \sum_{i} \sum_{k} d'_{i,k} \psi_{i,k}$$

$$c'_{i,k}, d'_{i,k} \rightarrow \text{Mallat's algorithm} \rightarrow c_k, d_k$$

- Sparse Representation
- Useful in Constraining Shapes
- ⇒ Wavelet curves also fall in the framework.

Problem Addressed

To compute the moments of a region bounded by a parametric curve represented in some basis functions

Conventional Approaches

1) Pixel Based Schemes

- Loss of subpixel accuracy.
- Error dependent on the orientation.
- Indirect Approach.

2) Approximation as a polygon

- Linear splines → low approximation order.
- Impossible to compute the curvature .
- Indirect Approach.

Indirect Approach

Moments → double integral

$$I_{m,n} = \iint_{\mathbf{S}} x^m y^n dx dy$$

Direct Approach

Surface Integral → Green's theorem → Line Integral

Green's Theorem

Volume integral of Diver- \longrightarrow Surface integral of the field

$$\int_{\mathbf{V}} (\nabla .\mathbf{F}) d\mathbf{V} = \int_{\mathbf{S}} \mathbf{F} . d\mathbf{S},$$

2-D Implication

$$\iint_{\mathbf{S}} \left(\frac{\partial \mathbf{F}_x}{\partial x} + \frac{\partial \mathbf{F}_y}{\partial y} \right) dx dy = \oint_{\mathbf{C}} (\mathbf{F}_y dx - \mathbf{F}_x dy)$$

Set
$$\mathbf{F} = (\frac{x^m y^{n+1}}{n+1})\mathbf{e}_{\mathsf{y}}$$
 and $\mathbf{C} = (x(t), y(t))$

$$I_{m,n} = \int_0^M \frac{x^m(t)y^{n+1}(t)x'(t)}{n+1} dt$$

Computation of Area

$$\mathbf{I}_{0,0} = \int_0^M y(t)x'(t)dt$$

If $x(t), y(t) \in \text{span}\{\varphi(t-k); k \in \mathbb{Z}\}\$

$$\mathbf{I}_{0,0} = \sum_{k,l} d_k c_l \underbrace{\int_0^M \varphi_p(t-k)\varphi_p'(t-l)dt}_{g_0^p(k-l)}$$

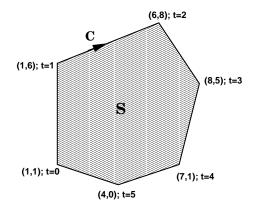
$$g_0^p(m) = \sum_k g_0(m - kM)$$
, where

$$g_0(m) = \int_{-\infty}^{\infty} \varphi'(t)\varphi(t-m)dt$$

Hence,

$$\mathbf{I}_{0,0} = \underbrace{\sum_{k=0}^{M} d_{k}^{p} \sum_{l=-N}^{N} c_{k+l}^{p} g_{0}(l)}_{\langle d, g_{0}^{T} * c^{p} \rangle}$$

Example



$$c_k = 1, 6, 8, 7, 4, 1$$

 $d_k = 6, 8, 5, 1, 0, 1$

$\varphi = \text{Linear B-spline}$

$$g_0$$
: $(0.5, 0, -0.5)$; $l \in -1, 0, 1$

Hence,

$$\begin{split} \mathbf{I}_{0,0} &= \frac{\langle (6,8,5,1,0,1), (5,7,1,-4,-6,-3) \rangle}{2} \\ &= 42 \text{ units} \end{split}$$

Computation of Higher Order Moments

$$I_{m,n} = \frac{\langle c^p, g_{m+n}^T * (c^{p[m]} \otimes d^{p[n+1]}) \rangle}{n+1},$$

where

$$g_{m+n}(\mathbf{k}) = \int_{-\infty}^{\infty} \varphi'(t)\varphi(t-k_1)\dots\varphi(t-k_{m+n+1})dt$$
and $c^{[m]} = \underbrace{c \otimes c \otimes \dots c}_{\text{m times}}$

Computational Complexity : $M(2N-2)^{(m+n+2)}$

$$arphi'(t) = arphi_1(t) - arphi_1(t-1)$$
, where
$$\varphi_1 \leftrightarrow \ 2H(z)/(1+z^{-1})$$
 $g_m(\mathsf{k}) = f_m(\mathsf{k}) - f_m(\mathsf{k}-1),$

where

$$f_m(k) = \int \varphi_1(t)\varphi(t-k_1)\dots\varphi(t-k_m)dt$$

How can you compute f_m ??

⇒ Make use of its properties

Properties of the Kernel

Finite support:

$$I = [-N, N-1] \times \dots [-N, N-1] \times [-N, N-1]$$

• Symmetry:

$$f(k) = f(\sigma_i(k))$$

Two-scale relation

$$f_m(\mathsf{k}) = \sum_{\mathsf{l} \in \mathbb{Z}^{\mathsf{m}}} \mathsf{H}_\mathsf{m}(\mathsf{l}) \mathsf{f}_\mathsf{m}(2\mathsf{k} - \mathsf{l}),$$
 where

$$H_{m}(z_{1}, z_{2}, ..., z_{m}) = \frac{1}{2}H_{1}\left(\prod_{k=1}^{m} z_{k}\right)\prod_{k=1}^{m}H(z_{k}^{-1})$$

Computation of f_0

$$f_0(k) = \sum_{\mathbf{l} \in \mathbb{Z}} H_0(l) f_0(2k - l)$$

$$\Rightarrow (A_0 - I)_{0} = 0$$

$$[\mathbf{A}_0]_{k,l} = H_0(2k-l); \mathbf{f}_0 = [f(-N+1), \dots f(N-2)]^T$$

Partition of Unity \Rightarrow [1,1...1] $f_0 = 1$

$$B_0f_0 = [0, 0, \dots 1]$$

Computation of Higher Order Kernels

$$\mathbf{A}_{\mathbf{m}} \mathbf{f}_{m} = \mathbf{f}_{m},$$

Where $dim(A_m) = (2N-2)^m \times (2N-2)^m$

With the One - One mapping

$$\rho \, : \, [-N+1,N-2]^m \, \mapsto \, [0,(2N-2)^m-1]$$
 and

$$\mathbf{A_m} = \mathbf{H}_m(2\rho^{-1}(i) - \rho^{-1}(j)); \quad \mathbf{f}_m(i) = f\left(\rho^{-1}(i)\right)$$
Normalization Constraint $\longrightarrow \sum_i \mathbf{f}_m(i) = 1$

$$\Rightarrow \quad \mathbf{B}_m \mathbf{f}_m = [0, 0, \dots, 0, 1]^T$$

• Exact and Unique Solution.

 $f_m(k) \longrightarrow Samples of Box Spline function.$

Refine with two-scale relation \rightarrow Non-integer Samples.

To Summarise...

Moments are computed as

$$I_{m,n} = \frac{\langle c^p, g_{m+n}^T * (c^{p[m]} \otimes d^{p[n+1]}) \rangle}{n+1},$$

where

$$g_m(k) = f_m(k) - f_m(k-1),$$

ullet The Kernel f_m is precomputed by solving

$$\mathbf{B}_m f_m = [0, 0, \dots 0, 1]^T,$$

Where $dim(B_m) = (2N - 2)^m \times (2N - 2)^m$

Example of Kernels

Linear Spline

$$f_0(k_1); k_1 \in \{-1, 0\}$$
 : $\frac{1}{2}[1 \ 1]$
 $f_1(k_1, k_2); k_1, k_2 \in \{-1, 0\}$: $\frac{1}{6}[1 \ 2]$

$$\begin{cases} f_2(-1, k_2, k_3); k_2, k_3 \in \{-1, 0\} : \frac{1}{12} \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix} \\ f_2(0, k_2, k_3); k_2, k_3 \in \{-1, 0\} : \frac{1}{12} \begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix} \end{cases}$$

$$f_2(0, k_2, k_3); k_2, k_3 \in \{-1, 0\}$$
 : $\frac{1}{12} \begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix}$

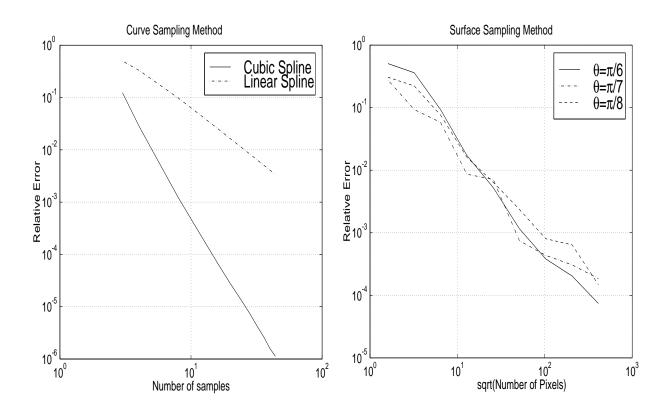
Cubic Spline

$$f_0(k_1)$$
: $\frac{1}{720}$.[1, 57, 302, 302, 57, 1]

$$k_1 = -3, \dots 2$$

Comparison of Moment Estimators

- ullet Ellipse sampled ullet linear and cubic spline interpolation.
 - Ellipse Rasterized.



Conclusions

The main advantages of the new method are:

- the exactness of the computation;
- the independence of the orientation
- Consistency with the snake model
- Direct Approach.
- Simple Implementation Filtering with a kernel * followed by an inner product.

^{*}Higher order spline kernels are available at http://bigwww.epfl.ch/jacob