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Abstract

In this thesis, we present a coherent and consistent approach for the estimation
of shape and shape attributes from noisy images. As compared to the traditional
sequential approach, our scheme is centered on a shape model which drives the
feature extraction, shape optimization, and the attribute evaluation modules.

In the first section, we deal with the detection of image features that guide the
shape-extraction process. We propose a general approach for the design of 2-D
feature detectors from a class of steerable functions, based on the optimization
of a Canny-like criterion. As compared to previous computational designs, our
approach is truly 2-D and yields more orientation selective detectors.

We then address the estimation of the global shape from an image. Specific-
ally, we propose to use cubic-spline-based parametric active contour models to
solve two shape-extraction problems: (i) the segmentation of closed objects and
(ii) the 3-D reconstruction of DNA filaments from their stereo cryo-electron mi-
crographs. We present several enhancements of existing snake algorithms for
segmentation. For the detection of 3-D DNA filaments from their orthogonal pro-
jections, we introduce the concept of projection-steerable matched filtering. We
then use a 3-D snake algorithm to reconstruct the shape.

Next, we analyze the efficiency of curve representations using refinable basis
functions for the description of shape boundaries. We derive an exact expression
for the error when we approximate a periodic signal in a scaling-function basis.
Finally, we present a method for the exact computation of the area moments of
such shapes.






Résumeé

Dans cette thése, nous présentons une approche logique et cohérente pour I'évaluation
de la forme et des attributs de forme a partir d'images bruitées. Par rapport a
I'approche séquentielle traditionnelle, notre approche est basée sur un modele de
la forme qui pilote I'extraction de primitives, I'optimisation des formes et les mod-
ules d’évaluation d’attributs.

Dans la premiére section, nous nous intéréssons a la détection des primitives
d’'image qui guident le processus d’extraction des formes. Nous proposons une
approche générale—basée sur I'optimisation d’un critére de type Canny—pour
la conception de détecteurs de primitives 2—D a partir d’'une classe de fonctions
orientables. Comparée aux méthodes de calcul précédents, notre approche est
véritablement 2—-D et engendre des détecteurs dont I'orientation est plus sélective.

Nous abordons ensuite I'évaluation de la forme globale a partir d’'une image
en utilisant les primitives préalablement détectées. Spécifiquement, nous pro-
posons d’employer les modeles actifs paramétriques basés sur les splines cubi-
ques pour résoudre deux problémes d’extraction de forme : (i) la segmentation
d’objets fermés et (ii) la reconstruction 3-D de filaments d’ADN a partir de leurs
micrographes stéréos obtenus par microscopie cryo-électronique. Nous propo-
sons plusieurs améliorations aux algorithmes de snakes pour la segmentation déja
existants. Pour la détection des filaments d’ADN 3-D a partir de leurs projec-
tions orthogonales, nous introduisons le concept de filtrage adapté a projections
orientables. Nous employons alors un algorithme de snake 3-D pour reconstruire
la forme.

Ensuite, nous analysons l'efficacité des représentations de courbes en utilisant
des fonctions de base raffinables pour la description des bords des formes. Nous
dérivons une expression exacte pour I'erreur quand nous approximons un signal
périodique dans une base de fonctions d’échelle. En conclusion, nous présentons
une méthode pour le calcul exact des moments des zones définies par de telles
formes.
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Chapter 1

Introduction

The sense of vision is fundamental to our perception of the world. The shape,
size, color, and texture of an object are the visual attributes that differentiate it
from its surroundings. Of these, the shape and size are perhaps the most important
attributes.

The concept of shape is crucial in many areas of science. For example, it plays
an important role in biochemistry where it is the shape of a molecule that determ-
ines for the most part its ability to interact with other molecules. It is widely used
in evolutionary biology where the distinctions within a particular species are often
quantified in terms of shape; a systematic study of these shape changes is called
morphometry [1, 2]. Over the years, biologists have investigated shape changes
during the embryonic development of an organism, bacterial colonies when sub-
jected to different stimuli, etc. [3]. The quantification of shape and shape changes
(shape analysis) play an equally important role in understanding the dynamics
of cellular organells, growth of cells, etc. It is also a key tool in medicine for
understanding various body functions and for detecting abnormalities. Tradition-
ally, shape analysis is performed by visual inspection or by direct measurement of
some geometrical properties of the object such as its length, area, angles, etc.

The study of shape in the biomedical sciences is often performed using soph-
isticated imaging techniques. Microscopy, for example, enable us to see minute
objects beyond the resolution limits of the eye, while x-ray imaging let us non-
invasively observe the internal structure of objects. Recording techniques such as
photography and video make the storage and transmission of visual information
possible, thus breaking the spatial and temporal constraints. Many of these mod-
ern imaging techniques require sophisticated signal processing tools. Thanks to
the increasing power of digital computers, it is also possible to perform complex
mathematical transformations on the visual information. There is a strong interest
in computer-aided shape analysis from image data because it is more precise,
faster and more reproducible than manual approaches.
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In this thesis, we focus our attention on the processing of shapes in the broad
area of biological and medical imaging. Computer-aided shape analysis is now
an accepted tool in clinical diagnosis. Inspite of extensive research in this area,
automatic shape processing still remains a challenging problem—based on our
current knowledge, it seems unlikely that there will ever be a general solution
that fits all applications. Thanks to the recent technological advances in high-
resolution approaches, imaging is also emerging as a key tool for understanding
various biomolecular processes. The biological constraints present several new
challenges for shape extraction and processing. In biology, one is often forced
to push the instrument to its limits, which results in a very low signal-to-noise
ratio and reduced image contrast. The challenge is to create robust algorithms
that can efficiently extract the valuable information from the available image data.
In this context, we present a coherent model-based framework for the processing
of shapes. Specifically, we focus on the robust extraction of image features, the
estimation of shapes, and the derivation of shape features.

Object
Geometrical
Information
Description /J/ Sso -
schemes AR
“A
Boundary Region
curve = € representation €  Skeleton Shape
.
P
Green's theorem ,'
,I
,
’
Differential Moment Skeletal ‘

Properties Invariants Features

Shape Attributes

Shape
Classification/Quantification

Figure 1.1: Overview

1.1 Shape

The word "shape” is widely used in common language to characterize the appear-
ance of an object. Usually, our perception of the shape of an object is independent
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of its exact location, orientation and size. Hence an intuitive definition of shape
may be given as follows [4, 5].

Definition 1 The shape of an object is the geometrical information that remains
when location, scale and rotational effects are filtered out from it.

In mathematical terms, the shape information consists of the geometrical features
of an object that are invariant to Euclidean similarity transformations. Two objects
have the same shape if one can be mapped onto the other by scaling, rotation and
translation.

The spatial description of an object may be provided in many equivalent ways.
The most popular representations are:

1. Aregion-based scheme where the shape is represented by theflegi®n
shown in Fig 1.2. Here, each pixel of the image has a binary label that
indicates whether or not it belongs to the object. This approach has the ad-
vantage of being able to handle complex topologies naturally. Its downside
is that the representation is not concise at all. Also, it is best adapted to the
description of objects on a discrete grid as opposed to a continuum.

2. An explicit boundary representation [6—10] where the bound&rycurve
for planar object and surface for 3-D) defines the shape of the object. Note
that the boundary representation can be obtained from the region description
and vice versa,; the two are duals.

3. A skeleton representation [11]. The skeleton of an object is the locus of all
points in the shape that do not have a unique nearest boundary point upon
the shape (c.f. Fig 1.2). The complete representation of the shape requires
the skeleton as well as the width function. The width function at a spe-
cified point on the skeleton is defined as the distance to any of the set of
equidistant boundary points. This representation is ideal for the represent-
ation of wiggly shapes whose skeleton may be deformed without the width
function; e.g a worm.

Once the spatial description of an object is obtained, it may be used to ex-
tract some global shape attributes, with a preference being given to attributes that
are invariant to similarity transforms. Examples of shape attributes include mo-
ment invariants [12], curvature scale-space of the bounding curve [13], etc. The
shape attributes are then typically used for classification, for quantifying shape
variations. See Fig. 1.1.

Here, we focus on explicit boundary representations due to their efficiency.

In particular, they need much fewer degrees of freedom than region-based ap-
proaches and they are much simpler to implement and process than skeleton-based
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Figure 1.2: Equivalent Shape representations

techniques. The various types of digital contour representations are discussed in
Section 1.3. A clear advantage of having such an explicit description is that it is
quite straightforward to derive curve-dependent shape attributes such as curvature
or other differential geometric features. Thanks to Green’s theorem, the area de-
pendent shape features (e.g. area moments) can also be extracted efficiently from
it.

1.2 Shape processing

The real-world objects are available to us as digital images; the shape attributes
have to be estimated for classification, quantification or identification. The stand-

ard approach for the parameter estimation is sequential (c.f. Fig 1.3). It consists
of the following steps:

1. Feature extraction: features such as edges, ridges, corners are extracted
from the image using appropriate operators. The algorithm gives a measure
of the likeliness of the feature and its orientation at every pixel in the im-
age; the derivation of the likeliness measure is performed independently for
every pixel.

2. Shape estimation/segmentation: The geometric information of the object
is estimated from the detected features using an appropriate segmentation
algorithm; e.g. active contour models, edge-connecting algorithms, etc.

3. Evaluation of shape attributes: The detailed shape description is reduced to
a more global representation in terms of a few shape attributes that may be
derived from it.



Featur.e Segmentation Attrlbu'te
extraction Final_ \ Evaluation

Image Shape Shape attributes

Figure 1.3: Estimation of shape attributes from images

This sequential approach is simple because it involves standard modules that
can be combined very easily. It has been quite successful in a number of applica-
tions including computer vision and multi-media, where the images are relatively
noise-free. In this work, however, we are dealing with biomedical images that
are typically blurred and quite noisy. Hence, a more robust algorithm for shape
recovery is highly desirable. This motivates us to investigate a more global and
consistent model-based approach where the various modules are linked together
as shown in Fig. 1.4. A shape model is central to all the steps of the algorithm; it
drives both the feature extraction and the shape extraction algorithms. The shape
attributes are also evaluated from the same model.

We introduce the concept of a steerable feature space, which provides an ef-
fective mean of computing a measure of likeliness of having a particular feature
(e.g. edge, ridge, corner etc) at a specified location and orientation. The precom-
putation of a steerable map of elementary features makes it practically feasible
to couple the feature extraction and the shape estimation algorithms. The shape
optimization algorithm starts with an initial guess that is refined iteratively based
on the confidence measure provided by the feature estimation algorithm. The fea-
ture estimation stage takes in the current shape and computes a figure of merit;
typically a weighted sum of likeliness of desired features along the boundary. We
may use different features at different curve points depending on the local curve
properties. For example, in contour regions with a high curvature, it may be more
appropriate to use a corner detector rather than an edge detector. This concept is
explained in detail in Chapter 5.

Note that, unlike classical schemes where the feature estimation at each pixel
is performed independently, this approach performs a joint estimation of the fea-
tures. Since the coefficients of the curve model are typically much fewer than
the number of pixels through which the curve passes, we expect this approach
to be more robust to noise. It is also more consistent than the traditional two-
step approach: for instance, the local orientation that is provided by a classical
edge detector (e.g. Canny’s operator) may be different from the orientation of the
tangent vector of the estimated contour line that is the result of the segmentation.

5
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Figure 1.4: Our approach

In the classical approaches, shape features such as moment-invariants are es-
timated using a discrete approximation. The estimated shape is rasterized to label
the regions inside and outside of it, from which the moments are computed numer-
ically. We use Green’s theorem to compute these directly and from the contour
model; note that this approach is mathematically exact and also numerically effi-
cient.

In many biomedical problems the average shape of the object is known, which
can be used to constrain the reconstruction process. Thanks to the efficient al-
gorithms for the moment computation, this constraint can be added at relatively
low cost. The user can also provide other constraints to manually aid the al-
gorithm.

1.3 Curve representation

We have seen that the use of a curve model is central to our shape estimation al-
gorithm. All the steps of the algorithm can profit from a good curve representation
scheme. Ideally, we would like to have a curve model that can represent the shape
well with the fewest coefficients as possible. Such a model will lead to a robust
estimation algorithm at a low computational cost.
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1.3.1 Discrete approaches

The simplest representation of a discrete curve is an ordered collection of points.
However, this approach does not ensure smoothness nor even continuity of the
contour. In shape estimation algorithms that use this type of representation, the
smoothness is often ensured by introducing extra constraints [8]. Another scheme
that is popular is the Freeman code [7]. There, the discrete curve can only jump
from the current position to one of its eight neighboring pixels. The curve is
represented by a chain of integers from zero to seven, coding for the orientation
of the current segment. The starting point is usually specified separately. Note
that this approach results in a curve that is continuous which is not necessarily the
case with the first approach.

In addition to their lack of implicit smoothness, discrete representations usu-
ally require many parameters to encode even a simple shape. The large number
of parameters to be estimated can therefore impair the robustness of the shape re-
covery algorithms. This may also result in a high computational complexity when
sophisticated cost functions are being used.

1.3.2 Continuous representations

Most of the continuous approaches enjoy implicit continuity and smoothness. If
the model is appropriate, they can yield sub-pixel accurate segmentation. Moreover,
when compared with the discrete approaches, they usually require fewer coeffi-
cients. There are many different techniques for representing continuous curves.
For a complete review, refer to [14].

The most popular among these approaches are the parametric curve represent-
ations. In this scheme, the curve is represented in terms of an arbitrary parameter
t. The component functions: (¢) ,y (t)) are represented as a linear combination
of some basis functions. In computer graphics, curves are often represented us-
ing non-uniform or uniform B-spline functions [15], and more recently NURBS
NURBS, which are a generalization of Bezier curves, is the preferred approach in
computer graphics since these functions are closed under perspective transforma-
tions (needed in computer graphics) and can represent conic sections exactly [16].
On the other hand, curve descriptions based on Fourier exponentials [6, 10] and
uniform B-spline functions [9, 17] are popular in image processing and computer
vision. The popularity of these approaches are due to the existence of efficient
signal processing algorithms and their invariance to similarity transformations.
Of these, the B-spline curves have the extra advantage of locality of control; a
change in one of the knot points will only affect a small region of the curve. We
discuss the parametric representation of curves in detail in the next chapter.

Non-Uniform Rational B-Spline.



1.3.3 Level set curve description

A recent trend is to represent the curve as a level set of an an appropriate poten-
tial function [18-21]. This implicit scheme tries to preserve the advantages of
region-based representations; it can naturally handle shapes of complex topolo-
gies. In recent years, this research area has undergone an extensive development.
One downside of the level-set approach is its computational complexity. This is
because, during the segmentation process, one is evolving a surface rather than a
curve. It is also not straightforward to introduce shape constraints.

1.3.4 Framework of our research work

In this thesis, we concentrate on parametric representations due to their simplicity
and computational efficiency. In addition, we restrict ourself to simple shapes that
are topologically equivalent to a circle. In other words, these are entirely specified
by a single closed curve that defines their outer boundary.

1.4 Organization of this thesis

Following the global introduction that has just been made, the thesis proceeds
with a review in Chapter 2 of mathematical concepts that are used extensively
throughout the work. Special attention is given to the parametric representation of
curves and signals in a basis composed of integer shifts of a generating function.

The subsequent part (Chapters 3-7) present the scientific contributions of the
research. All the chapters correspond to work that has been published (or is cur-
rently under review) in peer-reviewed journals.

In Chapter 3, we concentrate on the detection of image features to guide the
shape extraction process. We propose a general approach for the design of 2-D
feature detectors from a class of steerable functions based on the optimization
of a Canny-like criterion. In contrast with previous computational designs, our
algorithm is truly 2-D and provides filters that have closed form expressions. It
also gives operators that are more orientation selective than the classical gradient
or Hessian-based detectors.

We then address the estimation of the global shape from an image using the
detected features. Specifically, we use cubic spline-based parametric active con-
tour models to address two shape extraction problems: (i) the segmentation of
closed objects in Chapter 4, and, (ii) the 3-D reconstruction of DNA filaments
from their stereo cryo-electron micrographs in Chapter 5. In both approaches,
we profit from the optimality properties of cubic B-spline curves and efficient
B-spline algorithms.



We present several enhancements over the classical parametric active contour
algorithm for the segmentation of closed regions. We introduce a new edge-based
energy that overcomes the shortcomings of the conventional one. We re-express
this energy as a surface integral, thus unifying it naturally with the region-based
schemes. We show that parametric snakes can guarantee low curvature curves, but
only if they have a constant arc-length. Hence, we propose a new internal energy
term to enforce this configuration.

For the detection of 3-D DNA filaments from their orthogonal projections,
we introduce the concept of projection-steerable matched filtering. We design a
3-D template such that its orthogonal projections onto the image planes are steer-
able, i.e., the projections can be expressed as linear combinations of a few 2-D
basis functions, for any orientation of the template. We use a 3-D active contour
algorithm for the shape estimation. The feature detection algorithm returns a con-
fidence measure by integrating the likeliness measures of the 3-D ridges along the
contour; the likeliness measures are computed efficiently from the 2-D steerable
feature space.

In Chapter 6, we analyze the efficiency of scaling function curves for the rep-
resentaton of shapes. We derive an exact expression for the error when we ap-
proximate a periodic signal in a scaling function basis. The formula takes the
simple form of a Parseval’s like relation, where the Fourier coefficients of the sig-
nal are weighted against a frequency kernel that characterizes the approximation
operator.

Finally in Chapter 7, we present a method for the exact computation of the
moments of a region bounded by a curve represented by a scaling function or
wavelet basis. Using Green's Theorem, we show that the computation of area
moments is equivalent to applying a suitable multidimensional filter on the curve
coefficients and thereafter computing a scalar product. The multidimensional filter
coefficients are pre-computed exactly as the solution of a two-scale relation.
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Chapter 2

Parametric signal and curve
representation

In this chapter, we briefly review some mathematical concepts that will be used
extensively in this thesis. We consider a number of popular signal representation
schemes and show how these approaches can be used for the compact representa-
tion of parametric closed curves in the plane (e.g. shapes).

2.1 Representation of continuous signals

The description of a general signAlxz) € L, (R), requires the knowledge of

its values for every point; it is not suitable for digital transmission or storage.
Since most signals of practical interest have a finite rate of information, itis a gen-
eral practice to assume them to be in some well defined vector space. A classical
example is the representation of a signal in a bandlimited space in tersns: of
functions. In this case, only the coefficients of the basis functions at the sampling
locations need to be stored. The choice of the vector space is crucial since it de-
termines the quality of the representation and the time taken for the computations.
We now review the signal models that are relevant for our purpose.

2.1.1 Shift-invariant representation

One popular approach is to describe the signal in a shift-invariant basis. Here, the
bases are generated by the integer shifts of a single function. An arbitrary signal
in this class is given by

@)=Y ck)p(z—k). (2.1)



¢ is called the generating function [22,23] ank) are the coefficients. If (k) =

Jx (the Kroneker delta function), we havék) = f (k); the coefficients are the
signal samples themselves. Suchia called an interpolating function. An simple
example is shown in Fig. 2.1.

Figure 2.1: Shift invariant representation of a functigi(z). The dotted
functions are the basis functions that are obtained by the integer shifts of
©. Sincey (k) = J (k), the coefficients are the samplesfdfr) atz = k.

The representation is stablend unambiguous if (z) generates a Riesz basis
of V (¢) = span{p (x — k) ; k € Z}; i.e., there must exist two strictly positive
constantsd and B such that
2

<B- el (22

Lo

Ve (k) € o, A- [l <

Y ck)p@—k)

keZ

wherel|c|}, = >, lc (k)[°. In other words, we have an equivalence between the
discrete and continuous norms. Thenorm||f||7, = (f, f),, is derived from
the standard., inner-product

(f )y, = / " F @) g (0) da (2.3)

A sequence (k) € I, implies that it is square summable.

1By stable, we mean that a small variation of thg)’s should result in a small variation of
the function
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%) g:(k)

Y op0(x—EkT)
Figure 2.2: Sampling.

2.1.2 Scaling function representation

A generating function that satisfies the two-scale relation
T [e.e]
e (3) =2 rke@—k, (2.4)
k=0

is called as a scaling function [22}.(k) < h (z) is the two-scale mask or refine-
ment filter ofp. The above equation implies that the funct@p)(lg) as well as any
of its integer shifsp (£ — k) ;k € Z is contained in the spadé (¢) = Vi (),
where

Vr () :span{so (%—@ k€ Z} (2.5)

This, inturn, implies that,;+: () C Vyi (). The nested nature of the subspaces
enables us to represent a signal at different resolutions (multi-resolution repres-
entation), which may be useful in various image processing algorithms [24]. This
class of representations is sufficiently general to accommodate the widely used
signal descriptions such as bandlimited (using the sinc basis function), B-spline
and the wavelet representations.

2.2 Sampling of continuous signals

The continuous domain input signélz) is not usually known directly. Rather,
it is specified in terms of its uniform measurements

e
or (k) = (J (). 8 (5~ k). (2.6)
wherey is an appropriate model for the measurement device (cf. Fig 2.2). For
example, wherp (x) = § (xr)—the Dirac’s delta distribution— the measurements
are uniform samples of. In the context of the classical bandlimited sampling,

h(x) = ¢ (—z) = sinc (z) is the ideal low-pass anti-aliasing filter.

13



Figure 2.3: Reconstruction.

Consistent sampling

Since the reconstruction of a genefalx) € L, (R) from its uniform measure-
ments is ill-posed, it is a general practice to reconstruct in a subspdce( B§.
The choice of the subspace dictates the quality of the reconstruction. One popu-
lar approach is to choose & () € Vr (¢) which give the same measurements
gr (k), if re-injected into the measurement system [25]. This approach is called
consistent reconstruction. The measurement fungiisrcalled the analysis func-
tion andy the synthesis function. The above scheme gives perfect reconstruction
for signals inVr (¢) [25].

An arbitrary signal if/; () is given byfr (z) = > ¢ (k) ¢ (£ — k). We have
to choose: (k) ; k € Z such that:

Zc(k)§¢(;—k),@(%—1)2:%(1);WEZ (2.7)

-~

ap,3(k—1)

This implies that the sequenegk) can be obtained from the measurements as
(assuming that., ; (») do not vanish on the unit circle)

¢(2) = (Vapg (27)) gr(2), (2.8)
i(2)

wherec (z) is theZ-transform ofc (k). The above expression implies that(k) =

c (k) iff a, 5 (k) = dy; if this condition holds therp and are bi-orthogonal to
each other. The general reconstruction procedure is shown in Fig. 2.3. In this
case, there exists an equivalent generating function

o1 (x) =Y q(k)p(z—k) (2.9)

that is bi-orthogonal t@. Thusfr () is an oblique projection of onto V- (¢).

Projection error

The quality of the reconstruction is decided by the signal space, the measurement
system, and, the reconstruction space. The exact expressions for the shift invariant

14



error (the average error over all shiftsfjfis derived in the Fourier domain as [26]

T
E?‘ (T) = %/0 N\fC—=71)=fr( —7')H2d7' (2.10)
_ % h E%@(Tw)’f(w)‘zdw, 2.11)

where the error kernél, ; (w) is

2

Bop@) = [1=8@ow)| +[p@)| D lpw+2amP (212
k0
~ 2
P (W A 2 A 2
PO @b s (2.13)
Ay (W) - .
Emin(w) Eres(w)

wherep, (w) = ¢ (w) /a,, (w) is the dual ofp. Note that we obtain the minimum
possible error whep = ;.

The approximation error tend to zero as the samplingBtep 0, iff £, ; (0) =
0; this implies the partition of unity constraint on the scaling function:

d pe—k)=1 (2.14)
k

This condition ensures that the constant is indeed in the dpage. The asymp-
totic decay of the approximation error (behavior as The— 0) is often used
to compare representation schemesEf; (w) = CZ jw?** + O (w?*2) (this
implies thaty satisfies the Strang-Fix conditions of orde[22]), then

If = frll € Coi - THF |1, (2.15)

Here,C, ; is a known constant anff®) is the L derivative of f. A ¢ that give
such an error decay is called as At order generating function. The constant
C,.» Is dependent on the analysis and the synthesis functions.

2.3 Examples of scaling function representations

2.3.1 B-spline basis

The B-spline basis functions possess several interesting properties that make them
attractive for signal representation. A B-spline function of degréedefined as
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the (n + 1)-fold convolution of the rectangular function:

1, —3<z<j3
B (z) = 3, 2] =1 (2.16)
0, otherwise
B (x) = B2 3% .. xp° (2.17)
(m+1) times

The B-spline functions of degrees 0 to 3 are shown in Fig 2.4. Note that these
functions are are all non-negative. They are interpolating onlyxfet 0 and
n = 1. We now discuss various remarkable properties of B-spline functions that

0.8

0.6

0.4

0.2 4 0.2r

-2 -15 -1 -05 0 0.5 1 15 2 -2 -15 -1 -05 0 0.5 1 15 2

(a) n=0 (b) n=1

1 06f
1 o5t
1 oa4f
1 o0al
| oz

1 oap

0

o1 -2 -15 -1 -05 0 0.5 1 15 2 o1 -2 -15 -1 -05 0 0.5 1 1.5 2

(c) n=2 (d) n=3
Figure 2.4: B-spline functions of different degrees.

make them attractive for signal processing.

Approximation Properties

The B-splines of degree have an approximation ordér= n + 1. They are the
smoothest and the shortest scaling functions of ofdérhis makes them optimal

16



in the trade-off between computational césind performance [27].

Variational formulation

The B-spline representation is also optimal in a variational framework. Consider
the interpolation problem where we have uniform samples of a signal denoted as
fr; k € Z. We have seen that this problem can be made well-defined by restrict-
ing the reconstructions to a subspacelgf(R). Another approach is to add a
regularization term and solve it as a variational problem [28].

In this formulation, one tries to derive a functigr{z) that satisfies the inter-
polation constrainty (k) = fi; k& € Z and minimizes a certain regularization

~ 2
term which penalizes the norm of the derivativefajiven byffoOO ‘f(m) ()| dx.

The standard approach to solve this problem is the Lagrange’s multiplier's method
where the criterion is given by

gn= [ P @l S @ -, @1

o kez

subject to the constraints(zy) = fx; k € Z. Here, \, are the weights and
fm) (r) stands for then'" derivative of f. Thex; where: € Z are the sampling
locations. We consider a small perturbationfods f + «g and observe the cor-
responding change in the criterfon

J(f+ag) =T (f) = « (Z)\kg(ﬂfk)+2/_oo (£ (z) g™ (2)) d:):)
— a/oo g(x) (ZAké(x—xk) +2fm (x)) dx
- kez
(2.19)

In the last step, we used integration by parts to transfer the order of differen-
tiation from the compactly supportedto f. If f* is the solution to the vari-
ational problem, it will correspond to the minimum of the criterion. Hence,
J (f*+ag) — J (f*) has to be zero for any. This implies that

2f* ™ (2) = = N (v — zp) Vo €R (2.20)
kez

2Computational cost is proportional to the length of the generating function.
3¢ is afinitely supported smooth test function
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The solution to this differential equation is given by

A m—
o)== 5 —a)"" + emar®™ 24 tarta, (221)
keZ

Kernel

x ifz>0

T { 0 else (2.22)
Now, the optimal weights\;; £ € Z have to be chosen so that the interpolation
constraints are met.

The kernel is a polynomial of orde@rn— 2. Now, if we restrict ourselves to the
uniform sampling case;, = k, it can be shown that the kernel can be represented
in the space

span { (z — k)im_l keZ}.

Hence the solution to the variational problem in the uniform setting simplifies to

fra)y==> N(w—k2 (2.23)

kezZ

where the optimal weights are obtained from the interpolation constraints. In
fact, the interpolant is a unique function in the space generated by the basis
{(z — k)*™; k € Z} that satisfies the constraints.

Note that the basis functiors — k)im_1 are not finitely supported; they grow
with respect to increasing. The derivation of the optimal weights, from the
interpolation constraints involves the solution of a linear system of equations of
the form AX = B. The condition number of the matriX will be very large
since(xz — Ic)im*1 are increasing functions. This means that the solution to the
linear system will be numerically unstable. Fortunately for us, there exist other
basis functions in this space that are finitely supported. Specifically, the function
23" can be localized using th@m)™ order finite difference operator denoted
by A?™, whereAf (z) = f (z +1/2) — f (x — 1/2).

A2 (g2m=1) = gam1 () (2.24)

Thus we see that the reconstructionfoin a shift-invariant subspace df, (R)
is optimal in the variational setting, provided the basis functions are shifted B-
splines of degreem — 1.

The fact that the solution can be expressed as a linear combination of B-splines
also makes it obvious that the polynomial kernel in (2.21) is not needed, since itis
well known that the uniform B-splines of degrée—1 reproduce the polynomials
of degree2m — 1.
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Explicit formula

Since the B-spline function is obtained as a linear combination of one sided power
functions as in (2.24), it is piecewise polynomial in nature. For example, a cubic
B-spline function can be expressed as [29].

2 PR 0<lel <1
3 (x) = Ll < <2 (2.25)
0 else

Efficient Algorithms

The existence of fast algorithms make them even more attractive.

¢ Interpolation by digital filtering: In many applications, the signal is known
by its uniformly spaced samples. One has to derive the value of the function
at non integer samples for many applications like zooming, rotations, image
registration etc. In this case we hayéz) = 0 (z); g1 (k) = f (k). Thus
ay (k) = ™ (k). Hence, the B-spline coefficients are obtained as (2.8).
Since3™ (k) is a symmetric FIR filter, the B-spline filter given g™) "
is an all-pole system that can be efficiently implemented using a cascade of
causal and anti-causal recursive filters [29, 30].

e Fast zooming: In many applications, one needs a zoomed version of the sig-
nal onto a finer uniform grid. In this case the kernel values can be precom-
puted; zooming can be performed with as little as 3 multiplications/sample
for cubic B-splines [27,29]

e Arbitrary Resizing: In the context of signal resizing by arbitrary size factors
(non-integer or non-rational), one can use the efficient least-squares res-
ampling approach [31].

e Computation of derivatives: The derivatives of the B-spline functions have
explicit expressions which are very useful in several algorithms [27, 29].
Since the B-spline of degree is obtained as the: + 1 fold convolution of
the rectangular pulse, its Fourier transform is

R 'w/ _ 'w/ m+1
A" (w) = (M) (2.26)

Jw
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Thus, the Fourier transform of the differential @f (z) is:

o  [edwl2 _ giw/2\ ™
#(are) = ()

jw/2 jw/2

= (2 e el — eivl
—_—— jw

F(8(x+1/2)—6(x—1/2))

)m (2.27)

/

pmt(w)

From the above expression, we obtain
0 m — Am—1 1 m—1 1
@)= (arg) - (amg) @29)

This simple relation enables us to compute the derivative of spline functions
at any point very efficiently.

2.3.2 Bandlimited representation using sinc scaling functions

The sinc function is a valid scaling function with a bandlimited two-scale mask.
However, the function is not finitely supported in time; a direct implementation of
the interpolation algorithm will be very expensive.

If the signal is finitely supported, one can extend it using periodic boundary
conditions. A periodic signaf (t) = f (t + kM) ; k € Z can be expressed in the
sinc basis as

M
F(t) =Y c(k)sing, (t — k), (2.29)
k=0
where .
sinc,(t) = Z sinc(t — k M) (2.30)
k=—0o0

Due to the slow decay of the sinc functiotinc, does not converge wheh/
is even. However, whe/ is odd, it converges to a well defined function in
L, ([0, M]). Inthis case, the signal representation can be reformulated as a Fourier
series; one can draw upon FFT based techniques to speed up the computations
[32]. It involves the computation of its FFT, padding the Fourier samples with
zeros and computing the inverse FFT. This operation will give a complex signal if
M is even and hence is not equivalent to ¢he interpolation of the real samples.
However for oddM, the result is ensured to be real.

This model is not well suited to obtain the function sample for an arbitrary
value oft, since it depends on all the coefficiemts . . c);_;. Also note that sinc
corresponds to a spline interpolator with the degree o [33].
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Figure 2.5: Scaling function representation of a polygon. The dotted lines
in (b) indicate the corresponding linear B-spline basis functions. Note that
in this special case the knots are the vertices of the polygon themselves.

2.4 Parametric description of closed curves

The shapes of objects are often represented by their bounding curves. Tradi-
tionally, the bounding curve is described as an ordered collection of points [8].
However, this scheme does not give a compact representation. Another approach
involves the representation of the object boundary as a level set of a surface. Al-
though this technique can handle complex topologies effectively, the computa-
tional complexity of the algorithms that use this representation is quite significant.
Moreover, it is not very easy to introduce shape constraints into boundary extrac-
tion algorithms. For all these reasons, we prefer to use a parametric representation
for describing the shape boundary.

A curve in the 3-D space can be described in terms of an arbitrary parameter
asr(t) = (z(t),y(t)) [6,9,10,17]. When the curve is closed, the function vector
r(t) is periodic. The component curve functions can be represented in a scaling
function basis as

r()] _ <
y (t) } = > clk)olt—k), (2.31)

k=—o00

wherec (k) = [c, (k). ¢, (k)] is the coefficient vector; they are often called as
knot points. If the period-A/—is an integer, we have (k) = c (k + M). This
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reduces the infinite summation to

M-1

r(t) = Y c(k)eplt—k), (2.32)

k=0

wherey, is the M - periodization ofp:

pp(t) = D ot —k M) (2.33)

k=—0o0

A representation of a planar closed curye) = (x(t),y(t)) in the linear B-spline
basis is shown in Fig. 2.5. It also permits a multiresolution representation of the
curve [34, 35]. Moreover, the scaling function representation is affine-invariant;
an affine transformation of the curve is achieved simply by transforming the coef-
ficient vectorb,, k£ = 0,1,..., M — 1. This is because of the linearity of the
representation and the partition of unity condition:

o0

> pt—k) =1, (2.34)

k=—0o0

which is satisfied by all valid scaling functions in wavelet theory.

We use B-splines for the representation of curves due to their advantages dis-
cussed before. This yields spline curves which are frequently used in computer
graphics [15] and computer vision [36—38]. In addition to the advantages men-
tioned above, the compact support of the functions provide local control of the
contour; by changing a coefficient, we change only a small section of the shape.
In contrast, if we were dealing with a Fourier series representation, such a change
would affect the whole shape. Moreover, the curve rendering can be performed ef-
ficiently using the approach used for zooming. Many shape estimation algorithms
requires the computation of the curve tangents which can be easily be obtained by
using (2.28).
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Chapter 3

Optimal steerable filters for feature
detection

The first step of our shape estimation algorithm (c.f Fig. 1.4) involves the gen-
eration of a steerable feature space from the image. In this chaptediscuss

the design of steerable filters for the detection of specific image features. We
also deal with the local detection of features based on the steerable feature space
pre-computed from the images.

3.1 Introduction

In his seminal paper on computational edge detection, Canny identified the de-
sirable qualities of a feature detector and proposed an appropriate optimality cri-
terion. Based on this criterion, he developed a general approach to derive the
optimal detector for specific image features such as edges [39]. This work had a
great impact on the field and stimulated further developments in this area, partic-
ularly on alternate optimality criteria and design strategies [40, 41].

All the above authors considered the derivation of optimal 1-D operators.
For 2-D images, they applied the optimal 1-D operator orthogonal to the feature
boundary while smoothing in the perpendicular direction (along the boundary).
This extension is equivalent to computing inner-products between the image and
a series of rotated versions of a 2-D reference template (tensor product of the op-
timal 1-D profile and the smoothing kernel). With this detector, the rotation angle
of the template that yields the maximum inner product, gives the feature orient-
ation. Since the optimal 1-D template did not have explicit formulae, they were
typically approximated by simple first or second order differentials of a Gaussian.

!Based on the article "M.Jacob and M.UndBEE Transactions on Pattern Analysis and Ma-
chine Intelligence, in press
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In practice, they were extended using Gaussian kernels of the same variance since
the resulting 2-D template could be applied in a directional manner inexpensively
via the computation of smoothed image gradients or Hessians.

An alternative to these differential approaches to rotation independent feature
detection is provided by the elegant work of Freeman and Adelson on steerable
filters [42]. The underlying principle is to generate the rotated version of a filter
from a suitable linear combination of basis filters; this sets some angular bandlim-
iting constraints on the class of admissible filters. Perona et. al., Simoncelli and
Teo et. al. used this framework to approximate and design orientation-selective
feature detectors [43—46]. The concept of steerablity was also applied successfully
in other areas of image processing such as texture analysis [47,48] and image de-
noising [49].

In this chapter, we propose to reconcile the two methodologies—computational
approach and steerable filterbanks— by presenting a general strategy for the design
of 2-D steerable feature detectors. We derive the filter directly in 2-D as opposed
to the 1-D schemes (1-D optimization followed by an extension to 2-D) of Canny
and others. Moreover, in contrast with the work of Perona [43], we do not approx-
imate a given template within a steerable solution space, but search for the filter
that gives the best response according to an optimality criterion. Our filter is spe-
cified so as to provide the best compromise in terms of signal-to-noise ratio, false
detections and localization. We illustrate the method with the design of optimal
edge and ridge templates. The detectors that we obtain analytically have better
performance and improved orientation selectivity, yet they are still computation-
ally quite attractive.

The chapter is organized as follows. In Section 3.2, we introduce the concept
of steerable matched filtering and reinterpret some of the classical detectors within
this framework. In Section 3.3, we propose an optimality criterion and show how
to determine the best filter from a class of steerable functions. In Section 3.4, we
concentrate on specific 2-D feature detectors and demonstrate their use in different
applications. Though our algorithm is general, in this chapter, we focus only on
the detection of edge and ridge features. In Section 3.5, we introduce the concept
of shape adaptive feature extraction and illustrate it with an example.

3.2 Orientation independent matched filtering

3.2.1 Detection by rotating matched filtering

Suppose our task is to detect some feature in an infdgey) at some unknown
position and orientation. The detection procedure can be formulated as a rotated
matched filtering. It involves the computation of inner-products with the shifted
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and rotated versions of a 2-D feature templétéx,y) = h(—xz, —y) at every

point in the image. A high magnitude of the inner-product indicates the presence
of the feature and the angle of the corresponding template gives the orientation.
Some simple examples of templates are shown in Fig. 3.1. Mathematically, the
estimation algorithm is

0" (x) = arg max (f (x) *h(Ryx)) (3.1)
r*(x) = f(x)*xh(Rgx), (3.2)

wherer* is the magnitude of the feature afd its orientation at the position
x = (z,y); Ry is the rotation matrix

cos (f) sin ()

Ro=| _ sin (0) cos (0)

(3.3)

andwu *x v stands for the convolution betweerandv. Equations (3.1) and (3.2)
correspond to the matched filter detection. They give the maximum likelihood
estimation of the anglé and weight- for the signal model

f(x)=7"fo(Re(x—x0) +X0) + 71 (X0),

wheren (x) denotes Gaussian white noise. However, this scheme of detection is
not very practical, for it requires the implementation of a large number of filters
(as many as the quantization levels of the angle).

3.2.2 Steerable filters

To cut down on the computational load, we select our detector within the class
of steerable filters introduced by Freeman et. al [42]. These filters can be rotated
very efficiently by taking a suitable linear combination of a small number of filters.
Specifically, we consider templates of the form

k ak—i az
h(z,y) = Zak,ima—yi 9(z,y), (3.4)

whereg (z,y) is an arbitrary isotropic window function. We call sucth &, y)
an M order detector.

Proposition 1 The filter h (z,y) is steerable. In other words, the convolution of
a signal f (z,y) with any rotated version of h (x,y) can be expressed as

f(x) # h(Rex) = me (0) fri (x), (3.5)



(a) Idealized (b) Idealized
edge template ridge template

(c) Popular (d) Popular
edge template ridge template

Figure 3.1: Examples of feature templates. Feature detection is per-
formed by convolution of the rotated versions of the template with the
image

where the functions fj,; (x,y) are filtered versions of the signal f (z,y)

[ J/

k—1i %
i o) = £ )« (g 90 @9

Ik,i ()

The orientation-dependent weights by, ; (0) are given by

k . .
b.i (Q) = Z Q. Z (k ;]) <7:,71) (_1)m cos (e)j-i-(l—m) sin (0)(k—j)—(l_m)
L meS (k,j,i)

=0
(3.7)
where, S (k, 1, j) is the set

S(kyi,j)={lm|0<l<k—i0<m<i;k—({+m)=7}.

The proof is given in the Appendix 3-A. A graphical representation of the
implementation is given in Fig. 3.2. Once tlfg; (z,y) is available, f (x) *
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h (Rgx) can be evaluated very efficiently via a weighted sum with its coefficients
that are trigonometric polynomials é6f Since the number of partial differentials

in (3.5) for a general/*" order template is\/ (M + 3) /2, h (x) is steerable in
terms of as many individual separable functions. Using some simplification, we
can show that such a genehglx) can also be rotated usig/ + 1 non-separable
filters® (an example of such a simplification is given by (3.39)—(3.42)).

Joo(x)

boo(6)
1) ' g(RX)*f

Figure 3.2: Implementation of steerable filtering (c.f (3.5) )

A case of special interest correspondg te) being the Gaussian; indeed the
Gaussian is optimally localized in the sense of the uncertainty principle and the
corresponding filters in (3.6) are all separable. Interestingly, the Gaussian family
is equivalent to the class of moment filters (polynomials multiplied by Gaussian
window) discussed in [42], but the filters are not identical. We will now show that
the family described by (3.4) includes some popular feature detectors as particular
cases.

3.2.3 Conventional detectors revisited
Canny’s edge detector

As already observed by Freeman et. al., the widely-used Canny edge detection
algorithm can be reinterpreted in terms of steerable filters [42]. This algorithm
involves the computation of the gradient-magnitude of the Gaussian-smoothed

2This is the minimum number of filters required to steer a genkf&l order tempate.
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image. The direction of the gradient gives the orientation of the edge. Mathemat-

ically,
. (f*9),
0* = arctan ((f . g)x) (3.8)

= 0+ (U r0),)

whereg, = dg/0x andg, = dg/0y; ¢ is a 2-D Gaussian of a specified variance.
The above set of equations can be shown to be the solution of (3.1) and (3.2),
with h = g,. Substituting/ = 1; a0 = 1,041 = 0in (3.7) we geth, o () =

cos (0),b11 (0) = sin (6). Thus,

0" (x) = argmax(f(x)* g; (Rex)) (3.10)
= argmax (f * (gz cos (0) + gysin (6))) . (3.11)

2
)

(3.9)

Here, we used the steerability @f from (3.5). To compute the maximum of the
above expression, we set the differential of (3.11) with respettaaero:

(f * g2) sin (6) — (f * g,) cos (6) = 0, (3.12)

which results in (3.8) and (3.9). The corresponding feature template is shown in
Fig.3.1-c.

Ridge detector

Less well known is the fact that a popular ridge estimator based on the eigen-
decomposition of the Hessian matrix [50-52] can also be interpreted in terms
of steerable filters. Assuming the template todhe (the second derivative of

a Gaussian), ridge detection can be formulated exactly as (3.1) and (3.2). The
corresponding detector is shown in Fig.3.1-d. In this case, the steerability relation
(3.5) can be expressed in a matrix form as

gmmm:@‘ggiﬁggm, (3.13)

H,

whereH,, is the Hessian matrix andy = (cos (#) ,sin (6)). Using the linearity

of convolution, f (x) * g.. (Rex) = uj Hy., us. We would like to obtain the
maximum ofu; H;., uy, subject to the constrainiju, = 1. We solve this
constrained optimization problem using Lagrange’s multiplier method by setting
the gradient ofi; H.,uy + A uj uy to zero:

Hf*glIQ =—A\ Uyg. (314)
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This implies that— A\ is an eigen value oHy,,; the corresponding normalized
eigenvectors are the possible solutions to the problem. Since we are looking for
the maximum ofu; H., u,, the optimal response and the angle are given by

*

P = Amax (3.15)
W = Vi (3.16)

Here ..., andv,., are the maximum eigenvalue and the corresponding eigen-
vector respectively.

It can be seen from Fig.3.1-c and 3.1-d that these classical detectors do not
have a good orientation selectivity. In the next section, we propose a new approach
for the design of detectors that attempts to correct for this deficiency.

3.3 Design of steerable filters for feature detection

The widely-used contour extraction algorithm [39] has three steps: (a) feature de-
tection, (b) non-maximum suppression, and, (c) thresholding. In this section, we
present a general strategy for the design of steerable filters for feature detection,
while keeping in mind the subsequent steps. We propose a criterion similar to
that of Canny and we analytically derive the optimal filter—or equivalently the
optimal weights—within our particular class of steerable functions specified by
(3.4).

3.3.1 Optimality criterion

We now review Canny’s criterion and modify it slightly to enable analytical optim-
ization. To derive the optimal 2-D operator, we assume that the feature (edge/ridge)
is oriented in some directidr(say along ther axis) and derive an optimal oper-
ator for its detection. As the operator is rotation-steerable by construction, its
optimality properties will be independent of the feature orientation.

The 3 different terms in Canny’s criterion are as follows:

Signal-to-Noise Ratio

The key term in the criterion is the signal-to-noise ratio. The response of a filter
h (x) to a particular signaf, (x) (e.g. an idealized edge) centered at the origin is
given by

S = . Jo(z,y) h (=, —y) dx dy (3.17)

3In 2-D the features of interest have boundaries of dimension 1.
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S is given by the height of the response at its maximum. If the input is corrupted
by additive white noise of unit variance, then the variance of the noise at the output
is given by the energy of the filter:

Noise:/ \h (2, y)|? da dy (3.18)
R2

We desire to have a high value 8ffor a given value olNoise; % Is the ampli-
fication of the desired feature provided by the detector. The detection stage is pre-
ceded by non-maximum suppression. The estimated feature position corresponds
to the location of the local maximum of the response in the direction orthogonal to
the feature boundary (@xis in our case). The presence of noise can cause an un-
desirable shift in the estimated feature location. The direct extension of Canny’s
expression for the shift-variance (due to white noise of unit variance) to 2-D gives

_ f7z2 |hy (x,y)|2da:dy
|fR2 fo(z,y) hyy (=2, —y) dzx dy’Q

Canny has proposed to maximize the reciprocal of this term. The numerator of
(3.19) is a normalization term which will be small automatically if the impulse
response of the filter is smooth along the y axis (low norm for the derivative).
Since we are imposing this type of smoothness constraint elsewhere via an addi-
tional regularization term (see next subsection), it is not necessary to optimize this
term here, which also keeps the effects well separated. Therefore, we propose to
maximize the second derivative of the response, orthogonal to the boundary, at the
origin

E [(Ay)?] (3.19)

d2
Loc = _d_y2 (fo * h)

- R2 fo(z,y) hyy (=2, —y) dx dy (3.20)

which is the square-root of the denominator in (3.20). The above expression is
ensured to be positive because the second derivative of the response is negative at
the maximum (assumin§ > 0). Note that the new localization term is a measure

of the width of the peak. The drift in position of the maximum due to noise will
decrease as the response becomes sharper. In this work, we are neglecting the
effect of neighboring signals on the localization.

Elimination of false oscillations

Canny observed that when the criterion is optimized only with the SNR and the
localization constraint, the optimal operator has a high bandwidth; the response
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will be oscillatory and hence have many false maximas. In 2-D, we desire that the
response be relatively free of oscillations orthogonal to the feature boundary. This
can be achieved by penalizing the term:

R, — / Iy, (z, )| dz dy (3.21)
R

Note that this term is the numerator of the expression for the mean distance
between zero crossings proposed by Canny. It is a thin-plate spline like regu-
larization which is a standard technique to constrain a solution to be smooth (low
bandwidth).

The thresholding step is easier if the response is flat along the boundary. The
oscillation of the response along the boundaryxis) can be minimized by pen-
alizing

By = [ Vhao o) Py (3.22)
RQ

These terms will force the filter to be smooth making the response less oscillatory,
thus resulting in fewer false detections.

3.3.2 Derivation of the optimal detector

We combine the individual terms to obtain a single criterion

C =S5 -Loc—pu (R, +Rp) (3.23)
—_———

R

The filter in the family described by (3.4) that maximizes this criterion, subject
to the constrairftNoise = 1, is our optimal detector. The free parameter- 0
controls the smoothness of the filter; a high value makes the response less prone to
false maxima and reduces oscillation along the ridge. However, these properties
impose a tradeoff on the localization of the response.

In this work, we are also interested in performing a scale-independent design.
In other words, if we dilate the window by a facter usingg, (x) = a—%g (§)
we want our solution to retain the shape independently.oThis requires that
we weight each of the terms in (3.23) using an appropriate power of the dilation
factor. This issue is discussed later for each feature model separately.

For the ease of notation, we collect the component functions of (3.4) into a

4This constraint is just a normalization factor. SettiNgise to another constant will give
detectors of the same shape, but with a different energy.
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function vectorg of length (W) whose components are

A o (k=1)(k+2)
g]; (z,y) = Wa—yn (x,y) withi = +n

2
k=0..M n=0.k

Hence, an arbitrary function in the family is represented in a compact form as
h(x)=a"g(x) (3.24)

wherea is the vector containing the; ;s in (3.4); it has the same length as the
function vector. Now we express the terms of the criterion in a matrix form as
S = a's, Loc = a'q, Noise = a’PaandR = a’R a, where

sl = (o (), lg (- (3.25)
di = (fox).(5(~x)),,) (3.26)
[P]i,j = <[g]i7[g]j> (3.27)

R, = (e, (), )+ (e, (i) ). ©29

Gyy (z,y) and g, (z,y) denoted?q (z,y) /0y* and &g (z,y) /Ox* respectively.
P andR are matrices of siz8 2+ MU \yhile the vectors) ands are of

length w HereP is ensured to be nonsingular. In the above expressions,
the inner product of two functions is defined as

(o) = [ (@) f(og) dady.

Thus, the criterion (3.23) can be expressed in the matrix form as
C=a"[Q—-puR]a, (3.29)

where
Q=sq" (3.30)

Since all the terms in the criterion are quadratic, the solution for the optimal para-
meters can be found analytically by using Lagrange’s multiplier method. To max-
imize the criterion subject to the constraint, we set the gradie@it-efA Noise to

zero:

2[Q—puR+APla=0 (3.31)
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Rearranging the terms, we get
P'[Q-uR]a=-\a (3.32)

which implies that\ is an eigenvalue of the matrix-P~[Q — yR]). The total
number of eigenvalues is given by the dimensioma.oThe corresponding eigen-
vectorsa,, need to be scaled so that the constraiiPa,, = 1 is satisfied. The
optimal solution is therefore given by

a=max{a, [Q— pR]ay; i=0..M(M+3)/2} (3.33)

Thus the design of the optimal feature detector boils down to an eigen-decomposition
followed by an appropriate weighting of the eigen-vectors so as to satisfy the con-
straint.

3.3.3 Feature detection by local optimization
Due to (3.5), the optimal angt& in (3.1) is obtained as the solution of

] T 9
59 f (%) x 1 (Re-x)) - = SN frilzy) 59 (0ri (0)) lo—o-  (3.34)
k=1 =0 N

J/

—~
ki (0%)

= 0

It is easy to see from (3.7) that each of the term$,in(¢) are of degreé: in
cos () andsin (6); ¢, (9) is of degreek as well. Hence, (3.34) is a polynomial
of order M (in cos (¢) andsin (#)) and thus the estimation of the optimal angle
involves the solution of an/'" order polynomial in two variables.

If 1 (z,y) has only odd/even order partial derivatives (this is the case for many
detectors), then, ; (¢) will be a polynomial with only odd/even degree terms (of
cos (f) andsin (6)) present. Consequently, (3.34) can be redeited form where
only terms of degred/ are present. In this case, (3.34) can be further simplified
(by dividing both the sides bfcos (6))") to a polynomial in only one variable—
tan (6). We then have an analytic solutionlif <= 3[53]. This case is illustrated
in Section 3.4.1. Whed/ = 2, the solution can also be computed as an eigen-
decomposition of the Hessian matrix, which is better known (but also boils down
to the above mentioned solution). This case is described in Section 3.4.2. When
the solution of (3.34) is not trackable analytically, it can be solved numerically
using an iterative root finder such as the Newton-Raphson method.

Sif there is a term of degreg/ — 2n, we can multiply it by(cos (6)* + sin (9)2)n to make it
of degreeM
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3.4 2-D feature detectors

We now design operators optimized for the detection of different 2-D features.
We chose the window function to be a GausS8iaf; ), whereo is the standard
deviation. When it is clear from the context, we will suppress the dependence on
o to simplify the notation.

3.4.1 Edge detection

As model for the edge, we choose the ideal step function

pn={ 5 T2 (3.35)

Since it is an odd function qf, the even order derivatives do not contribute to the
signal energy; we therefore igndriaem in (3.4).

Casel:M =1

To illustrate the derivation of the optimal filter, we explain all the steps in detail in
this simple case. Substituting the function veget [g., g,] in the corresponding
expressions, we get

s = —oy7 [0,1]
a = -2

™ |1 0
P_E{OJ

97 [ 1 0
R_F[OJ

Thus,
T 00
Q—qs—QW[O 1}

The matricedQ andP are independent af while R is inversely proportional to
o*. So we weighR by ¢* to have a scale-invariant solution. Hence

P [Q - uo'R] = [ _108“ ) _Olgﬂ } (3.36)

8it is the only function that is isotropic and separable.
7If we were to include them in the solution, their optimal coefficients would turn out to be zero

anyway.
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The eigenvalues d?~! [Q — uo*R] are\; = —18u and)\, = 4 — 18y, respect-
ively. The corresponding scaled eigenvectors (so as to satisfy the constraint) are

[0, _\/E] and [—\/g, 0}, respectively. When substituted in the criterion, they

™

yield 4 — 18u and—18y, respectively. Thus, the optimal solution is

S

(asp > 0), which corresponds to Canny’s edge detector (c.f. Fig. 3.1-c).

(a) Canny’s edge detector (b) M = 3; p=0.09
M =3;u=02 (d) M=5; 1 =0.15

Figure 3.3: Edge Detectors for different parameters. The detectors be-
come more orientation selective Aincreases.
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Higher order cases

For higherM, we obtain a family of solutions that are increasingly smooth when

1 goes up. A few examples of higher order templates are given in Table 3.1
with the filter impulse responses shown in Fig. 3.3. By comparing Fig. 3.3-b
and Fig. 3.3-c we observe that, asncreases, the filter becomes smoother at
the cost of directionality. The higher order templates are more elongated thus
having higheiSNR and localization (c.f. Table 3.1); they should therefore result

in better detections, at-least for idealized edges. The dependence of S&R on
implies that this figure can also be improved by increasing the variance of the
Gaussian. However, the ability to resolve two adjacent parallel edges decreases as
o increases.

Implementation

Here, we develop the implementation procedure mentioned in Section 3.3.3 for
the special case of order edge detection. A genegif order edge template
(for different values of.) is given by

h (X) = 1,0 9z + 3,0 oz + a3.2 Jayy (337)
The rotated versichof this templatey, is given by
hg = o1 (gscos(0)+ g,sin(6)) +

Qs <gmx cos® (0) + 3 Gzay cos? (6) sin (0) +
3 Gayy 08 (0) sin? (0) + gy, sin® (9)) +

Q3.9 (gxyy c0s® (0) + (—2Guwy + Gyyy) cos” (0) sin (0) +
(—2Guyy + Guzz) cos (0) sin? () + gy sin® (6))

Convolving the rotated template kyand simplifying, we get

(f*he) (r) = qi(r) cos () + qa(r) cos (8)*sin (A) +
s (r) cos (0) sin (0)* + ¢4 (r) sin (A)®,  (3.38)

where

8The expression for a general rotated template is given by (3.5) and (3.7). However, for simple
templates, it may be easier to derive it directly in the Fourier domain as shown in the Appendix,
(3.60).
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(c) M =3; p=0.09 (Timetaken 414  (d) M = 5; p = 0.15 (Time taken
ms) 1995 ms)

Figure 3.4: Edge detection on a 256 x 256 noisy image (Gaussian white
noise of variance 85). The thresholding is performed such that there are
2000 detected pixels in each image. The variance of the Gaussian window
is chosen as 1.7. Note that the higher order detectors give less wiggly
contours with fewer breaks. The algorithm was implemented in Java as
a plugin for ImageJ. The experiments were performed on a Intel Pentium
processor at 2.66 GHz.
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S2 /Noise | Loc # Basis filters Expression Implementation
M=1 202 1.63 2 separable —\/g 9y Analytic
M =3 4 non-separable
w=0.09 29302 | 1.98 6 separable —0.966 g, — 0.256 02 gray Analytic
M=3 4 non-separable —1.0655 gy — 0.20 02 gpay
=02 3.01 02 1.83 6 separable —0.042 02 gyyy Analytic
—1.1215 gy — 0.5576 02 gyazy
M = 3.69 o2 2.15 | 6non-separable —0.018 02 gyyy — 0.0415 0 graway Sampling/
u=0.15 12 separable —0.0038 0 guayyy Iterative

Table 3.1: Edge detectors for different parameters.

(r) s f30 () +asz fa2 (r) + i fio(r) (3.39)
(r) = (Bazo—2a32) fs1(r) +azz fs3(r) +aipfia(r) (3.40)
g3(r) = (Basp—2a32) f32(r) +aza fz0(r) +aip fio(r) (3.41)
(r) = aspofas(r)+asy fsi(r)+afi(r) (3.42)

We multiplied the single degree terms:ins (/) andsin () with (cos? (#) + sin® (6))

so that we get a polynomial with only third degree terms. Note that the six func-
tions fi;; k= {1,3},i = 0...k, obtained by separable filtering, are combined
to deriveg;; i = 1...4. They can also be obtained by non-separable filtering:

q (r) J* (043,0 930+ 32932+ Qo 91,0) (r) (3.43)
¢@(r) = f*( (Basp — 2a32) 931 + (32 933 + Q1 91,1) (r) (3.44)
g3 (r) = f*( (Bago — 2a32) g3 2 + (32 930 + Q10 91,0) (r) (3.45)
qu(r) = fx (043,0 933+ Q32931+ Qo 91,1) (r) (3.46)

We use the separable approach due to its computational efficiency. The non-
separable approach may be profitable for large valuég .of

For a particular value of, (f * hy (r)) is a function of only one variable#-
At the local maxima and the minima ¢f kg (r)), we havel (f * hq (r)) = 0.
Substituting forf * hy from (3.38), we get

g cos (0)° + (23 — 3q1) cos® (6) sin (A) +
(34 — 2¢2) cos (0) sin® (9) — g3 sin® (§) = 0,

We divide both sides of this equation bys («9)3 to get a cubic polynomial in one
variable—tan 6:

g2 + (2g3 — 3q1) tan (0) + (3qs — 2g2) tan® (9) — ¢z tan (9)° =0,  (3.47)
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S2 /Noise Loc # Basis filters Expression Implementation
M=2
w=2 2.67 4.38/c 3 separable —\/ 20 gyy Analytic
M =2
w=0 3 4.64/0 3 separable —\/ga (9yy — 9oz /3) Analytic
—0.2040 gyy + 0.0590 gza
M=4 4.302 6.41/c | 5non-separabld +0.06302 gyyyy — 0.19403 gauzyy Analytic
w=0.1 8 separable +0.0240° groza
—0.3920 gyy +0.1130 gox
M =4 4.47 6.14/0 | 5non-separablg +0.03403 gyyyy — 0.18403 goayy Analytic
uw=1/4 8 separable +0.0250° guoza

Table 3.2: Ridge detectors for different parameters

The roots of this equation can be obtained analytically [53]. Sinog6) =
tan ((/ +7) mod 27), there are six possible valuesin the rangg0, 2| that
satisfy (3.47). One of these values tbtorrespond to the global maximum; it
can be found out by substituting all them into (3.38) and picking the one which
gives the maximum value. We briefly describe the steps of the local optimization
algorithm in Appendix 3-B.

For M > 3, the#* estimated forM = 3 can act as an approximate solution.
This initial guess is further refined by performing a golden search [53] around the
approximate solution.

Results

Because the scheme is optimized for noisy data, we perform edge detection on the
cameraman image corrupted with additive white noise (c.f. Fig. 3.4-a). The size
of the Gaussian window is the same in all the experiments. The detected edges
after non-maximum suppression and thresholding are presented in Fig. 3.4. Itis
seen that Canny’s edge detector has a lot of false detections. Moreover, the de-
tected edges are wiggly due to poor localization. The new detectors have signific-
antly lower false detections and better localization, thus confirming the theoretical
improvement.

Note the time taken for the various edge detection schemes from Fig. 3.4 b-d.
The 34 order scheme only takes around 2.5 times the time as the Canny’s de-
tector. We believe that, for the performance improvement achieved, it is a quite
reasonable price to pay. Since we resorted to a naive optimization algorithm us-
ing dichotomy, the>*® order method took more time. We believe that a better
optimization scheme could drastically improve the computational efficiency.
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3.4.2 Ridge detection

For simplicity, we choose the idealized line model as:

whered denotes the Dirac delta function. A more realistic model can be assumed
without any change in the computational strategy. H@y® andR are inversely
proportional too?, o2 ando®, respectively. Hence, we scalg by o2 andR by

4

o°.
@M =2, u=2((clas- b)M=2;, u=0
sical detector)

()M =4; pn=0.1 ()M =4; pn=0.25

Figure 3.5: Ridge Detectors corresponding to different orders and parameters.

Optimized detectors

Some examples of optimal templates are shown in Table 3.2 and Fig. 3.5. Inter-
estingly, we see from the table that the optimal detectortMor= 2 andy = 0
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is better than the classical detector, both in terms of SNR and localization, at no
additional cost. Also note that the template in Fig. 3.5-b is more directional than
the classical one in Fig. 3.5-a. The high valuewt= 2 (adjusted to get the
equivalence) overconstrains the optimization, resulting in a lower performance.
Two cases forM = 4 are also shown. It is seen that for smallthe tem-
plate oscillates along producing undesirable sidelobes. However, it has a better
localization at the expense of a lower SNR dhd
In general, we found that it is better to have a low valug. &r lower order
templates; the model have few degrees of freedom and hence a high value of
will overconstrain the system. On the other hand, for higher order templates, we
need a higher value ¢f to make them less oscillatory.

Implementation

Any second order detector can be implemented as an eigen-decomposition, similar
to the classical Hessian (described in Section 3.2.3). For example, the detector
with ¢ = 0 can be implemented as

gug+£,u9+ﬂ
0 = arg mgtxf * (gug,ue - #

T
= H
arg mgtx (ue mod 119) ,
whereH,,q = Hy,, — 3 (PT Hy,, P); hereP is the rotation matrix

0 1
p:{_l O}, (3.49)

such thaPuy = u,, . Thus the optimal direction and ridge magnitude can be

computed with the eigen-decompositionkdf,.q; the computational complexity
is the same as with the classical scheme.

For the4'" order detector, we proceed exactly as in the case of the third order
edge template. The computation of the optimal angle involves the solution of a
guartic polynomial, which is also performed analytically [53].

Results

An interesting application, which motivated this whole development, is the de-
tection of DNA filaments (cf Fig. 3.6-a) from their stereo cryo-electron micro-
graphs [51]. The difficulty with these data is that the micrographs are extremely
noisy because they are exposed to a low electron dose to avoid the degradation
of the specimen. The results (Fig. 3.6-b - 3.6-d) correspond to the output of

41



(a) DNA micrograph (b) Classical detector
(Time: 260 ms)

)M = 250 =0 (d) M = 4,4 = 0.25
(Time: 260 ms) (Time: 590 ms)

Figure 3.6: Detection of DNA filament from its noisy cryo-electron mi-
crograph. The features were ridges that were roughly 2-3 pixels wide. We
chose the standard deviation of the Gaussian window to be 3. The images
were thresholded such that there are 1000 detected pixels.

ridge detection algorithm followed by non-maximum suppression and threshold-
ing. Overall, theM = 4 detector gives the best qualitative results: there are few
breaks in the filament and the detection is less wiggly. Note that the perform-
ance improvement costed only 2 times the time taken for the classical approach.
The optimal second order detector gave better results for the same computational
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complexity as the classical approach.

3.5 Shape adaptable feature detection

Steerability in rotation involves the representation of a template as a weighted
linear combination of a few filters; the weights are nonlinear functions of a single
parameter—the angle. This leaves us with extra degrees of freedom which can be
utilized effectively. Perona used it to make the template steerable in scale [43].
We propose to utilize this freedom for the design of a shape-adaptable filter, thus
making the system respond to different shapes depending on the parameters.

In Section 3.4.1, we designed templates for the detection of ideal step edges.
However, as mentioned in [54], the edges are sometimes wedge shaped (close to
image corners). Since this contradicts our assumption, we have low SNR at the
corners. A bias in the position of the corner is also reported in the context of
conventional corner detectors [55].

Corners are image regions with high surface curvature. They convey a lot of
information about the image shape [56-59]. Hence, we propose a new shape-
adaptable, steerable corner detector that addresses these issues.

v

Figure 3.7: Model of an ideal wedge.

3.5.1 Derivation of the wedge detector

We model a corner as a wedge shown in Fig. 3.7, where the wedge @rgie
variable. Analytically, we have

|1 if —xsin (f) < ycos (9) < zsin (9)
Jolzy) = { 0 " otherwise i

We focus on the derivation of a third order corner detector. Sincé&'therder
detectors cannot oscillate much, we get 0. We also get rid of the localization

(3.50)
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term—to obtain a simple expression, we optimize the detector only with respect
to the SNR.

Setting the gradient of + A Noise to zero (to maximizeS subject taNoise =
1), we get

2\ Pa = —s, (3.51)
from which we obtain the optimal solution as
P-ls
a=-———— 3.52
VsTP-1s ( )

For a3 order detectofg = [g.., 9y, Guz Gyy» 9zy]) @nd the idealized wedge
model,P ands defined by (3.27) and (3.25) are given by

P — [ &' (e)s (o) dudy (3.53)
R
0 0 0 0
02 0 0 0
= |00 &% 5 0 (3.54)
00 3% 25 0
00 0 0 5
s = | folz,y)g(zy)dedy (3.55)
R
= [ —oymsin($) 0 sin(¢) —sin(g) O}T. (3.56)

Substituting the above in (3.52), we obtain the SNR-optimiZéarder template

as
2 o cos &
h (X) = _\/2 NP 2COS¢ (gz + 72 (gzx - gyy)) (357)

It is interesting to note that the optimal corner detector is Canny’s edge detector
when¢ = w. Some examples of detectors for different values afe shown in
Fig.3.8.

3.5.2 Implementation

We have a templaté, , which is now parametrized by two variableg—the
orientation—and)>—the wedge angle. Hence the detection procedure involves a
two variable optimization. For our experiments, we resort to a slightly suboptimal
solution where is estimated from the = = solution and the optimap is es-
timated by sampling. This approach is justifiable as the optimal angle does not
change much with respect o
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KIKls s

(a) (b) (c) (d)
¢=06r (108°) ¢ =087 (144°) ¢ =127 (216°) ¢ = Ldr (252°)

Figure 3.8: Wedge Detectors for different wedge angles.

3.5.3 Results
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Figure 3.9: (a) S?/Noise vs wedge angle; (b) measure{:é)f(ratio of the
bias and the standard deviation of the Gaussian window)

We now study the theoretical performance improvement of the wedge detector
over Canny’s edge detection scheme. We consider the responses of Canny’s edge
detector and the optimal wedge detector (designed for a spetiiicthe wedge.

In Fig. 3.9 we show the variation of the SNR with respect to the wedge angle. Note
that for Canny’s edge detector, the SNR falls off much more rapidly as compared
to the wedge detector. The SNR of the wedge detector has a flat zone around
¢ = m for roughly a span of 140 degrees.

To analyze the bias in the position, we consider the respofisgy) of the
wedge fj (z,y) (shown in Fig.3.7) to a template(z,y). The position of the
maximum will be displaced from the origin, along thaxis. A first order approx-
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imation of the displacement can be obtained by using the Taylor series expansion
of the response (z,y) = fo (x,y) * h (z,y) along they axis.
r(0,y) =r(0,0) +r, (0,0)y + M?f +0(y)? (3.58)
We look for the pointy such thatr, (0,7) = 0. From the above expression,
we obtain the first order expression®asr, (o, yo) /7yy (%0, Y0). Substituting
r = f x h and by using the commutativity of convolution and differentiation, we
get
oo xRy loo
f * hyy ’070
The plot of the bias {; ) for different wedge angles is shown in Fig. 3.9-b. It
is seen that, for Canny’s edge detector, the wedge is displaced from the actual
location much more than for the wedge detector tuned to the corresponding angle.

In short, the wedge detector performs better than the edge detector for non-
ideal step edges (wedges) for a range of angles; this range can be increased by
considering higher order detectors.

To demonstrate the practical utility of the algorithm, we consider the synthetic
pattern shown in Fig. 3.10-a and the real image shown in Fig. 3.10-c. We estimate
the optimal parameterg @nd¢) and the response. We perform non-maximum
suppression of the response and keep only the values above a certain threshold.
The estimated value af where the response is greater than the threshold are
shown in Fig. 3.10-b and Fig. 3.10-d. Note that the detector can distinguish
between convex and concave wedges based on the difference in the estimated
angles. The estimated position of the wedge is also a reasonable fit to their true
positions. Since Canny’s detector is also in the family of wedge detectors, this
scheme works well for straight edges as well.

3.6 Summary

We have proposed a general approach to derive optimal 2-D operators for the de-
tection of image features. We chose the optimal template from a family of steer-
able functions using an analytical optimization scheme based on a slight modi-
fication of Canny’s criterion. In contrast to classical approaches, where the op-
timization is performed in 1-D, we specified the filter directly in 2-D. We derived
optimal operators for a variety of image features and demonstrated their utility
in various applications. We also introduced the notion of shape-adaptable feature
detection and used it for the detection of image corners.

We now discuss a few issues that were not dealt with in this chapter and are
still open for further investigation.

46



(a) Noisy Image

(c) House image (d) Angle output of Wedge detector

Figure 3.10: Detected wedge angle. Here red stands/fer 37” yellow

for ¢ = = and cyan fory = 7. Here the corners are the points which are
either in red or in cyan. Note that at the straight edges, the optimal wedge
angle isr; the optimal detector is equivalent to the Canny’s edge detector.
In this experiment, we have chosen= 3.
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1. Class of steerable functions: Although we have concentrated on the space
of Gaussian derivatives as the steerable family, the design methodology is
applicable to other classes as well. Interesting variations may be obtained by
changing the window function or using by other known families of steerable
functions [45, 60].

2. Discretization: We have derived the optimal operators in continuous space,
neglecting discretization issues. It could be interesting to address the dis-
cretization effects as in [61] to be closer to practical situations.

Even though further research is required to address these issues, the results presen-
ted here are promising enough to justify the use of the proposed detectors in a vari-
ety of practical applications. The methodology is also general enough to allow for
the design of application-specific templates.

The implementation of the algorithm is available as a Java plugin for ImageJ

[62] at http://bigwww.epfl.ch/demo/steerable/.

Appendix 3-A

Proof Using the linearity of the Fourier transform and the property that differen-
tiation corresponds to a multiplication witly in the Fourier domain, it is easy to
derive the transfer function of the filtér

ﬁ (wg, wy) ZZO&]M jws) k_l Jwy) G (Weywy) (3.59)

k=1 =0

wherej = y/—1. Since the rotation of a filter in space corresponds to a rotation of
its Fourier transform, we get

k—i

S (h(Ryx)) = Qi (jwg cos () + jwy sin (0))

M=
-

i
I
.
]
o

(—jws sin (6) + juy cos ()" § (wa, w,)

=9 35 ) of (P [ 6 RIS

k=1 =0 =0 m=0
sin (9)(k 1)—(i—m) (wa)l+m (jwy)k:—(l-i—m) g (W;p, Wy)
(3.60)

Note that the window function is left unchanged because we are assuming that it
is isotropic. Now multiplying both sides bjy and computing the inverse Fourier
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transform, we get

sin (0)F707E™ iy (%)
(3.61)

where

i 0 = )+ (s )

Note that the component indices ffare dependent only ok and/ + m. We
collect the terms with the same valuesiof (I + m) and we defing (k, i, j) as

S(kyi,j)={l,m|0<l<k—30<m<ik—(+m)=j} (3.62)
Using this definition, we rewrite the right hand side of (3.61) as

Sy a (X X (M7 (L) et o

k=1 =0 J=01,meS(k,i,j)

k=1 j=0 =0 1,meS(k,i,j)

. >

bi,;(0)

Appendix 3-B

In this section, we briefly outline the steps involved in $ffeorder edge detection

algorithm. We denote the 1-D Gaussian of a specified variance, its first, second

and third derivatives sampled on a certain gridgby’, ¢’ andg” respectively.
Algorithm

fi0= filterSeparable(image,q',q);

fi1 = filterSeparable(image,g,q');

fso = filterSeparable (image,g”,9);

fs1 = filterSeparable (image,q”,q’);

f32 = filterSeparable (image,q’,q");

fsz = filterSeparable (image,q,9");
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for i=0 to Nrows-1 do
for j=0 to Ncols-1 do
q1 = a3 fao(1,3) +asa fa2(1,3) +aipo fro(i, j);
¢ = (Baso —2a32) f31(1,]) +as fas(1,3) + a1 fia (1, 3);
g3 = (Basp — 2032) f32(1,3) + asa fso (1, 3) + a0 fio (1, 3);
qa = asp f31(1,3) +aso fss(i,3) +oao fia (4, 3);
solset = solveCubic(qe, 2¢5 — 3¢1, 34 — 2¢2, —q3);
thetaset = {atan(solset),atan(solset)+mw J};
[optmag(i, j), optangle(i, j)|] = giveMaximumRoot (thetaset, ¢,
425 G3+ 44);
end for
end for

The routinegiveMaximumRoot substitutes thé values into (3.38); it returns
the maximum value and the corresponding angle.
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Chapter 4

Efficient energies and algorithms for
parametric snakes

In this chapter we address the first application of the shape estimation algorithm
discussed in the introductory chapter (cf. Fig 1.4).

4.1 Introduction

Snakes or active contour models have proven to be very effective tools for image
segmentation. An active contour model is essentially a curve that evolves from an
initial position towards the boundary of an object in such a way as to minimize
some energy functional. The popularity of this semi-automatic approach may be
attributed to its ability to aid the segmentation process with a-priori knowledge
and user interaction.

Extensive research in this area have resulted in many snake variants [63, 64];
these are distinguished mainly by the type of curve representation used and the
choice of the image energy term. The popular curve representation schemes in the
snake literature are

e Point-based snakes, where the curve is an ordered collection of discrete
points (also termed as snaxels) [8, 65, 66].

e parametric snakes, where the curve is described continuously in a paramet-
ric form using basis functions such as B-splines [9,17, 67, 68], Fourier ex-
ponentials [10, 69] etc.

!Based on the article *M.Jacob, T.Blu, M.Unssybmitted to IEEE Transactions on Image
Processind.
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e Geometric snakes, where the planar curve is represented as a level set of an
appropriate 2-D surface [18, 20, 70-72].

The point-based approach can be viewed as a special case of parametric curve
representation where the basis functions are uniform translates of a B-spline of de-
gree zeré; likewise, parametric approaches using smooth basis functions will tend
to the point-based scheme as the number of basis functions increases. In general,
however, representations using smooth basis functions require fewer paramet-
ers than point-based approaches and thus result in faster optimization algorithms
[9, 69, 73]. Moreover, such curve models have inherent regularity and hence do
not require extra constraints to ensure smoothness [17,73].

Since both the above mentioned schemes represent the curve explicitly, it is
easy to introduce a-priori shape constraints into the snake framework [69, 74—76].
It is also straightforward to accommodate user-interaction; this is often done by
allowing the user to specify points through which the curve should go through [8].
However, these models offer less flexibility in accounting for topological changes
during the curve evolution. One will have to perform some extra bookkeeping to
accommodate changes in topology.

Geometric approaches offer great flexibility as far as the curve topology is
considered; they presently constitute a very promising research area [18, 71, 72].
However, they tend to be computationally more complex since they evolve a sur-
face rather than a curve. Also, since the curve representation is implicit, it is much
more challenging to introduce shape priors into this framework [77].

In this chapter, we focus on general parametric snakes due to its computational
advantages and simplicity. We will start by taking a critical look at them, identi-
fying some of their limitations, and propose some improvements to make them
more attractive.

There are many different image energy terms that are used in practice. Most of
the commonly used approaches fall into two broadly defined categories: (i) edge-
based schemes which use local image information (typically gradient information)
[9,17,69,73,78], and, (ii) region-based methods which uses global image features
(eg. statistical formulation ) [10, 75, 79-81]. Since the best choice of the energy
depends on the specific application at hand, we try to unify these approaches into
a single framework; we obtain a general algorithm which can be tuned easily to
the problem.

We propose a new edge energy term which is independent of the parametriz-
ation, unlike most of the commonly-used energies. The use of this energy will
preserve the parametrization and consequently the curve stiffness. This energy
is also more robust than the traditional gradient magnitude-based energy because

1 if jz| <05

2 ) . H H J—
A B-spline of degree zero is defined 8% (z) = { 0 else
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it accounts for the direction of the gradient as well. We re-express this energy
term as a region integral, thus unifying it with the region-based energies in a nat-
ural way. Thanks to the new approach, the choice of image energy is reduced to
appropriately choosing the preprocessing.

We also clarify some earlier statements about splines by showing that para-
metric snakes can implicitly ensure smooth curves, but only if they are described
in the curvilinear abscissa. Since general curve evolution approaches do not guar-
antee this configuration, we introduce a new internal energy term which forces
the snake to the constant arc-length parametrization. We also propose efficient
computational schemes for evaluating the partial differentials of the energy terms;
thanks to the parametric curve representation in terms of finitely supported scaling
functions, we can compute the differentials exactly and efficiently.

The chapter is organized as follows. In the next section, we provide some
mathematical preliminaries and formulate the parametric active contour problem.
We deal with the image energy, internal energy and the external constraint energy
in Sections 4.3, 4.4 and 4.5 respectively. In Section 4.6, we derive efficient expres-
sions for the partial derivatives of the energy terms. In Section 4.7, we propose a
practical solution for the detection and suppression of loops.

4.2 Mathematical Preliminaries

4.2.1 Parametric representation of closed curves

We represent the boundary contour in the— y plane as a closed parametric
curve in a scaling function basis as shown in Section 2.4.

4.2.2 Active contour models: formulation

An active contour, as introduced by Kass et. al. [8], is a curve described as an
ordered collection of points which evolves from its initial position to some bound-
ary within the image. The curve evolution is formulated as an energy minimiza-
tion; the snake energy is typically a linear combination of three terms:

1. the image energy, which is responsible for guiding the snake towards the
boundary of interest.

2. the internal energy, which ensures that the segmented region has smooth
boundaries.

3. the constraint energy, which provides a means for the user to interact with
the snake.
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The total energy of the snake is written as
Esnake (6) == Eimage (6) + Eint <@> + EC (G)) 5 (41)

where @ is the collection of curve coefficien® = (cg,cy,...,cp—1). The
optimal curve parameters are obtained as

O = arg I%in Esake (©) (4.2)

It is obvious that the quality of segmentation is dependent on the choice of the
energy terms. We deal with them in detail in the following sections and are listed

in Table. 4.1 for easy reference. The energy minimization process is essentially
an optimization procedure, where we iteratively update the snake coefficients so
as to reach the minimum of the cost/energy function.

4.3 Image energy

The image energy is the most important of the three energy terms. In this section,
we identify some limitations of the widely-used gradient magnitude energy and
propose a new cost function that overcomes these problems. We also present a
unified framework which includes the edge-based and region-based approaches
as particular cases.

4.3.1 Edge-basedimage energy

Traditional snakes rely on edge maps derived from the image to be guided to
the actual contour. The most popular approach is based on the magnitude of the
gradient.

Gradient magnitude energy

Many of the parametric snakes described in the literature use the integral of the
square of the gradient magnitude along the curve as the image energy [9, 17, 69,
73]. Mathematically, we have

M
Eriag = — / IVf (1)) dt, (4.3)
0
whereV f (t) denotes the gradient gfat the pointr (¢). As pointed out in [78],
one disadvantage of this measure is that it does not use the direction of the gradi-

ent. At the boundary, the image gradient is perpendicular to the contour. This
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extra information can be incorporated into the external energy to make it more
robust.

We have seen in the previous chapter that computing the magnitude of the
gradient is equivalent to solving for the optimal orientation and then computing
the optimal response. Hence using the gradient magnitude in the image energy
is equivalent to performing the edge detection independently at each pixel and
using the detected edges to drive the snake. This two-step approach may be less
consistent; for instance, the direction of the gradient at a particular pixel on the
contour need not be the same as tangent to the curve at that point.

Another problem is the dependencefgf., on the parametrization; we obtain
a different value of,,,,, if the curve is represented in terms of a paraméter
w (t), wherew is a monotonically increasing one to one warping function. The use
of such an energy may therefore result in the curve re-adjusting its parametrization
in trying to maximizeE,,,, (e.g9. with B-spline curves, the knots will move to
regions of the contour where the gradient magnitude is relatively high). This
problem is demonstrated in Fig. 4.2-b.

New gradient-based image energy

The gradient magnitude energy is the integral of a scalar field derived from the
gradient vector field. We propose a new energy that uses the vector field directly:

Fpad = f A(Vf (1) x dr) (4.4)
= f V() (dr x k) (4.5)
el aw

wherek is the unit vector orthogonal to the image plane. Here) denotes
the unit normal to the curve at Since we are evaluating the likeliness of an
edge oriented along the tangents at the curve points as compared to the two step
strategy used in conventional schemes, we expect our algorithm to be more robust
and consistent to the image data. Note that this approach of accounting for the
gradient direction is similar in philosophy to [78], eventhough the expression used
by these authors is different and parameter dependent.

This integration process is illustrated in Fig. 4.1; with our convention, the
vectorn (r) is the inward unit normal to the cur¥eneaning that we are integ-
rating the component of the gradient orthogonal to the curve. Note that (4.4) is

3k is chosen, depending on the direction in which the curve is described, su)(lh)aiz o
is the inward unit normal.
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Figure 4.1: Gradient and normal to the curve

independent of the parametgrand hence does not depend on the parametriza-
tion. The improvement obtained by using the new energy instead of the parameter
dependent magnitude-based energy is shown in Fig. 4.2-c.

General edge-based image energy

We consider a generalized form of (4.4) by substitutng with other feature-
enhancing vector fields. A promising approach is the use of optimal steerable
filters to derive an appropriate edge enhancing vector field [82]. This method uses
filters that are more directional than theandy components of the conventional
the gradient operator to derive a noise-resilent field.

The general form of edge-based image energy can be expressed mathematic-
ally as

Eedge = — j{k- (ef(r) x dr), (4.6)
c

wheree; is an appropriate vector field derived frofn The magnitude oé; (r)

gives a measure of the edge strengthr,awvhile its direction specifies the edge
orientation. We now show that the computation of this edge-based energy is equi-
valent to evaluating a region integral.

Proposition 2 The general edge-based image energy (4.6) can also be expressed

as
FEedge = / V -ef(s)ds, 4.7)
S\“/_/
Te(f)

where V - e denotes the divergence of the vector field ey.

Proof Green’s theorem relates the volume integral of the divergence3eDa
vector fieldF over a closed volum& bounded by the surfacg to its integral
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(a) Initialization (b) Magnitude-based (c) New edge-based en-
energy ergy

Figure 4.2: Segmentation of a mouse organ using edge-based energy (a)
The knots (denoted by the white dots) are initialized so that the curve is
approximately in the curvilinear abscissa. (b) Curve evolution based on
the gradient magnitude-based energy. Note that the knots accumulate at
some points along the curve in the final curve, thus restricting the flex-
ibility of the curve. (c) Curve evolution based on our new edge-based
energy; by better preserving the parametrization, it often result in a better
segmentation.

overs:
/(V-F)dv:/F-ds. (4.8)
v S
The restriction of Green’s theorem to two dimensional space yields
oF, OF, B
/S(ax + oy > da:dy—]g(Fydx F.dy) (4.9

The integral on the left is computed over the afdaounded by the curvé while
the one on the right is oveél. Using the vector notation, we rewrite (4.9) as

/S(V-F)ds=—7{k'(der), (4.10)

c

wherek is the unit normal to the two dimensional space. Using this identity, we

simplify (4.6) to the form (4.7). O
Note that in the special case whep = Vf, we getT, (f) = V?f. This

means that our new gradient-based energy (4.4) is equivalent to integrating the

Laplacian of the image in the region bounded by the curve.
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(a) initialization (b) edge only(aw = 1)

. T :
et

e

(c) region only(a = 0) (d) unified(a = 0.5)

Figure 4.3: lllustration of the use of the unified image energy in the seg-
mentation of a corpus-callossum image (b) The use of the gradient based
energy fails to converge in regions where the gradient information is ab-
sent (c) The region-based energy is misled by the lack of image contrast
(d) The unified energy leads to a good segmentation.

4.3.2 Region-based image energy

Recent research in active contours is increasingly focusing on the use of statistical
region-based image energy [10, 75, 79, 80]. This type of energy can provide the
snake with vital boundary information, especially while it is far away from the
real contour, thus resulting in a larger basin of attraction.

The use of this energy assumes two main regions in ifjagi¢h different
probability distributions. A simple example is the case where we have to segment
a white object from a dark background; the regions will have different means and
possibly different variances. We use the statistical formulation of Staib et. al. [69]
to specify the region likelihood function:

Bregon = — / log (P (f (s) s € R)) ds

_ / log (P (f (s) |s € R')) ds, (4.11)

4This can be generalized to> 2 regions
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whereR andR’ denote the different image regions. We denote the regions in the
curve and outside by andS’ respectively. It is easy to see that (4.11) attains a
maximum wherR = S andR’ = S’. We rewrite the above integral as

Brgon = — / log (P ( (s)[s € R)) ds

-C+ /Slog (P(f(s)|seR))ds, (4.12)

whereC' = fS,Uslog (P(f(s)|s € R))ds. SinceC does not depend on the
position of the curve and hence we remove it from the cost function. Thus, the
region-based cost function is simplified to

[y P(f(s)l[seR) .
o = [ =18 (57 e e 7)) ¢ @19

7

T.(p)
We now give a few examples to illustrate (4.13).

1. The regionsk andR’ have Gaussian distributions with the same variance.
In this case, we obtain

T(f) = ~ 2R —pR) | o pR R

o2 2 ’
—
HR R!

(4.14)

whereur > ug are the means of the regiois and’ R’ and ands the
standard deviation. The regions pfwith values above.z z- are mapped

to negative values while the ones below are assigned positive values. Hence,
evolving the contour using (4.13) will result in the curve adjusting itself to
have regions of aboveyur - inside while excluding the ones belgw; ..

The assumption of the variances of the regions being the same is appropriate
if we have piecewise constant images corrupted by additive Gaussian noise.

2. Theregions inside and outside the contour have Gaussian distributions with
different variances. In this case, we obtain

T, (f)=af*+bf+ec, (4.15)
R/ R R/ R R! R

log (Z2-). Here,or andog are the standard deviations of the regions
OR

inside and outside the curve respectively. Since the snake uses the inform-
ation from the variances as well, it can resolve the boundaries even when
both regions have identical means but different variances [68].
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In the absence of prior knowledge of the probability distributiBrig (s) |[s € R)
and
P (f(s)|s € R'), the statistical parameters are estimated from the infagem-
selves as the snake evolves; we assume the current position of the contour to define
the regions (i.eS = R andS’ = R’) and estimate the parameters as discussed in
Section 4.6.3.

The extension of this method for the segmentation of multi-component images
(e.g color images) is straightforward. FoneD vector imagef : R?> — R, we

nave P(f(s)|s€R)
S)|s €
Frogion — /S - log (P Eo)loe R/)) ds (4.16)

J/

-~

T (£)

Note that the region information from the vector data is efficiently concatenated
into the scalar imag#, (f). This framework is used for the segmentation of tex-
tures in [83]. They obtain an appropriate vector image from the gray level image
using a Gabor filterbank.

4.3.3 Unified image energy

Both of the above mentioned energies (edge-based and region-based) have their
own advantages and disadvantages. The edge-based energy can give a good loc-
alization of the contour near the boundaries. Unfortunately, it has a small basin of
attraction, thus requiring a good initialization or a baloon force [84]. On the other
hand, the region-based energy have a large basin of attraction and can converge
even if explicit edges are not present [80]. However, it does not give as good a
localization as the edge-based energy at the image boundaries. Motivated by the
complementary features of these schemes and the similarity of the expressions
(4.7) and (4.11), we propose a unified form of image energy. We choose a convex
combination of the two energies to obtain an extended class, which inherits the
advantages of both. The new image energy is given by

Fonoge — / T (f) (s) ds, (4.17)
S~~~

Ju

where f, = T, (f) = oT.(f) + (1 —«) T, (f). This unification is similar is
philosophy to the approaches in [10,71]. However, our scheme is more natural and
yields a simpler expression since it combines the two energies into a single region
integral. The simplicity of the expression will lead to computational advantages
as will be discussed later on. We demonstrate the use of the unified energy in Fig.
4.3.
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4.4 Internal Energy

The internal energy is responsible for ensuring the smoothness of the contour.
Kass proposed an internal energy the linear combination of the length of the
contour and the integral of the square of the curvature along the contour. This
smoothness term is the most widely used one in applications [8, 63, 66]. Its direct
extension to parametric curves gives

M 1
B o= A / (' (0% + o (0)?) dt +
0

. /

Leﬁgth

W [ (Fr o or) .,
o\ @O +y )
|re(r)[?

(4.18)

wherex (r) is the curvature of the curve at the pointt). The first integral in
(4.18) can be computed, while the second one is more complicated. We show in
the Appendix 4-A that the second term reduces to

M 2 1 M " 2 " 2
w@Pd = 5 [ (" @F + " @F)at @419
0 cJo -~
e (8)[?

provided that
2 )+ Y () =Vt (4.20)
that is, when the curve is parametrized by its curvilinear abscissa. Here

2

M 1
c= % /0 (2 (t)* + ¢/ (¢)°)* dt (4.21)

~
Length

is the total length/unit value of the parameter. It is justified to ﬁ§b”\2 as

the curvature term in point-based snakes since the snake points (snaxels) are al-
most equally spaced. For parametric snakes described in the curvilinear abscissa,
the curvature term is inversely proportional to the fourth power of the distance
between the knots along the curve (c.f. (4.19) and (4.20)). We will have a smooth
curve if its knots are well separated.
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Most parametric schemes rely on the smoothness of the representation, thus
eliminating the need for an explicit internal energy term [9, 10,17, 69, 73]. How-
ever, these approaches can only ensure a low valgfgm‘r *: they can guarantee
low curvature curves only when (4.20) hold. For example, a spline curve may be
rough even with a small value g r”|” if some of the spline knots accumulate at
one section of the curve. Similar problems exist with Fourier and other paramet-
ric representations. To counter this problem, we propose to add a new term to the
criterion that will force the snake to satisfy (4.20).

4.4.1 Curvilinear reparametrization energy

Our new energy term that penalizes the curve for not being in the curvilinear
abscissa is given by

M 2
E:/ (|r' (t)|2—c‘ dt, (4.22)
0

wherec is given by (4.21). Evolving the curve with such a term will cause the
curve knots to move tangential to the curve, thus bringing it to the curvilinear
abscissa. An example of the type of improvement that can be obtained in this way
is shown in Fig. 4.4.

Precioso et. al [85] proposed to reparametrize the curve to the constant arc-
length representation after each step of the optimization algorithm to avoid the
curves from looping. This scheme would yield the same results as our approach,
but is computationally much more expensive.

4.4.2 Choice of the scaling basis function

As mentioned before, the parametric representations can guarantee a small value
of fc |r”|2. Using the well-known variational properties of splines [28], we can
show that the minimization ofc |r”|2 subject to interpolation constraints yields
a cubic spline curve with knots at the integers. Thus, the cubic B-spline model
appears to be the most natural choice for representing parametric curves; it will
yield a minimum curvature curve provided the parametrization is the curvilinear
abscissa (i.e. the knots are uniformly spaced on the curve). The use of spline
curves also brings in additional gains due to the existence of efficient algorithms
[27], the local control of the contour due to the finite support of the B-spline basis
function and their good approximation properties [26].

Due to these nice properties, we choose cubic spline curves in our implement-
ation. However, the theory we present in this chapter is general enough to accom-
modate for any other representation in terms of scaling function or wavelets.
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4.4.3 New internal energy term

If we choose: = ~ Le“Tgth in (4.22) instead of (4.21), we get
(1 —~?) Length?

Ecurv = Ecurv
(7) + i

(4.23)

This equation implies that we can also account forlthegth term in (4.18) by
choosingy < 1. We thus simplify the internal energy to

Eint = Ecurv (7) (424)

In practice, we found it better not to minimize the length of the curve under normal
circumstances; in other words, we usually set 1. However, when the curve

is detected to be looping, we decrease the length of the curve by choosirty

We discuss this issue in Section 4.7.2.

4.5 External constraint energy

As mentioned before, external constraint energy provides a means for the user
to interact with the snake; he can guide the snake to the boundary when image
information is too weak or ambiguous.

We introduce a point constraint mode, where the user has the option to specify
a few points that should lie on the contour to be detected. We constrain the snake
by adding an energy term which is the distance between these points and the
corresponding closest points on the curve. The constraint energy is given by

Ne—1
L= min_|r (t) — rc7,-|2, (4.25)

wherer.;;i = 0..N, — 1 are the constraints. This approach can be thought of as
introducing virtual springs that pulls the curve towards the desired points: One
end of the spring is fixed to the constraint point while the other end slides on the
curve.

4.6 Evaluation of the partial derivatives
In this section, we express the partial derivatives of the component energies of the

snake. These are used by the optimization algorithm to converge to the minimum
of the energy function.
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The theory mentioned so far is valid for general scaling function represent-
ations ranging from band-limited curves (Fourier series representation) to poly-
gons. In order to derive efficient numerical schemes, we now make the additional
assumption that the basis function is finitely supported in the intéyval]. Note
that this class is still very rich as it includes most of the known scaling function
families. The interesting cases for our purpose are the cubic B-spline function,
which is finitely supported in the intervé, 4], and the linear B-spline function
with the support0, 2.

Partial derivatives of the magnitude-based image energy

Following the work of Flickner et. al. [73], we locally optimize the snake during
the initialization process (when the user is in the process of entering the initial
curve), thus providing the user with a visual feedback. For this optimization we
use the simple gradient magnitude-based energy mainly because it is applicable
even when the curve is not yet closed and also because it is simple and computa-
tionally efficient. However, we only perform few iterations with this energy as it
tends to bring the curve knots closer as mentioned before (c.f. Fig. 4.2).

We consider the integral in (4.3) and differentiate it with respect to the coeffi-
cients using the chain rule (using (2.31)):

OBumag/Ocuy, | [N
{aEmag/acy,kz 1 - /0 Vg (t) @p (t—F)di (4.26)

whereg = |Vf\2. We approximate the inner-product as a discrete sum:

OFmag/0car | _ 1 < [k R+ 45 i
e R R () (m)
whereR is the sampling rate and|,, stands fork mod M. In the above expres-
sion, we used the finite support of the scaling function to limit the range of the
summation. Also note that we have transferred the periodicity from the kernel to
Vg; this means that the summation is evaluated assuming periodic boundary con-
ditions onVg. Thus, ifVg andy (* — k) are precomputed, the evaluation of the

partial derivatives just involves a weighted sum. The computational complexity is
therefore proportional teM/ V.

Partial derivatives of the unified image energy

For closed curves, we preferentially use the unified energy to optimize the curve.
In line with the work of [10, 21, 69], we now use Green'’s theorem (4.9) to convert
region integrals (over the region bounded by a closed curve) to integrals over the
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(a) Initialization (b) No curvilinear en-  (c) With curvilinear en-
ergy ergy

Figure 4.4: Without the curvilinear energy, the parametric representation
cannot guarantee low curvature curves. Note that for the same initial-
ization, the curve with the curvilinear reparametrization energy leads to
smoother curves. Without the energy, the curve knots accumulate at some
regions of the curve, thus leading to sharp edges; low energy curves are
ensured only if the arc length is constant on the curve.

curve; our main motivation is computational efficiency. (4.17) can be efficiently
computed as the curve integral

/ fu () dady = 74 £ (2, y) de (4.28)
S C
- é 17 (2, ) dy, (4.29)
where
By = [ hene (4.30
fi(z,y) = ' fu (T, y)dr (4.31)

—0o0
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Applying the chain rule of differentiation on (4.29), we 0bt&if},,g./0c, 1 @S

0 0
@ (Bimage) = %(Eimage) . 86“( x (t))
f2 <
= i ax o (t chlgpp (t—1)

l:0

fu
] (t)

= D[ R@a B D

_ —ZCZ/ L e(t—k) (t—1)dt (4.32)

l=—00 /

qu( 1)

In the last step we expandeg (¢ — k) using (2.33) and made a change of vari-
able, thus extending the integral froro to co. We also transferred the period-
icity of (), to the coefficient sequence. Sin@g, (k,!) is a finite sequence, the
evaluation of (4.32) amounts to an appropriate finite sum. In a similar manner,
using (4.28) we obtain

oF 1mage /
P 3 2y I T

l=—0c0

qu(kvl)
The main steps in the computation of the partial derivatives are:

1. The evaluation of the sequen@g (k,1); |k; — 1| < N. (With a change
of variables we obtairQ;, (k,1) = [~ fu(t+ k) (t)¢ (t+k—1)dt.
Since (t) is finitely supported in the mtervqid) NJ, Qy, (k,1) is zero if
|k — 1| > N). Approximating the integral as a discrete sum, we obtain

NR . .
Q;. (k1) qu(kR“ >¢<%>¢’<é+k—l) (4.33)

-~

br—1(4)

Provided we precomputehe sequencg,, (i);m = {—-N +1...N — 1},
the computation o), (k,1);0 < k,l < M involves an weighted sum of
length N's.

5The samples of can be computed by solving for its values at the integers as shown in [22]
and using the two-scale relation to refine it .
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2. The evaluation of the partial derivatives, which are obtained as

OE,/0cu | - —c
{ aEu/acy; } =2 { ngl } Q. (k1) (4.34)

=0

Here, the computational complexity of the ordersdf/?N2. Note that there is a
factor of2 advantage in implementing the partial derivativegipf,q as in (4.34)
rather than its direct evaluation from (4.4). The performance improvement in the
implementation of the unified energy is even better as compared to the one in [10],
where the energy is the sum of two integrals.

4.6.1 Partial derivatives of the internal energy

Differentiating the expression df;,; = E... and simplifying further, we obtain

the partial derivatives as simple multidimensional filtering of the scaling function
coefficients. We show in the appendix that the partial derivatives of the the term
E;,: can be computed as

0
o (Eint) = Z Cok—t Coomn Copn 11 (L,m, ) +
x’ U [ml,In| <N
Z kot Cyhom Cypn 11 (M, ) +
[2],|ml,In|<N
> i ha(l) (4.35)
[l|<N
0
deur (Bint) = Z Cykt Cym Cykn B (L,m,n) +
v 1l [ml,In| <N
Z Cy k-t Coge—m Copn P (L, M) +
1] lml,|n|<N
¢ Z Cg,H ha (1)
[l]<N

where
hi(I,m,n) = /OO )+t +m) (t+n)dt  (4.36)
hy (1) = /OO O () (t+1)dt (4.37)
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Note that the multidimensional filtering is performed assuming periodic boundary
conditions. The computational complexity is small, since the sum depends only on
the coefficient sequence whose number is typically much lesser than the number
of curve samples. The computational complexity in evaluating the above sum
is N*M. The filter coefficients (4.36) and (4.37) are precomputed as shown in
Appendix 4-C.

4.6.2 Partial derivatives of the constraint energy

Computing the partial derivatives of (4.25), in all its generality, would give a very
complicated expression. To make the problem more tractable and to reduce its
computational complexity, we make the assumption that the optimal parameters
t;; i=0... N, — 1 are known. In this case, (4.25) gets simplified to

Nc—1
Ee= Y |r(t;) — el (4.38)
=0

and its partial derivatives are given by:

OE.[0cyy | R Te z (t;)
oo ] - 2 (L ]-[3 ])ee-n am
Using the finite support of the scaling functions, we limit the sum to the relevant
indices (we need to evaluate it only foi| 0 < (¢; — k) < N.}). In practice, we
resort to a two-step optimization where the snake is first evolved using the above
formulas for the derivatives with the current set 8. The optimal parametets

are then re-estimated within the loop as:

ti:argten[éiﬂ} lr(t) —reil; i=0...N.—1 (4.40)

4.6.3 Estimation of the probability distribution functions

The evaluation of (4.11) requires the specification of the probability distribution
functionsP (f (s)|s € R) and P (f (s) |s € R). If we do not have any a-priori
knowledge of these distributions, these are estimated iteratively from the image
data itself assumin® = S andR’ = S’. Note that these assumptions are valid

if the snake is close to the real boundary. We use densities such as the Gaussian
distribution which are represented by few parameters (mean and variance). The
estimation of these parameters require integrating the image and its square in the
region bounded bys. We compute the integrals efficiently using (4.28) with the
corresponding integrated functions (similar to (4.30)) precomputed.
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The estimation of the distributions are followed a non-linear transformation
which mapsf into f,,. Since this transformation is time consuming, the estimation
of the distributions and the updating fif is only performed periodically, typically
once every 10 iterations.

4.6.4 Computation of the length and area

The computation of the internal energy requires the estimation of the current
length of the curve. We compute the length as a discrete approximation of the
integral

/0 (« (02 + o (£))? dt

as

1 MR—-1 i 2 i 2
Length = — = = . 4.41
ength = — 2; x (R) +y (R) (4.41)

The area of the curve is obtained by Green’s theorer’rfcggl:p, which when
expanded gives
M— N-1
Area = Cyk Coyq(k—1), (4.42)

k=0 |[=—N+1

[y

whereq (m) = [~ (t)¢' (t —m)dt is obtained as in [86]. Note that the area
obtained by the above expression is signed; its sign is utilized to determine the
sense (clockwise or anti-clockwise) of the curve.

4.7 Evolving the curve

4.7.1 Optimization Algorithm

As mentioned before, the active contour algorithm extracts the final contour by
finding the minimum of the energy function. Having obtained the partial derivat-
ives, we can use an efficient optimization algorithm to evolve the contour. Here,
we implemented the conjugate gradient and steepest descend algorithms. The
conjugate gradient algorithm resulted in slightly faster convergence, but was less
flexible for loop recovery and knot addition/deletion discussed later. Hence in our
final implementation we reverted to the simpler steepest descend algorithm, which
was found to be entirely satisfactory for our purpose.
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ds

A

Figure 4.5: Computation of the elemental angle

4.7.2 Loop detection and recovery

The optimization process can sometimes lead to looping curves. The probability
of loops is greatly reduced by the introduction of the curvilinear reparameter-
ization energy; without this term, the knots tend to bunch together, eventually
resulting in loops (c.f. Fig. 4.4).

Despite the use of the new internal energy, looping may still arise occasionally
when the image energy forces some knots to move faster than the others. This
compromises our approach since we use Green’'s theorem which assumes simply
connected regions. In the case of polygonal representation (linear spline curve),
Chesnaud et. al. proposed to perform crossing tests to detect the presence of loops
[79]. Unfortunately, this method is time consuming and not directly applicable
to general scaling function curves. Hence, we devised a fast method for loop
detection. We compute the total tangential afigle

M
etota] - / d9 (t) dt, (443)
0

where
o' () y" (1) —y' () 2" (¢)
(O +y ()

We show in the Appendix 4-D that the value of the integral (4.43)(is — m) 7,
wherem andn are the number of loops in the clockwise and anti-clockwise sense,
respectively. Hence, for a simply connected curve, we expegt(depending on
the sense in which the curve is described). We approximate (4.43) by a discrete
sum over the parameter

Note that our criterion can give a val@e even if the curve is looping (when
n + 1 = m), which implies that it is not completely foolproof. In principle, it is
possible to detect these cases by splitting the integral (4.43) over a series of smaller
intervals and checking if there is a loop in each of the subintervals. However, such
cases are unlikely to occur in practice and it was not necessary to implement such
a finer level of detection.

do (t) =

(4.44)

5for a plane curve, the tangential anglés defined byif = « |dr| [87]
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Once we detect a loop, we evolve the curve with onlyihgterm with~ = 0,
thus decreasing its length. In practice, the curvature of the curve at the loops are
high. Since minimizing the length corresponds to evolving the curve at every point
depending on its curvature [18], the loops tend to disappear very rapidly.

4.7.3 Shrinking/growing snakes

If the snake is initialized away from the actual boundary, it has to shrink/grow to
reach the boundary. This changes the average spacing of the knots, which in turn
controls the average curvature of the curve (cf. (4.19)).

We monitor the length of the curve as it evolves in order to eventually add/delete
knots as required. As length can be computed very efficiently by (4.41), this does
not introduce a computational overhead. We may then add/delete knot points as
required to control or maintain the elasticity of the curve during the evolution pro-
cess. The addition/deletion of a knot temporarily destroys the uniform spacing
of knots. But, thanks to the reparametrization energy term, it returns to the cur-
vilinear abcsissa in a few iterations (without the reparametrization energy, knot
insertion is a tricky issue as close knots may eventually lead to looping curves).
The performance improvement in adopting this strategy is illustrated in Fig. 4.6.

4.8 Discussion and Summary

We have successfully applied the snake algorithm to a variety of cases including

the segmentation of corpus-callossum from MR images and segmentation of the
inner heart wall from ultrasound data. Some examples of the segmented corpus-
callossum images are shown in Fig. 4.7. Thanks to the unified image energy,

the snake gives a good segmentation even if it is not initialized very close to the

actual boundary. This approach also makes the algorithm less sensitive to the
initial shape of the snake.

The curvilinear reparametrization energy ensures that the curves are smooth.
Without this term, the segmentation of the heart data (see from Fig 4.6) is im-
possible; the curves often resulted in loops. The knot insertion/deletion procedure
ensures that the evolving curve has the same stiffness as the initialization.

To conclude, we have presented several enhancements over classical paramet-
ric snakes. We have identified some limitations of the conventional gradient mag-
nitude image energy and proposed a new energy that eliminates these problems.
We have shown that a general form of this energy can be expressed as a region
integral, thus unifying it naturally with the region-based approaches. The uni-
fication yields a powerful class of image energies that combines the advantages
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(a) Initialization (b) without knot insertion

(c) with knot insertion

Figure 4.6: Segmentation of the inner wall of the heart of a dog from
its ultrasound image. Only the region-based energy is used in this case
(o = 0). Note that knot (knots are denoted by black dots) insertion and
loopcheck is indispensable in this case.
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Figure 4.7. Segmentation of corpus-callossum of 4 different subjects
from their MR images. The initialization was a small curve at the cen-
ter similar to Fig. 4.3. We gave equal weight to the region and gradient

terms (v = 0.5).

Energy Type ‘ ‘

General Expression

Special Cases

Image Energy

Js Tu (f)ds

Gradient-based energy: Eq. (4.4)
General edge-based energy: Eq. (4.6)
(a=1)

Region-based energy: Eq. (4.13)
(a=0)

Unified energy: Eqg. (4.17)
0<a<i)

Internal Energy

o'

2
2 Length
e/ ()] = Ho5E

M

Curvilinear reparametrizaton energy: Eq. (4.2

(v=1)

Length energy: Eq. (4.23)
(v=0)

Constraint Energy

Ne—1_.
> io  mingeqo, a v (t) = reil

Point constraint: Eq. (4.25)

Table 4.1: Different energy terms used in the snake optimization
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of edge and region-based approaches. We have shown that the spline representa-
tion can guarantee smooth curves if these are described in the curvilinear abscissa.
Since the curve evolution process can negatively affect the reparametrisation of the
curve, we proposed a new internal energy which forces the knot points to remain
equally spaced. The various energy terms that we have proposed are summarized
in Table 4.1.

The evolution of the curve may lead to looping curves that violate our as-
sumption of the region to be simply connected. Hence, we introduced a simple
loop detection test. We also proposed an efficient curve evolution-based algorithm
for recovery from the loops. We introduced efficient computational schemes for
the evaluation of the partial differentials used in the optimization; we converted
all the quantities as curve integrals and simplified the expressions making use of
the properties of scaling function curve representation.

The implementation of this algorithm is available as a java plugin for ImageJ
[62] at http://bigwww.epfl.ch/jacob/SplineSnake.

Appendix 4-A: Simplification of the curvature term
in the internal energy

The square of the curvature of the curve at a poift) can be expressed in the
vector form as

|5 (r) [? (4.45)

Assuming the parameterto be in the curvilinear abscissa, we have(t)| =
¢, Vt. Making use of the vector identity.(b x c) = c.(a x b), the numerator of
(4.45) can be rewritten as

(I‘/ % I'//) . (I‘l % I'”) — I'// . (I‘/ > I‘// « I‘//)
— I‘” . (I‘”(I‘/ . I‘/) . I‘,(I'/ . I‘”))
— |I'H‘2|I‘,|2 o | I_// X I‘, |2
S——
d(r'?)=0

In the second step, we make use of the identityb x ¢ = (a-c)b — (b - ¢)a.
So the expression for the curvature can be written as

(4.46)



Appendix 4-B: Partial derivatives of the curvilinear
reparametrization term

Expanding (4.22) we obtain

By = /0 (2" (1) + o (1) + 22 (1) (¢)%) dt +

M
- 40/ (2 )+ (t)Q) dt (4.47)
0
Differentiating E....,, with respect ta:, ;,, we get
8Ecurv M / 3 / / 2 a /
Doy /0 (42’ ()" + 42’ (1) /' (¢)7) Dot (2 (t)) dt —
M 0
4c/ x' (t) (' (t)) dt (4.48)
0 acx7k
Now substituting forr (¢) andy (¢) from (2.31), yields
8ECHI‘V
o = Yo &, o (k—1Lk—mk—n)+
’ l,m,neZ
oo, (k= 1Lk—mk—n)+
l,m,neZ
Y & (k=1 (4.49)
l,mnez

The filtersh, andh, are given by

by (Lmon) = /OO<p’(t)gp’(t—l—l)gp’(t—i—m)gp’(t—i—n)dt
” (4.50)

hy () = /OO o (t)¢ (t+1)dt (4.51)

o0

With a change of variables and using the finite supportofind h,, we can
simplify (4.49) to (4.35).

Appendix 4-C: Precomputation of the kernel

We use the property that the derivative of a scaling funcgiaczan be written as
¢ (t) = (1) — ot} (t — 1), wherep!!! is the scaling function whose mask
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(scaling filter) isA{! (2) = (2=) A(z); A(z) < ay is the mask ofp. Using

142-1
this relation, we rewrite the filter coefficients (4.36) and (4.37) as

ho(l) = =T A g2 (1), (4.53)

where

A g(ly, ol b)) = gyl ly) —g (ol —1,.,1)
A gy ly) = g+ 1,0+ 1,0, +1) =g (I, Iy, .., 1)

and

g1 (l,m,n) = / gp{l} (t) go{l} (t+1) (p{l} (t+m) <p{1} (t+n)dt

(4.54)
) = [ W@ e+ d (4.55)
The scaling functionp{!} satisfies the two-scale relation
N
ot ( Z o (2t — k), (4.56)
k=
Consequently, the kerneds andg, satisfy the two-scale relations
g (k) = Zhl g1 (2k —1) (4.57)
g (k) = Zh2 g2 (2k = 1), (4.58)

where the two-scale masks, and H, are given by

k

hy(l,m,n) = ! (Z (k) a'™™ (k= Dt (K —m)a (k- n))
(4.59)

ho(l) = (Za{l} atth ( z)) (4.60)

Using the two-scale relation, the sequengesnd g, are exactly computed as
in [86].

N | —
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Appendix 4-D: Integral of the tangential angle.

We start by observing that the integral (4.43) can be expressed as

([0 iy @)
v =t ([ ) “on

wherelm (z) gives the imaginary part of andj = /—1. This can be rewritten

as the curve integral
d
etotal =Im (% _Z> ) (462)
¢ <

where(C’ is the curve describe@’ (t),' (¢)) andz = 2’ 4 iy’. Using Cauchy’s
integral formula, we obtain the value of this integral zastimes the winding
numbef of the contourC’ about the origin. Since each loopéhcorresponds to
one inC’ in the same sense, but around the origin, the winding numbéf isf
(m — n), wherem andn are the number of tima&$loops in the anticlockwise and
clockwise sense respectively.

"The winding number of a contour about a poigtis the number of times the contour passes
aroundz in the counterclockwise sense [87].
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Chapter 5

3-D shape estimation of DNA
molecules

In this chaptel, we discuss the second application of the shape estimation al-
gorithm shown in Fig. 1.4.

5.1 Introduction

Cryo-electron microscopy is an approach used to image bio-molecules such as
DNA filaments [88—90]. The molecules are suspended in a thin layer of liquid,
which is then cooled to a very low temperature. Thanks to the rapid cooling (of
the order ofl0° K/s), the resulting specimen can be considered to be a snapshot of
its thermal oscillations. As compared to other approaches such as classical elec-
tron microscopy and atomic force microscopy, where the molecules are adsorbed
onto supporting films, this method does not cause shape deformation. In this pa-
per, we address the 3-D reconstruction of the shape of a DNA molecule from its
stereo-micrographs (a typical pair of such images is shown in Fig. 5.1). This data
is useful in probing the physical properties of the filament (such as its shape, stiff-
ness, modes of oscillations, shape variation due to protein-bindings etc.), which
play important roles in various bio-molecular processes.

Since exposure to electron beams causes degradation of the specimen, one
usually restricts the number of views to two. Due to physical constraints, the
angular separation between the views is limited to a maximum of 30 degrees. The
micrographs also suffer from poor image contrast and low SNR due to the low
electron dose. All these aspects make the reconstruction problem difficult.

1Based on the article "M.Jacob, T.Blu, C.Vaillant, J.Maddocks, M.Ursémitted to IEEE
Transactions on Image Processing".
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Figure 5.1: Stereo views separated B§° of a super-coiled DNA filament
(1800 base pairs) with a pair of corresponding points marked. Courtesy
E. Larquet, Pasteur Institute.

The early approaches to this problem included manual reconstruction [91]
and a semi-automatic search algorithm called the flying cylinder [92, 93]. In the
manual scheme, the user clicks on the images to introduce pairs of corresponding
points that define the curve; this is time consuming and not necessarily reprodu-
cible. The flying cylinder algorithm detects the filaments by matching the projec-
tions (onto the image planes) of a 3-D cylindrical template with the stereo images.
Since deriving the 2-D projections of a 3-D cylinder (with arbitrary orientation)
was difficult, the authors approximated them with oriented rectangles. To reduce
the number of matchings required, they discretized the orientation space and used
a sequential search algorithm. The detected fragments were then sorted and inter-
polated to obtain a continuous curve. The performance of this algorithm is limited
by the approximations, angular discretization, and, the multi-step strategy; in par-
ticular, the interpolation of the curve is only based on the detected fragments and
is not necessarily consistent with the image data, nor the global optimum.

We address these shortcomings and propose a new algorithm that solve the 3-D
reconstruction problem in a more exact and consistent manner, using projection-
steerable templates and a 3-D active contour model. An outline of the full pro-
cedure is given in Fig. 5.2. In the active contour framework, the shape estim-
ation problem is formulated as an energy minimization. The snake energy is a
linear combination of the image energy, the internal energy and the constraint
energy terms (we discuss the details of the snake algorithm in Section 5.4). At
each iteration of the optimization algorithm, the curve model is evaluated from
its coefficients and the energy terms are computed based on the model and image
information. The curve coefficients are then updated so that the system converges
towards the energy minimum.

The image energy term, which the crucial part of the snake energy, is a meas-
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Figure 5.2: Outline of the global 3-D shape estimation algorithm.

ure of the fit of the curve model with the image data. We consider a global model
for the DNA filament, whose skeleton is a 3-D parametric Bspline curve, and has a
certain radial profile. lIdeally, we would project the global model onto the projec-
tion planes and match the projections with the images (we compute the sum of the
inner-products between the projections and the images) to obtain the fithess meas-
ure. Thanks to the linearity of the B-spline representation, the skeletons of the 2-D
projections will be 2-D B-spline curves. However, its profile will be different at
different curve points, depending of the orientation of the filament at the corres-
ponding 3-D point. Thus the evaluation of the exact projections and performing
the matching operation is computationally very expensive. Note that since we use
an iterative optimization algorithm, the projections and matching procedure have
to performed in a loop.

To reduce the computational complexity, we propose to approximate the global
3-D model locally as an elongated blob-like template. We introduce the concept
of projection-steerablity, which is inspired by the work on 2-D orientation steer-
ablity by Freeman et. al. [42,45,46]. We derive an elongated template in 3-D that
is projection-steerable, i.e., the 2-D projections of this elongated template can be
expressed as a linear combination of a few basis functions. With this framework,
the matching of the projection of such a 3-D template can be performed inexpens-
ively as a weighted sum of the inner-products between the basis functions and the
images. The weights are simple functions of the orientation of the 3-D template
and the inner-products are evaluated efficiently by separable filtering. We discuss
the projection-steerable ridge detection in detail in Section 5.3.
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We show that cubic B-spline representation is optimal for the description of
smooth 3-D curves, if described in the constant arc-length parametrization. We
also use the constant arc-length assumption to derive a simple expression for the
internal energy. For this assumption to hold, we reparametrize the initial curve
(derived from user inputs) such that the curve knots are uniformly spaced. Since
the length of the DNA molecules are known a-priori, we use an additional con-
straint term that penalizes the curve for not having the specified length.

We use conjugate gradient algorithm for snake optimization. This scheme re-
quires the efficient evaluation of the partial derivatives of the energy terms. Thanks
to the projection-steerable templates and the curve representation using finitely
supported B-spline functions, they are computed exactly and efficiently as shown
in Section 5.5.

5.2 Mathematical Preliminaries

5.2.1 Parametric representation of 3-D curve

A 3-D curve, (denoted &5) can be described in terms of an arbitrary parameter
asr(t) = (z(t),y(t), 2(t)). When the curve is closed, the function veciqt,), is
periodic.

r(t) can be represented efficiently as a linear combination of some basis func-
tions. Here, we focus on the B-spline curve representation [9,17] due to numerous
advantages discussed in Section 5.4.3. Specifically, we represent the component
functions of a 3-D curve in a uniform B-spline basis as

(t
(t
(t

wherec (k) = [c, (k) , ¢, (k) , c. (k)] is a sequence of coefficient vectors; in com-
puter graphics, these are often called the control points [15]. The basis function
£™ is the B-spline of degree [27]. If the period, M, is an integer, we have

c (k) = c(k+ M). This reduces the infinite summation to

oo

)
3 = > c(k)p"(t—k), (5.1)

k=—o00

r(t)=|vy

M-1

r(t) = Y c(k)B(t—k), (5.2)

k=0
where3} is the M - periodization of3":
Br(t)y=>_ B"(t—kM) (5.3)
k=—0oc
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Figure 5.3: 3-D curve and its 2-D projections.

Note that the special casewt= 1 (linear splines) yields a curve that is composed
of line segments connecting the control points.

We denote the orthonormal basis vectors of the volumeease,, e.). The
basis vectors of thé" projection plane ige,,, e.,), while the vector orthonormal
to the plane is denoted ly,. An arbitrary vector, can be denoted as

r = rve,t+ye,+zre, (5.4)
= i€, +yiey, + 2z e, (5.5)

The projection of the vectarto the plane is given by
r, = P,r = z,e,, + 2z €, (5.6)

whereP; are the orthogonal projection matrices. The reconstruction algorithm
requires projecting the curve model onto the image planes. Thanks to the linearity
of the representation, the 2-D curve projections are also B-spline curves. Thus,
the 2-D curve coefficients are:

ci(k) = Pic(k), (5.7)
Thus, the 2-D curve projections (we denote thentyare given by
. (t) M-1
ne = 20 ] - > e lh) e ) 5.8)
wherer; (t) = P,r (t). The projection matriX; can be thought off as the com-
position of a rotation matrix and a simple projection oper&or

1 0 0
Pi_[o ¢ 1}&- (5.9)

—_——
P
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Note thatP is the same for alP;, while the projection geometry is specified by
the unitary matriXR,;; The rotation matrix performs the coordinate transformation
from (z,y, 2) to (z;, yi, 2:).

For the projection geometry shown in Fig. 5&,(= —a, oy = «a), the
rotation matrices are

[ cosae —sina 0 ]

R, = sina cosa 0 (5.10)
| 0 0 L]
[ cosa  sina 0]

Ry, = —sina cosa 0 (5.112)
0 0 L]

respectively.

5.2.2 Orthogonal volume projection

We now model the measurement process by a line integral and obtain the expres-
sions for the projection images, given the 3-D volume data. We denote the volume
by f (r), wherer = (z,y, z). The projected imageg = P;f are represented in

the 2-D coordinate system wheRe denote the orthogonal volume projection op-
erator. Thus,

fiw) = [ @nee,)dr (5.12)

o0

The above equation is easier to understand in the Fourier domain. The Fourier
transform off is given by

f(w) = /_ Z /_ z /_ Z f(x) &P dadydsz, (5.13)

wherew = (w,,wy,w,). The Fourier transform of the function in the coordinate
system(z;, y:, ;) can be shown to bé (R’ w). The Fourier transform of the pro-
jection can be obtained by setting, = 0 (or by substitutingy = P'w;; w; =
(wa,,w.,)) in f (R! w) . Thus, the two-variable Fourier transform of the image is
given by

fi (wz) = f (REthi)
— f(Plw,) (5.14)
This expression can also be obtained using the Fourier-slice theorem [94].
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5.3 Local filament detection

We have seen that the direct use of a global DNA model in the optimization al-
gorithm can lead to a high computational complexity. Hence, we approximate
the global model locally as an elongated blob. In this section, we address the
detection of elongated blob-like structures in 3-D from their 2-D orthogonal pro-
jections (see Fig. 5.1). We addressed a similar problem in [95], where we derived
the optimal rotation-steerable filters for 2-D feature detection. This method gave
promising results for the detection of 2-D line-like structures. In this section, we
generalize the concept of rotation steerablity to projection-steerablity for 3-D fil-
aments detection. This approach is well-suited for both the local scheme (where
the detection is performed independently at each point) as well as the global ap-
proach (where the optimal orientation is specified by a model whose parameters
are estimated).

5.3.1 Projection based feature detection

Suppose our task is to check for the presence of an elongated 3-D blob—denoted
by f. (r);r € R®>—with an unknown orientation, at a particular positionin a
3-D volumef. The volume is known only through its orthogonal 2-D projections
fi = Pif. We formulate the detection procedure as a matched filtering; we con-
sider a 3-D detector and match its orthogonal projections onto the image planes
with the micrographs.

We choose the 3-D template to bbdr) = f.(—r) and denote its rotated
versions by:, (r) = h (R, r), whereR,, is a 3-D rotation matrix. We use the sum
of the inner-products between the 2-D template projections and the micrographs
as the performance criterion:

i

Cy(re) = (fz * Py (hy) ) (Te,i) (5.15)

i

I
o

whereP;; i = 0...N — 1 are the orthogonal projection operafoedr,; =

P, r.. Note that this criterion is a function of the orientation vector If we
perform the filament detection independently at each point, the optimal orientation
vector and the likeliness measure are given by

vi(r) = arg‘m‘i}l((C’v (r)) (5.16)
" (r) = Cy(r), (5.17)

2In our caseN = 2, but the scheme is applicable for the general case as well.
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For an arbitrary 3-D template, the computation of the projecti®ng., ) are
expensive. To obtain the optimal orientation by numerical optimization, the tem-
plate projections and their inner-products with the micrographs have to computed
for each iteration; a direct implementation of the algorithm is not very practical,
unless simplifying assumptions are made.

5.3.2 Projection-steerable ridge detection

To reduce the complexity in performing the projection matched filter detection,
we use an approach similar to rotation steerablity [42, 45, 46]. We would like to
have a good 3-D filament detector whose projections (for any spatial orientation)
are contained in a space spanned by a few basis functions. For such a detector,
the evaluation of the performance criterion for each curve point simplifies to a
weighted sum of the inner-products of the basis functions with the micrographs.
The inner-products themselves can be efficiently pre-computed using 2-D filter-
ing.
We now consider the family

‘/SD = Span {a:m: g3 (I‘; U) 7ayy gs (I', J) 78zz gs (I', U) 78961/ gs (I', U) )
8a:z gs (I‘; U) aayz g3 (I‘; U)} ) (518)

wheregp (r;0) = —15 exp (—'2‘”—‘2) is aD-dimensonal Gaussian ang, f (r) =

2
(2m0) 2 o
aﬁ;y (f (r)). We now show that any 3-D filter in this family is ideally suited for
projection matched filter detection.

Proposition 3 The space Vs, is closed with respect to 3-D rotations.

Proof The Fourier transforms of the basis functions are

]:

Ors g3 (1:0) & —(2m)? Wi g (wi07Y)
Oyy g3 (T;0) L (27r)% ws g3 (w;a‘l)
0.. g3 (r;0) L _ (27r)% w? gs (w; 0_1)
Ouy g3 (T;0) L - (27?)g Waly g3 (w; 0_1)
Os: 93 (r;0) & —(21)2 ww, g5 (wi07Y)
Oy g3 (r;0) L (27‘()% WyWy g3 (w; o 1)

wherew = [wx,wy,wz]t. Since the basis functions are the products of second
degree monomials with a Gaussian in the Fourier domain, an arbitrary function in
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Vap is a second degree polynomial multiplied by a Gaussian. It can be written in
a compact form as

h(w) = (2#)% (W'Aw)gs (w;o™) (5.19)

Here, A is a symmetric 3x3 coefficient matrix that characterizes the shape of
The Fourier transform of R-rotated versiohof 4 is given by

~ 3 —
h(Rw) = (21)2 | w'RIARwW | g3 (w;07 '), (5.20)

Ar

whereR is the 3x3 rotation matrix. Note that in the above step, we have used the
isotropy of the functiorg. Since the new filtek (Rr) has the same form as (5.19)
for any rotation matrixR, it is still in Vzp. O

Proposition 4 The orthogonal projection P; of the space V3, onto a plane is the
function space Vap ;:

Vop,i = span {0y,z, 92 (vi;0), 0,2, G2 (i30) , Onyzy 92 (vi;0) ). (5.21)

Proof The Fourier transform of the projection of an arbitrary functiofVig is
obtained by substituting (5.19) in (5.14):

hi (wi) = V21 [ w!P;APLw; | 27 g3 (Plwi; oY), (5.22)
BV NV
i g2(wiso—1)

whereg, is a 2-D Gaussian. Since the 2x2 matB¥ is symmetricﬁi (w;) Is
second degree polynomial in;. This implies thath; is a linear combination of
the functions),, g2 (ri, o), Ouy g2 (r;, 0) @NAI,, g2 (r;; 0). ThusP; (Vsp) C Vap ;.
We also have the relatiom; (0., g3) = Ou,x, 92, Pi (0,2 93) = 0., go and
P; (022 93) = O, g2. They imply thatVop; C P; (Vap). Thus we havéip; =
P; (Vap)
O

We have seen that;p is closed under 3-D rotations. Hence, if we choose a
3-D detector in this space, its rotated versions are guaranteed to be in the same
space. We have also seen t®atVsp) = Vap 5, which implies that the projection
of any rotated version of the detector islif, ;. Moreover, since the functions in

3we use the property that the rotation of the filter is equivalent to rotating its Fourier transform
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Vo are band-pass, the detection scheme will not be sensitive to smooth intensity
variations that are common with micrographs

In this paper, we have restricted ourselves to second order detectors for sim-
plicity. However the concept of projection-steerablity is more general; any 3-D
function that can be represented as a linear combination of the differentials (up to
a certain order) of an isotropic function is projection-steerable.

5.3.3 3-Dridge detection

We have seen thag is ideally suited for projection-steerable matching. Hence,
we would like to choose the most elongated blob-like structure in this space as our
local 3-D template. We derive the optimally elongated local template in Appendix
5-Aas

h (I‘) = i <ayy g3 (I', U) + 8zz g3 (I‘, J) - § 8:(:30 g3 (I‘, J)) (523)

20
See 3-D plots of this detector in Fig. 5.4 and Fig. 5.5.
Neglecting the normalization constant, we rewrite the expression for the op-
timal filter (5.23) oriented along the unit vectoras

)
hy (r) = \(ﬁm + Oyy + 0..) g3 (1; 0)1—5

Laplaciaﬂrofg (r;o0)

Ovy g3 (r;0), (5.24)

whered,, f (r) = aa—;f (r +vv). Note that the Fourier transform of the filter
is given by (5.19) withA = I3 — g vvt, wherel; is the 3x3 identity matrix.

By substituting (5.24) in (5.22) and by performing the manipulations shown in
Appendix 5-B, we get

Pi (hy (r)) = V' [Rf G; (ri;0) Ri] v, (5.25)
where
(azz‘zi B %8%%) 0 - (% a’mm)
Gi (ri; U) = 0 (81111 + 827741) 0 g2 (ri; U)
(5.26)

andR; is the rotation matrix given by (5.9) and (5.11).
Note that, wherR,;v = (1,0,0) (horizontal filament parallel to the image
plane), we geP; (hy) = gs,-, (ri;0) — 2ga.s, (r:;0)—an elongated detector. On

4In traditional schemes, these variations are removed by a high-pass preprocessing filter [92].
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the other hand, iR;v = (0, 1,0) (i.e., the filament is orthogonal to the image
plane so that its projection is an isotropic blob rather than a filament), we get
Pi (hy) = Gu,a; (ri;0) + g..., (ri; 0)—the isotropic Laplacian detector. In other
words, we use different 2-D detectors on the image planes, depending on the
spatial orientation of the 3-D template. We give some examples with the 3-D
template and their projections in Fig. 5.4 and Fig. 5.5.

Using (5.25), we simplify (5.15) to

N—-1
Cy (r)=v! [Z R! H, (r;) Ri] v (5.27)
=0
H;;(I‘)
where
Hy (r;) = fi x Gy (ri; 0) (5.28)

Thus, the evaluation of likeliness of a filament at a specified 3-D oriented along
v is given by (5.27); the evaluation &f ;, (r;) requires the evaluation of the inner-
products with the micrographs and the 5 non-zero entries of (5.26). Since these
entries are linear combinations of the three functions g» (ri; o) , 0s,., 92 (ri;0)
ando,,., g» (r;;0), we need to only evaluate the inner-products with them; the
terms of (5.28) can be derived as linear combinations of these inner-products. The
inner-products themselves can be obtained efficiently as by performing separable
filtering of the micrographs with.,, .., g (ri;0) , 0s,, g2 (r;; 0) @ndo,, ., g (ri; o).

5.4 Constrained reconstruction using the 3-D snake
model

In the previous section, we have addressed the local detection of elongated 3-D
blobs. In this section, we combine the local likeliness measures into the global

model and estimate its parameters. Since the skeleton of the DNA molecule is
represented by a curve, the well established framework of active contour models
[8,63] is very appropriate for this purpose.

5.4.1 Active contour algorithm: Formulation

Traditionally, snakes or active contour models were introduced for the segmenta-
tion of closed objects in images. The popularity of these schemes may be attrib-
uted to their ability to aid the segmentation process with a-priori knowledge and

user interaction. Snakes, as introduced in the seminal work of Kass et. al., are
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SANCEPR-

(a) front view (b) top view (c) left (d) right

Figure 5.4: (a) and (b) Isosurface plots of the front (viewed from the
z-z plane) and top (viewed from they plane) views of a 3-D detector
oriented aB0° to thex- axis and30° to thex-y plane(d = 30°, ¢ = 30°).

(c) and (d) Projections of the 3-D filter onto the image planes oriented at
—15° and—15° to they axis

YN

(a) front view (b) top view (c) left (d) right

Figure 5.5: (a) and (b) Isosurface plots of the front (viewed from
the z-z plane) and top (viewed from the-y plane) views of a 3-D
detector oriented at-45° to the z- axis and—60° to the z-y plane
(0 = —45°,¢ = —60°). (c) and (d) Projections of the 3-D filter onto the
image planes oriented atl5° and—15° to they axis
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smooth curve models that evolve from an initial guess towards some boundary in
the image such that some energy functional is minimized [8, 63].

These models were extended to 3-D for the estimation of coronary vessel
centerlines from X-ray angiographic projections [96,97]. This approach considers
the evolution of a 3-D curve so that its 2-D projections onto the respective planes
match the images. The matching is performed using distance maps or gradient
vector flow fields. We have also used a similar approach previously for the estim-
ation of DNA shape [51].

Here, we propose a refined approach, which mainly differs in the matching
procedure and the curve representation used. Our criterion is obtained by pro-
jecting the optimal templates, oriented along the curve tangents, onto the image
planes and matching them with the micrographs. Note that the shapes of the tem-
plate projections depend on the 3-D curve tangent directions. This suggests that
this scheme should give better results than the previous approaches where the 2-D
curve projections are matched.

Before going into the details of the algorithm, we briefly review the funda-
mentals of the snake algorithm. Since the final shape is determined by the min-
imum of the snake energy, its choice deserves proper attention. Similar to con-
ventional snakes, we choose the energy functional as a linear combination of three
separate terms.

1. The image energy, which is responsible for guiding the snake towards the
filament.

2. The internal energy, which ensures that the extracted shape of the filament
is smooth.

3. The constraint energy, which enables the user to enforce extra constraints
such as the curve length.

The total energy of the snake is written as
Esnake <®) = Eimage (6) + Eint <@> + Econst <®> 9 (529)

where® is the collection of curve coefficien® = {c(k); k=0,... M — 1}.
The optimal curve parameters are obtained as

© = arg m(;n Esnake (©) (5.30)

We describe the different energy terms in detail in the following subsections.
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| Energy Type || Expression |

Image Energy Eimage = — $p dr' Hyp (r) dr
(ref Eq. (5.32))
Internal Energy Epn = k%fOM I ()| dt

(ref Eq. (5.34))

2
Length Constraint Eeonst < fOM It (¢)| dt — Length)

(ref EQ. (5.38))
Point Constraint | Eeonss = Y 1y mingepoar |1 () — re,
(ref EQ. (5.39))

| 2

Table 5.1: Different energy terms used in the snake optimization

5.4.2 Image Energy

The image energy term is a measure of the fit of the model to the image data.
Consider a point (¢) on the planar curvé; the tangent vector of the curverat),

given bydr (t) = (dz (t),dy(t),dz(t)), defines the direction of the elongated
blob at that point. We define the likeliness of a blob at the curve pofjnt,
oriented alongir (t), as

Egoodness (I‘) =dr (t)t H3D (I‘) dr (t) : (531)

Recall from subsection 5.3.2 that this quantity is equivalent to projecting the op-
timal 3-D detector, oriented alongy, onto the projection planes and then com-
puting the sum of the square errors between the template projections and the mi-
crographs. Note that ifr = v* as in (5.16), we geFyodness (r) = 7* (r) which
is the maximum possible value.

We obtain the likeliness of the entire curve by integrating the goodness meas-
ures along the curve.

Eimage () = — /0 (dr (t)" Hyp (r) dr (1)) dt, (5.32)

The negative sign is introduced since the curve evolution is posed as an energy
minimization problem. By using (5.30) to obtain the optimal coefficients, we are
jointly estimating the optimal orientations and magnitudes at the voxels through
which the curve passes. Note that the optimal orientation at each curve point is
dependent on the optimal coefficients indirectly through the curve model (i.e. the
tangent to the curve). Since the number of curve coefficients is typically much less
than the number of voxels through which the curve passes, this scheme is more ro-
bust than a local approach. Note that (5.32) is independent of the curve parameter
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t. Evolving the curve using such a measure will not cause the parametrization to
change during the optimization process, thus preserving the curve sfiffness

5.4.3 Internal Energy

The internal energy term is responsible for ensuring the smoothness of the recon-
structed shape. It is essentially a regularization term that penalizes non-smooth
shapes, thus making the reconstruction problem better conditioned. The smooth-
ness of the curve can be quantified by its total curvature magnitude; a stiff curve
will have a low value of mean curvature magnitude. The curvature of the curve at
a pointr (¢) is defined as

2

Ut xx (1))© (5.33)

) i (OF

where

is the derivative vector and

' (t) = (2" (1), y" (1), 2" (1))

is the vector of second differentials. Using the expression of the average curvature
magnitudeffOM |k (r)|* dt—directly as the internal energy leads to complicated
expressions for the partial derivatives. Using standard results from differential
geometry [98], we show in Appendix 5-C that this term can be simplified to

M 2 1 M 1" 2
/ |k (r)|"dt = 5 " (¢)|” dt (5.34)
0 0
provided
' () =k, (5.35)

that is, when the curve is parametrized by its curvilinear abscissa. Here

2

1 M
k=— / v’ (t)| dt (5.36)
M 0
———
Length

is the total length per unit value of the parameter.

SMany snake energies are parameter dependent, causing the curve knots to accumulate at points
of high edge strength.
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Since the uniform B-spline curve has its knots at the integer parameter val-
ues, (5.35) requires that the knots be uniformly spaced on the curve. Thus the
smoothness term (5.34) is inversely proportional to the fourth power of the dis-
tance between the knots; the curve will be smooth if its knots are well separated.
We will see in Section 5.5.2 that the partial derivatives of the r.h.s of (5.34) are
much easier to compute than those of its .h.s. To ensure that (5.35) hold, we res-
ample the initial curve (obtained by user initialization) such that we have constant
arc-length.

Choice of the basis function

Using the well-known variational properties of B-splines [28], we can show that
the minimization ofg, Ir”|? subject to interpolation constraints give a cubic spline
curve. Thus, the cubic B-spline representation appears to be the natural choice
for parametric curves, for it gives minimum curvature curves when the knots are
uniformly spaced. The use of spline curves also brings in additional gains due
to the existence of efficient algorithms [27], the local control of the contour due
to the finite support of the B-spline basis function, and their good approximation
properties [26].

Internal energy term

We reparametrize the initial curve (derived from the interpolation of the user input
points) so that the knot points are uniformly spaced. Thanks to the parameter
independent image energy term, we can safely assume that the curve will remain
approximately in the constant arc-length parametrization. Hence, we choose the
internal energy term as

1 M

Ein = 75

" (¢)| dt. (5.37)

Recall from (5.34) that using this term as the internal energy is equivalent to min-
imizing the average square magnitude of the curvature.

5.4.4 External constraint energy.

As mentioned before, the external constraint energy is a means for the user to
enforce extra constraints on the reconstruction. We use two constraint terms in
our implementation.
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Length constraint

The length of the DNA filaments are known a-priori; this information can be im-
posed on the reconstruction process to make it more robust. We introduce this
constraint into the framework by penalizing the term

2

M
By — ( / v’ (t)\dt—Length) , (5.38)
0

whereLength is the expected length of the molecule.

Point constraint

We use a point constraint to enable the user to aid the reconstruction process; he
can specify a few 3-D points that should lie on the final shape. This constraint is
basically the sum of the distances between these points and the closest points on
the curve. The constraint energy is given by

Nc.—1
— : 2
Econst - P tél[%)l,gﬂ |I' (t) rc,z‘ ) (539)
wherer;;i =0, ..., N, — 1 are the constraints. This approach can be thought off

as introducing virtual springs that pull the curve towards the desired points. One
end of the spring is fixed to the constraint point, while the other end slides on the
curve.

5.5 Curve evolution: the optimization algorithm

As mentioned before, the snake algorithm evolves the curve from its initial po-
sition to the final shape using energy minimization. Since the individual energy
terms are non-linear functions of the curve coefficients, we require a numerical
optimization algorithm. We use the conjugate gradient algorithm to refine the
initial guess derived from the user inputs. The user specifies pairs of correspond-
ing points on the stereo images that are then interpolated to derive the initial 3-D
curve. This curve is later resampled to a specified number of knot points (since the
approximation ability is decided by the number of knot points) such that (5.35) is
satisfied. A summary of the whole algorithm is given in Fig 5.6.

The optimization scheme requires the evaluation of the partial derivatives of
the snake energy. Since these quantities have to be repeatedly evaluated in the
iteration loop, their computational complexity will determine the time taken by the
snake algorithm. In this section, we derive efficient expressions for the derivatives
of the individual energy terms.

95
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Figure 5.6: Block diagram of the snake optimization algorithm.

5.5.1 Partial derivatives of the image energy

Differentiating (5.32) with respect to the coefficient(k) and applying the chain
rule, we get

By (t = k)

0 M ¢
oy B = =2 /0 dr (£)! Hap, (x (1)) : it
~2 [ (0B (e (1) (057 (1= ),
’ (5.40)

whereHj;p . is a 3x3 matrix whose entries are the partial derivatives of the cor-
responding entries dHsp with respect tor. We now focus on obtaining the
expression oH;p
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Along x Alongy Along z Total Error
Manual Tracing 1.923 £0.9747 1.9097 + 0.3785 1.71 +£0.7414 3.279 £ 1.076
Snake Output 1.4024 + 0.6654 | 1.3998 £ 0.3429 | 1.2322 4 0.5896 2.39 £0.795
Performance Improvement 37.08% 36.42% 38.7% 37.2%

Table 5.2: Comparison with the reference curve for real micrographs:
average value of the absolute error (in pixels)

0
HgD7X (I‘) = Z Rf (%Hfz (I'Z)) Rz
=0
N—-1
0 ox 0 0z;
_ t ; d i L R, 541
Hfi’xl Hfi7zl
N—-1
Ox; 0z
= (REHL @ (T3) Rz) - + (Rini7zi (rs) RZ) ©
ox ox
i=0 =~ <~
P,(0,0) P;(1,0)
(5.42)

Here, the matriceH, ,, andHy, ., are

I x (%Gz (riQU))
I x (%Gz (ri;U))

Plugging (5.42) into the integrd] in (5.43) , we get

Hfi@i (r1>

Hfi7zi (I‘Z)

Jo. (drt ()RS Ly, (r (1)) Radr (£) G5 (¢ = k)
fo (drt t Ri Hfivzi (ri (t))RldI‘(

> [P (0,0). P (1,0) [

~
~—
XK
3
—~
~
|
oy
~—
~—
~
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Thus, we get

®) Eimage = —2/0 (dr (t)t Hp (r (1)) ﬁg’ (t — k;)) dt

N—-1
-2 P!
1=0

Jo! (dr' () RE Hy e, (ri (8) Rude (1) 55 (¢ = k) dt
Joo (dr' ()R Hy, ., (v (1)) Radr (t) 3 (t — k)) dt
(5.43)

The evaluation of the matricad,, ,, andHy, ,, necessitates the computation of
the quantities f; * gu.u.e.)s (fi * Guiwiys)s (fi % Gaiyeys) @NA(fi % gyuyy) fOr each
micrograph. For the first term in (5.43), we require the malkfix, which in-turn
needs the quantitiesf; * g.,z.), (fi * gz,y:) aNd (fi * g,.,,). Note that all these
guantities involve the convolution of with the second and third order partial
derivatives of the 2-D Gaussian; they can be pre-computed efficiently using separ-
able linear filtering. We discretize the integrals for their evaluation. Thanks to the
steerable implementation, the criterion and its partial derivatives can be computed
exactly and efficiently.

|

Along x Along y ‘ Along z Total Error ‘
Manual Tracing 2.336 +1.103 3.068 + 0.81 2.116 = 0.8799 | 4.481 + 1.385
Snake Output 1.811+£0.943 | 2.480 %+ 0.848 1.454 £ 0.830 3.48 £1.315
Performance Improvemenﬁ 28.9% 23.7% 45.52% 28.7%

Table 5.3: Comparisons between trials: Repeatability (in pixels)

5.5.2 Partial derivatives of the internal energy

The internal energy term can be re-written as

/OM r” (t)|2 dt = /OM (\x” (t)|2 + |y (t)|2 T2 (t)‘Q) di
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We now consider the terrfbM |2 (t)|? dt and simplify it as follows:

M M-1M-1 M
/WWMM:ZXﬁW%Q/@memqm
0 k=0 1=0 0
M-1 oo 0o
- Y Y awen) [ gre-ng - ya
=0 k=—o00 N .,

a(k-1)
(5.45)

In the last step, we have used the periodicitﬁp‘f (t — 1) to extend the integral
from —oo to oo and have transferred the periodicity @f” (t — k) to the coeffi-
cient sequence,. Thanks to the curve representation using cubic B-spline func-
tions, the sequencg(k) is finitely supported and can be exactly computed. Thus,
we obtain the partial derivatives of the internal energy term as

0

Dex (k) o | ¢ (k)
) Euw = > | e k) |ak=1).
—ch(k) k=—00 C, (k’)

The above equation amounts to a simple filtering of the coefficient sequence by
the filterq (n), assuming periodic boundary conditions.

5.5.3 Partial derivatives of the constraint energy
Length constraint

Differentiating (5.38) with respect to, (k):

5 e Mot (8) B ¢ — )
WECOIM = 2 (/0 I’ (t)| dt — Length)J/O \r’p(t)| dt

VvV
Error

ey [T E R B
- 2F /Oo EI] dt (5.46)

Here,Error is the difference between the current length of the curve and the ex-
pected one; the partial derivatives of the constraint energy is zero when the current
length is the same as the expected one. The patrtial derivq}l%ﬁconst and

Cy
E.onst is computed in a similar fashion.
volving the curve with this term alone will cause its length to decrease or
increase, (depending on the signkafor) until Error = 0. Note that the integral
(5.46) is limited over the support of the spline function. We discretize the integral
for its evaluation.
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Figure 5.7: Reconstructed filaments for the micrograph pair in Fig. 5.1 at
different viewing angles around the vertical axis. (a) and (b) correspond
to the left and the right micrographs in Fig. 5.1

Point constraint

Computing the partial derivatives of (5.39) in all generality would give a very
complicated expression. To make the problem more tractable and to reduce its
computational complexity, we make the assumption that the optimal constraint
locations, {;; i = 0... N, — 1), are known. In this case, (5.39) gets simplified to

Ne—1
Ee= Y |r(t;) — el (5.47)
=0

and its partial derivatives are given by

OE./0cpy | R T x (t;) .
oo ] - 2 L ]-a)ra-0 e
Using the finite support of the scaling functions, we limit the sum to the relevant
indices (we need to evaluate it only fi| 0 < (¢; — k) < N.}). We resort to a
two-step strategy, where the snake is evolved using the above formulas for the
derivatives, for a given;. The optimal parametets are then re-estimated within

the loop as:

ti:argten[éiﬂ} lr(t) —reil; i=0...N.—1 (5.49)
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(c) —15° (d) 15° (€) 60° (f) 90°

Figure 5.8: Reconstructed filaments at different viewing angles around
the vertical axis. (c) and (d) correspond to the left and the right micro-
graphs in (a) and (b).

5.6 Experiments

In this section, we tested the performance of the algorithm on real data. Since the
ground truth was not available, a reference curve was generated by magnifying the
images 4 times and having the user carefully specifying a 3-D curve (by clicking
on the stereo images).

To compare two 3-D curves, andC,, we choose the error metric
1/ 1 [M 1M
D(Co,Cy) == | — D (r,(t),Cp)dt + — D t),C,)dt ),
=3 (37 [ w5 [T Dmo.c)

(5.50)

whereC, = r,(t); t € [0,M,] andC, = 1, (t); t € [0,M,]. The dis-
tance between a point, (¢) and a curveC, (denoted in the above equation as
D (r, (t),Cp)) is defined as the distance betweagr{t) and the closest point on
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Cb:
D (r, (t),C) = Lain, Ira (t) — 10 (1) | (5.51)
We evaluate the distance metric by discretizing both curves.

We compared the performance of the snake algorithm with the manual tra-
cing®. In our study, we used 5 stereo pairs and 2 independent users. For each
stereo-pair, we performed 5 manual tracings each. These tracings were used as
the initialization for the snake algorithm. These tracings and the snake output
were compared with the corresponding reference curves to obtain the absolute er-
rors. The average errors in the manual tracings and the snake-fitted curves are
given in Table 5.5.1.

To study the inter-user variability, we compared the manual tracing on a pair-
wise basis (there are 45 possible comparisons for each stereo pair). The same
comparison was performed for the snake outputs. The experiment is performed
only with real data since the ground truth is not required in this case. The results
are shown in Table. 5.5.1.

Some examples of the 3-D reconstructions using our algorithm are shown in
Fig. 5.7—Fig. 5.9. This illustrate the wide range of DNA configurations that may
occur in nature as well as the difficulty of the problem.

5.7 Synopsis

We have presented a carefully engineered solution for the 3-D shape estimation
of DNA molecules from stereo cryo-electron micrographs. We used a global 3-D
model for the DNA filament and optimized its parameters such that its 2-D ortho-
gonal projections matched with the micrographs. Since a direct implementation
of this algorithm is computationally intensive, we approximated the model loc-
ally as an elongated blob. We derived an efficient algorithm to perform the local
detection of such blobs.

To solve the local detection problem, we introduced the concept of projection-
steerablity. Specifically, we derived a projection-steerable blob template whose
2-D projections can be represented as a linear combination of few basis functions.
We derive an efficient algorithm for obtaining the likeliness of such a blob with a
specific orientation at a certain point in 3-D space.

We used a 3-D B-spline curve model for the representation of the skeleton of
the global DNA model. We show that the B-spline representation is optimal for
the representation of smooth 3-D curves, if described in the constant arc-length
parameterization. We obtained simple expression for the an internal energy term

SUnfortunately, the implementation of the flying cylinder algorithm was not available to us for
comparison.
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Figure 5.9: Reconstructed filaments at different viewing angles around
the vertical axis. (c) and (d) correspond to the left and the right micro-
graphs in (a) and (b).

that penalizes the average curvature magnitude by assuming a constant arc-length
parametrization.

We used a conjugate gradients algorithm for the optimization of the curve
parameters. Thanks to the projection-steerable blob detection algorithm and curve
representation using compactly supported B-spline functions, all the directional
derivatives of the snake energies are computed exactly and efficiently.

Appendix 5-A:Design of the 3-D projection-steerable
elongated blob

We now derive a 3-D detector ivip that is good for the detection of a filament
with a specific orientation (say along theaxis). Since the template is rotation-
steerable by construction, we can steer it shape to any orientation exactly. An
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arbitrary function inlsp is given by
h = ag Orz g3 + a1 Oyy g3 + a2 0. g3 + a3 Opy g3 + a4 Opz g3 + a5 0y g3 (5.52)

Since a 1-D ridge oriented along thexis is an even function along the axes, the
termsa,, gs, 0. g3 andd,. gs (they are odd functions) will not contribute to the
ridge signal. Hence, we set, a4 andas to zero.

We like to have a detector that is elongated alongitlagis and narrow along
they and thez axis. The elongation along the axes can be measured by the mag-
nitude of the second derivatives/oat the origin. For the detector to be maximally
elongated along the axis, we seb,..h| o to zero:

1
8mh (I‘) |r:(0,070) = F (3@0 + aq + CLQ) = O (553)

For the filter to be narrow alongand thez axes, we have to maximize the quant-
ities

Ayyh (r) [r=000) = (a0 + 3a1 + as) (5.54)
022h (r) lr=000) = (a0 + a1 + 3az) (5.55)

We maximized,, h|o.0,0+0:.h0,0,0 Subjectto (5.53) and the unit energy constraint:
|h () ||* = 3a3 + 3a? + 3a3 + 2apa; + 2apas + 2a1a; = 1 (5.56)

We have removed the constants in all the above equations so as to simplify the
formulas. The constants will not affect the shape of the detector. We solve this
constrained optimization problem using Lagrange’s multipliers by choosing the

criterion as

N = (2a0+4a;+4a) + A (3ag +ar + az) +
A2 (3ag + 3af + 3a3 + 2agar + 2agas + 2aras — 1) (5.57)

Setting the derivatives of with respect taiy, a; anda, to zero, we get:

6 2 2 ao 1 243\
2 6 2 ap | =— | 44\ (5.58)
2 2 6 ay 2 44N

Solving this system of equations, we get

Qo 1 >\1
a | = — (5.59)
Q9 2/\2 1
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Setting the above solution into the constraint (5.53), we\get —%. Again by
(5.56), we getr, = \/g Thus the expression for the detector is given by

3

h (I‘) = % (ayy g3 (I’, U) + azz g3 (I‘, U) - ; aa:x g3 (I‘, U)) (560)

Appendix 5-B:Projection of the optimal 3-D detector

The expression of the optimal filament detector, oriented along alpigygiven
by
5)
hy (r) = Yao (r;0) + gyy (r;0) + g2 (1) 03 9w (r;o). (5.61)
Laplacian ofg (r)

Note that in this cas& = I3 — 2 vv’, wherel; is the 3x3 identity matrix.

Now, using (5.22), we obtain the correspondiBBgmatrix as

B; = PP, 5 (Pv) (P;v)', (5.62)

(3

which implies that the Fourier transform of the 2-D projection of the template is
given by

i) == (lonl? = 3 @) g (@i ™). (669

Sincel|vi||* + v, = ||v]|* = 1, we rewrite this expression as

2 2
2 i 2 2 t | @ +ws 0
i) = = (ot vt | 55 G |
o t wgzc Wa, W 1
- §Vi [ wxlw% wi vilg (wi,U )
2 2,,2 5
_ 2.2 t W, — W, W W, -1
= (o [0 i ot



which is then modified to

Riv | g(wiio™),

}AZZ‘ (wz) = — (VtRi

—%w%w% 0 w,——%w

(5.66)
whereR,; is the rotation matrix given by (5.9) and (5.11). Finally, computing the
inverse Fourier transform, we get

Pi (hv (I‘)) = Vt RZG(I'Z,O') ];{,Z'V7 (567)
where
G (ri; U) = 0 (aﬂﬁzﬂﬁz + aZ’LZL) 0 gs (ri; U)
- (gaxizi) 0 (azz'zz' - %a’rzxz)
(5.68)

Appendix 5-C: Simplification of the curvature term
in the internal energy

The square of the curvature of the curve at a poift) is expressed in the vector
form as

- (5.69)

Assuming the parametero be the curvilinear abscissa, we hawvgt)| = ¢, Vt.
Making use of the vector identity.(b x c¢) = c.(a x b), the numerator of (5.69)
iS rewritten as

(rl X r/l) . (r/ % r//) — r// . (r/ X r// % r//)

— I‘” . (r//(r/ . I'/) . I"(I‘/ . r//))
— |r//|2|r/|2 _ | r// i I', |27

d(r'?)=0

where we have used the identityc b x ¢ = (a-c)b — (b-c)a. So the expression

for the curvature therefore simplifies to
B |I‘ |I‘N2’

2
KO = o =

12 ’

(5.70)
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Chapter 6

Sampling of Periodic Signals: A
Quantitative Error Analysis

We introduced a new scheme for shape extraction and processing in Chapter 1.
Since a contour model is central to our algorithm (c.f. Fig. 1.4) the optimality of
this model is crucial to the whole algorithm.

In biomedical imaging, it is common to have segmentation problems where
we have a-priori knowledge of the shape. A typical scenario is where the average
shape is known. We can use this information to tune the contour model to the
shape. Specifically, we deal with the the choice of the number of knots and basis
functions. To this end, we perform a theoretical analysis of approximation error
in parametric curve representation and derive accurate performance bounds in this
chaptet.

6.1 Introduction

Classical sampling theory deals with the problem of reconstructing or approximat-
ing a signak(¢) from a set of uniform samples or measurements. In its generalized
version, the reconstructed approximation [24] is

on(t) = i cro (% _ k:) , 6.1)

k=—o00

where the underlying basis functions are rescaled translates of the gerferating
function ¢; h is the sampling step. The generator can be selected so as to yield

1Based on the article "M.Jacob, T.Blu, M.Uns&EE Transactions on Signal Processing, vol.
50, pp. 1153-1159, May 2002".

2When the function satisfies a two-scale relation [22], it is called a scaling function. (e.g.,
splines, Daubechies functions or sinc)
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bandlimited (e.g.,» = sinc), spline, or wavelet representations of signals. The
expansion coefficients, are either determined from the uniform samples of the
input signals(kh) (interpolation or quasi-interpolation) or from a sequence of
inner products with a suitable sequence of analysis functions [24]. This theory
is well developed for the case in which the input signal i€#(R), which also
implies that it is defined over the whole real line. The approximation quality
depends on the sampling stépthe type of algorithm used (e.g., interpolation
vs. projection), and most importantly, on the choice of the generating fungtion
This can be quantified rather precisely, thanks to the availability of sharp mean
square error estimates in tthg (R) setting [26,99]. Bounds are also available for
the L., approximation error (worst case scenario) [100].

In this chapter, we are interested in the case where the input signak
periodic, which is an assumption that is commonly made in practice. One ex-
ample, where the periodic representation is especially relevant, is the parametric
representation of closed curves in terms of splines [15,17,37,38] or Fourier basis
functions [101]. Assuming the periddto be an integer multiple of the sampling
step " = Nh)3, it is straightforward to adapt most of thg techniques to the
periodic case by simply considering periodized basis functions and by redefining
the inner product accordingly [34] (see section 6.2). However, the error analysis
for signals inLs (R) is not directly applicable because the square modulus of the
Fourier transform is not defined for periodic signals.

The quantitative error analysis of periodic signals is the main focus of this
chapter. In particular, we will derive a general predictive error formula that de-
pends on the Fourier coefficientst). Interestingly, the formula bears a strong
resemblance to the error expression of signalsJifiR). However, the recipe is
different although the ingredients are more or less the same as in [26]; the average
least squares error is obtained as a discrete sum of the Fourier series coefficients
as opposed to a continuous integral in [26]. We also study the behavior of the
approximation as the sampling step goes to zero.

6.2 Preliminaries

6.2.1 Notations

We denote the Fourier transform of a continuous sigfiglas

S(w) = /_ " s(t)eitdt 6.2)

[e.9]

3If we choosel’ = Nh, the resulting representation is assured tdbgeriodic. Otherwise,
this property is not satisfied in general.
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6.2.2 Sampling of Periodic Signals

The general formula for determining the expansion coefficients in (6.1) is

o= [ s©¢ (% —k) a>. (6.3)

o0

where is an appropriate analysis function. The usual setting for this formula
is s € Ly (R) (finite energy signals). In particular, one can show that ¢,
wheng is bounded and whenhas at least > % derivatives in the., sense [26].
However (6.3) also works for more general cases. For instangg) it bounded,
then thec,’s will be bounded as well, provided thatis a distributiort of order0.

We assume that(t) is T-periodic and thal’ = Nh, whereN is a positive in-
teger. Under those conditions, the sequenaefined by (6.3) is periodic as well,
with period N. Furthermore, we can rewrite the synthesis and analysis equations
(6.1) and (6.3) usingvV-periodized functions as

N—-1 "
sn(t) = CkPyp (— - k:) (6.4)
N i k h
o= [ 5@ (5 k) s 65)
where -
op(t) =D @[t —IN) (6.6)
l=—00

Equation (6.5) calls for the definition of an inner producLis{[0, 7]): we denote
the L, ([0, T']) inner product between two functiors(t), ss(t) € L, ([0,7]) as

(51(8), 53()) paco.11) = % / i (Dsa(t)dt. (6.7)

o)

The corresponding norm is written gs|,.,0,77). We show in Appendix 6-A that
a sufficient condition forp, to be inL, ([0, T) is thaty be absolutely integrable
(¢ € Ly (R)) and the discrete Fourier transform of the autocorrelation sequence

dp(w) = Y lo(w+2km)? (6.8)

k=—o00

43 is a distribution of order. iff |(¢, s)| < C maxj<, sup, |s*)(z)|, whereC is a constant
[102, pp. 24-25], [103, def. 1.3.1]; e.g., the Dirac delta distributién) is of order 0. An
absolutely integrable functiof can also be identified as a distribution of order 0.
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is bounded. Under those assumptions(t) € L. ([0, 77]) provided of course that
thec,’s are bounded. While these relatively mild conditions are satisfied by most
generating functions used in practice, they are not applicable to the classical case
¢ = sinc, which present some difficulties i.ainc ¢ L, (R). This case is dealt
with in the next section.

Combining (6.4) and (6.5), we get

s (1) :NQle(t)
:; [/OTS(@ 5, (%_k> d%] 0 (% —k) ,

whereQy is the approximation operator. This linear operator is a projector if and
only if the functionsy and are bi-orthogonal; i.e(p(t — k), p(t — 1)) = 05y
[25]. In this casesy (t) is a consistent reconstruction of the measuremants

As we frequently use Parseval’s relation, we now recall it. It relates the
Lo ([0, T]) inner product between two functions(t), s2(t) € Lo ([0,71]) to their
Fourier series coefficients as

(6.9)

(51(6), 520 natorh = 71 / sitsdt= 3 SikS (k)" (6.10)

k=—o00

Using this expression, thi, ([0, 7)) norm of s(t) € L, ([0, T]) can be written as

I =
sl som =7 [ 5O dt= 3 1S 6.11)

k=—00

6.3 Fourier Series Representation

Bandlimited periodic signals can be represented as (6.4) by chogsiaginc.
However, due to the slow decay sific, ¢, does not converge wheN is even.
However, whenV is oddy, converges to a well defined functionin ([0, 7). In
this case, the signal representation can be reformulated as a Fourier series. Hence,
we briefly review the Fourier series description of a periodic signal, when the
period is odd.

A T-periodic signals(t) € L ([0,7])) can be expanded as

s(t) = i S(k)ed* T, (6.12)

k=—o00

where the Fourier series coefficiertigk) are obtained as
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S(k) = % /0 Ts(t)e—j2’%’“dt (6.13)

In most practical applications, the functie(t) is not directly available. Usu-
ally, it is only known through its sampless(ih)},_, ;. In such cases, one
often assumes thatt) is bandlimited and hence épproximates the coefficients
S(k) with the N point DFT of {s(lh)} for k = —[ 5 ]..[ ] and0 otherwise.

The corresponding continuous sigial(t) is nothing but the periodized sinc
interpolation of the samples [32,104]. The corresponding sinc interpolation with
a zooming factofV/ is implemented efficiently by computing the FFT of the input
sequence and performing a larger size IFFT with zero padding the transform upto
size N M. This representation turns out to be a special case of (6.9)avithsinc

andp = § — the Dirac’s delta distribution.

6.4 Computation of the Square Error

The space spanned by the generating functions is not shift-invariant in general.
Hence, the approximation error at a scales dependent on a time shift of the
functions(t¢). The shifted function is denoted By(t) = s(t — 7).

The mean square approximation error for a shifted functiois given by

1 T
N = g [ s = Qus (o) d
0
= lsr — Qns- (Ol 0m) (6.14)

As the period of the signal is an integer multiple of the sampling stgp, V)

is alsoh periodic in7. In most applications, the exact phase of the signal is
not known. Hence, we are interested in obtaining a measure of the error that is
averaged over. This average error is given by

h
na(N) = ¢ % /0 va(r, N)dr (6.15)

The following theorem, which is the main result of this chapter, gives an ex-
plicit expression for the mean errgy(N).

Theorem 1 Let s(t) be a T-periodic signal with the Fourier-series coefficients
S(k). The mean square approximation error incurred in approximating s(t) as in
(6.9) is given by

e () J > iswree (%), (6.16)

k=—00
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where the approximation kernel E(w) depends only on o and ¢ and assumes the
expression

N . 2
Bw) = 1-$@) ¢w)
+|@(w)/? Z|gp (w + 2nm)|? (6.17)
n#0
pI” . 2 NG
et 1 —_ —_
d(p(W) +a’50(w) (p(wl @d(w) )
Emin (w) Eres (w)
(6.18)

where ¢4(w) = a“"((w))

The proof is given in Appendix 6-B.

Note that this kernel is identical to the one obtained in the case of signals in
L, (R) [26]. The main difference with thé, (R) case is that the expression of the
error (6.16) is a discrete sum as opposed to a continuous integral [26]

\/ o / W) |2E (wT) dw. (6.19)

Here $ (w) is the Fourier transform of the signalt) € L, (R) andT is the
sampling step.

Given a reconstruction space, the error kernel attains its minimum possible
value E,;,(w) for all w when ¢ is the dual ofp. It is obvious from (6.18) as
FE(w) > 0 and E,,(w) depends only op. This case corresponds to the min-
imum error approximation (orthogonal projection), as in the case of signals in
Ls(R) [105]. The second part,., accounts for the additional error encountered
for not choosing the optimal analysis functign= ;. Wheng is bi-orthogonal
to ¢ butp # ¢4, then the corresponding operat@y is called an oblique projec-
tion.

6.5 Asymptotic Performance

The asymptotic performance of the representation is determined by the behavior
of the kernel close to the origin. Using the Taylor-series expression of the kernel,
we show that, for the minimum approximation error to deca{Oe(%) as the
number of sampling pointy — oo, we needa(0) # 0 andp™ (2kr) = 0, Vk €

Z\ {0} forn =0,1...L — 1. These are precisely the Strang-Fix conditions of
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Interpolation Kernels

E(o) >

Figure 6.1: Error kernels for cubic B-Spline and Sinc representation.

orderL [22]; ay that satisfy these conditions is called aslahorder generating
function.

In the following theorem, we give the asymptotic bound for the projection
error. Note that the projection need not be orthogonal [25].

Decay of Error --- Cubic Spline curve
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Figure 6.2: Decay of the cubic spline interpolation error for the map of
Switzerland as a function of the number of samples.

Theorem 2 Let ¢ and ¢ be two mutually bi-orthogonal generating functions.
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Then the oblique projection error in approximating an L-times differentiable func-
tion s(t) as in (6.9) decays as O (ﬁ) as N — oo iff ¢ is an L'" order generating
function. If o satisfies the L'* order Strang-Fix conditions, the error in approxim-
ation as N — oo is asymptotically given as

w) = Cosll e sl (&) +0 (o)

1\" 1
— C@,@TLHS(L)HLz[O,T) <N> +0 (W)’ (620)

where, s\ is the L™ derivative of s and the constant is given by the expression

1 R
Coo =13 g (@ 2 k)[* + [m, —mg*. (6.21)
k#0

Here, $'2) denotes the L'" derivative of ¢ and m®: = [ zlu(z)dx; u is either § or
Pd-

The proof is given in Appendix 6-C.
Note that this result is almost the same as the bound derived in [106], except
that the present norm is defined fbs ([0, 7]) as opposed td.; (R) as in [106].

The minimum value attainable by this constant = ﬁ\/zk#o |p) (27k) |2

is independent of the analysis function. This value is achieved when we have

L __ L
m@d—mga.

6.6 Experimental verification of the error formula

In this section, we validate the expression for the error given by Theorem 1 ex-
perimentally. We compare the measured errors to the ones predicted by the theory
for the approximation of a reference shape as a function of the sampling,siep
equivalently, the number of the sampl¥s

Our reference shape (Switzerland) is polygonal with 807 edges and is repres-
ented using two periodic functiongt) andy(t). For each experiment, the initial
model (), y(t)) was resampled to a specified number of points.

We considered two types of approximations: (1) a cubic spline interpolation
with ¢ = 3 (cubic spline) and (2) a bandlimited one with = sinc. Note
that the second approach is equivalent to a truncated Fourier approximation. In
fact, we used an IFFT padded with zeros to generate the bandlimited interpolation
functions at the required scale.
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Decay of Error --- Fourier curve
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Figure 6.3: Decay of the sinc interpolation error for the map of Switzer-
land as a function of the number of samples.

The comparisons between the experimental errors and the ones predicted by
the theory are given in Fig. 6.2 and Fig. 6.3, respectively. It can be seen for both
the graphs (Fig. 6.2 and Fig. 6.3) that the experimental errorr(fer 0.5) is
in good agreement with the theoretical prediction. The experimentally obtained
curve of,(r, N) for 7 = 0.5 oscillates around the theoretically predicted curve
of n,(IV). This is because the theoretical prediction is an averagg(of V') over
all 7’s.

From Fig. 6.4, it can be seen that the spline interpolation of curves perform
slightly better (around 1 dB) than the sinc interpolation. This behavior can be ex-
plained with the aid of the error kernel we have just derived. We can see from Fig.
6.1 that the spline kernel has lower values as compared to the sinc interpolation
kernel whenw > 7. Hence, at low sampling rates (when the signal has some
non-negligible frequency components abayespline interpolation will usually
outperform the sinc one. The differences tend to vanish as the sampling step de-
creases.

The map of Switzerland interpolated from 45 samples using the spline and
sinc functions are shown in Fig. 6.5. It can be seen that at some places, the sinc
representation results in looping curves. This effect is less likely with the spline
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a) Comparison of the experimentally observed errors
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Figure 6.4: Comparison of spline and sinc interpolation.

representation due to the more local behavior of spline interpolation.

6.7 Conclusion

We have derived an exact expression of the mean error in representing a periodic
signal in a generating function basis. This expression may be useful for comparing
different generating functions and for choosing the right one for an application.
We have experimentally verified the expression; the experimental curves are in
excellent agreement with the theoretical predictions. Using the expression for the
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_— Actual Map
E— Cubic Spline
Sinc

Figure 6.5: Actual Map of Switzerland represented using 807 edges is

resampled to 45 points (indicated by dots). These points are then inter-
polated using cubic spline and sinc functions. The graphs below are the
zoomed portions of the corresponding positions of the main graph which
illustrates the looping nature of sinc interpolation.

error, we also analyzed the behavior of the approximation scheme as the sampling
step approaches zero.
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Appendix 6-A: Sufficient condition for ¢, € L, (|0, T7)

¢ € Ly (R) implies thaty, € L, ([0,7]) and that

op(z) = ng (x —IN) = %Zg& (2]%) e (6.22)

lez keZ

in the sense of distributions [107]. Now the r.h.s of (6.22) i&4r{[0, T') iff
2%k \ |2
Yo le (%) < 0, (6.23)
keZ
which is ensured if the the Fourier transform of the autocorrelation

ap(w) =Y | (w+ 2km)[? (6.24)

ke”Z

is bounded for allu. Thusy, € L, ([0, T7).

Appendix 6-B: Computation of the Square Error

Expanding (6.14), we get

W) = 5 [P 4 [ s o

2

2 /0 5-(£) Qs (1)dt (6.25)

1. Using Parseval’s theorem, the first term of (6.25) reduces to
1 T 00 00

7| seras 3 ismr = X 1ser
k=—00 k=—o00

2. To compute the second term of (6.25), we first compute the Fourier coeffi-
cients ofQy s, (t). From (6.4), they are obtained as

N-1 1 T "
Ry(m) =) c [T/o ©p (E - k> e”T"”dt] (6.26)
k=0
We make a change of variablestas £ — k and rearrange the terms to get
o0 1= ;
2mmt 2mm
Rn(m) = {/Oogp(t) e N dt} N kz—% cgke N (6.27)

-

2(%5)
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We now consider the expressiongffrom (6.5); theL, ([0, 7']) inner product
can be expressed in terms of the corresponding Fourier coefficients using
Parseval’s theorem. Hence,

1= i A
2mmk A j2m 2mtmk
- Z e N = — Z S.(1) ¢ (_) e TN e N
N k=0 N k=0 I=—c0 N
on
o) * N—-1
2 2 l 1 j2mk(l—m
- stm(%)w e
l=—00 N k=0 ,
ZZO:—OO 5(177n7kN)
- L (2 +EN)\*
= Y S (m+kN)$ (%) (6.28)
k=—0o0

Combining (6.27) and (6.28), we get

Ry(m) = ¢ (%Tm) [i S (m+kN) & <—2W<m; kN))*]

k=—oc0
We now use Parseval’s theorem to get

= / Qus, (OPdt = [Ry(m)P? (6.29)

m=—0oQ

Making use of the relation between the Fourier coefficients of the shifted

- 2mkT

function and the actual or(eST(k) =e 7T S(k)), we rewrite (6.29) as

A27rm2
AN

2

= /OT[QNsTa)F — Y e

B > 9| . [ 2mm 2
= > et (%

Here,z,,(7) is theh = L periodic function with the expression
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Averaging this expression over ; h dr fo |Qns.(t)]*dt becomes

R

(5] 2 e

k=—o00
Here, we again made use of Parseval’s theorem. Substituting,fok) and
making a change of variable, the above summation can be rewritten as

1 . ok \ |- /27k\ |
E/—ch/ Qusc(0ffde = SIS0 (”)w(%)

. Making use of (6.29) and the Parseval’s relation we rewrite the third integral
LV s, (1) Qus,(t)dt as

ZS (27”") ZS (m+EN) & (M)

Vv 7
27rm7' v

[S*(m) @(Tm) ]e T e_j27r17!w

e}

m=—00
e}

m=—00

Tm (7')

Rearranging the terms, we get

3 [ sy aus a —Z{sm)*@(%m)*} ()

As before,z,,(7) are a sequence (bfperiodic functions. Now averaging
overr as before, the terrﬁ h dr fo s-(t)*Qns.(t)dt becomes

o ()] 40

Xom (0)=8(m)p( 2z )"

Substituting for the expression &f,,(0) the expression above reduces to

Sisor s (57) ¢ ().

which is equivalent to

Sismer(2 () o)) e



Combining the three integrals, we get

J > IS(k)PE (%k), (6.31)

k=—o00

where
BW) = 1+ a,)]$@)|

-2 R (F(w)pw))
- |1—2< )@ ()

A

2w)* > ¢(w + 2nm)?
k=0

Appendix 6-C: Asymptotic performance

In this proof, we assume that the kernelligimes continuously differentiable.
Initially, we derive the conditions for whickimy_. (7,(N))* = 0. As E(w)

is bounded and(t) € L. ([0,7]), we use Lebesgue’s dominated convergence
theorem to interchange the limit and the summation in (6.16) to obtain

Jm (L (N)* = IS ()P llmE(2;k>

ez N=eo
= Y |S(k)I*E(0) =
kez

Here, we used the continuity of the kernel. The above expression is true for any
s(t) € Ly ([0,T7) if E(O) = 0. We have

B(0) =

1o+ ay(0) [$(0) ~ 2ul0)] =0
1#£0
As the expression is a sum of positive quantities, it is equal to zero only if each
of them is zero independently. In particular, we negdin) = 0, [ € Z \ {0}
and(0) = (4(0). We also need,,(0) # 0 which is true iff3(0) # 0. These are
precisely the Strang-Fix conditions of order 1.

Now, we look at the conditions for

a¢(

limy oo (N 75(N))* = 0. This will imply thatn,(N) decays faster tha@® (L)
asN — oo. To derive the conditions, we rewrite the expression¥on,(N) as
N? 21k
(N 4 S(k) (2kn)|? E
0 = 150 2 e (57
keZ
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Now computing the limits by interchanging the sum and Iimil%@ is bounded,
we get

E
i (¥ (V) = 1S(8) 2k [t (£127)

N—oo

= T2Hs(1>”%2[0,T)

Here, we made use of the fact thiafw) is an even function ab (its Taylor series
has only even powers af).

m (57) = oo X

o(w + 2Im) |?
m —
w—0 w

. 2
lim _cp(w) — lim Palw)

CZSO(O) w—0 W w—0 w
N 2
. pr@m)|? oM (0) — ¢4 (0)
N 1! 1!
140

(6.32)

With the same argument as before, in addition to Strang-Fix conditions of
order 1, we nee¢™ (2ir) = 0, [ € Z\ {0} andg™® (0) = ¢ (0). Continuing
in the same fashion, we can see thatV) will decay asO (77 ) iff ¢ is anL™
order generating function ang™ (0) = @™ (0) form =0... L — 1.

The functiongy(w) = % behaves a$,(w) = W}w w)l as
w — 0. Sincey is bi-orthogonal top, it behaves ag(w) = w)L as

O(
<P*( o
w — 0 (This follows from the bi-orthogonality reIanEkeZ S(w + 2km)
2k7r) = 1). Hence,p being bi-orthogonal te ensures thap™ (0) = A(m) )for
=0...L—1. Thus the bi-orthogonality and the Strang-Fix condltlons of order
L are sufficient for the erray,(N) to decay a®) ().
L is the first positive integer for which

i, (Y ()* = it ke 1, i (2127

N—oo 0
— T2L||g(L)]|2
s 17, 10,7 _ (%@)2

£ 0 (6.33)

Proceeding as in (6.32), the expressiodf; is

b(km)[* [ mk —mk,
Cos = J; 7 ' 7 (6.34)
k#0
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In the above equation, we substituted 8 (0) and " (0) with (— 7)Fmk

and(—j)"m}, respectively, where.) = [ 2"u(x)dz.
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Chapter 7

An exact algorithm for computing
the area moments of spline curves

The last step of the shape estimation algorithm described in Fig. 1.4 involves
the evaluation of shape parameters from the shape model. In this ¢hapter
introduce an efficient algorithm for the exact computation of area moments.

7.1 Introduction

Moments are standard descriptors of the shape of an object [108], [109], [110];
they easily yield features that are invariant to translation and rotation [12] or more
generally to affine transformations, which makes them useful tools for pattern
recognition. In the standard formulation, they are computed as surface integ-
rals which requires raster scanning through the image. However, there are many
instances where the boundaries of objects are described by parametric curves.
This is the case, for example, when the objects are detected using parametric
shakes which are represented using B-spline [17, 36,68, 73] or wavelet basis func-
tions [34, 111]. Another simple case is when the region is described as a poly-
gon [112].

In this chapter, we address the problem of computing the area moments of
objects described by such parametric curves when the basis functions are scaling
functions. The popular wavelet curve descriptors also fall into this class. The
originality of our approach is that the computation is exact, and also more direct
than the conventional pixel-based method which requires an explicit labelling of
the inner region of the curve prior to computation. Moreover, the pixel-based
schemes suffer a low accuracy due to the loss of subpixel details in the rasterizing

!Based on the article "M.Jacob, T.Blu, M.UnsEEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 23, no. 6, pp. 633-642, June 2001.
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process. Also, the error in the area-based computation of moments is dependent
on the orientation of the shape.

Since a polygon can be represented in terms of linear splines, the computation
of moments by approximating the shape as a polygon [112-114] is a particular
case of our approach. While the polygon method can be made as accurate as
desired by increasing the number of segments, the convergence is slow because
of the low approximation order of linear splines. Moreover, it is not suitable for
computing the curvature, which is an interesting shape feature as it is invariant
to rotation and translations and can be easily normalized to scale changes. This
motivates us to investigate higher order schemes where the curve is represented by
smoother basis functions such as B-splines and other scaling functions that appear
in wavelet theory [22, 23]. These type of basis functions also occur naturally
when one seeks multiresolution representation of curves which are well suited for
pattern recognition and shape simplification [111,115].

The chapter is organized as follows. In section 7.2, we show how Green’s
Theorem can be used for the computation of the area moments of a parametric
curve. In section 7.3, we consider the computation of the moments of such a curve
represented in spline or wavelet bases. Here, we also discuss the properties of the
multidimensional kernel used in the computation of moments. In section 7.4, we
give the implementation details of the moment computation. In the following
section, we deal with the precomputation of the kernel. In section 7.6, we present
an alternate implementation that works for any order moments, but it is rigorously
exact only when the scaling function is sim¢. This is especially interesting
because it makes our method applicable to the Fourier representation of curves as
well. In the last section, we compare the new method with the existing schemes
such as approximation using polygons and rasterizing.

7.2 Preliminaries

7.2.1 Computation of Moments using Green’s Theorem

Green’'s Theorem relates the volume integral of the divergence of a vector field
in a closed region to the integral of the field over the surface enclosing it. In this
section, we show how it can be used to compute the moments of an area enclosed
by a curve.

Consider a closed regios, bounded by a surfacg. Green’s Theorem states
that, for any vector fieldr,

/V(V.F) dv :/F.dS, (7.1)

S
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whereds is the unit vector pointing out of the surfase Assuming the volume to
have a constant cross-section bounded by the eyraad that the variation of the
field along thez-direction is zero, we can restrict the theorem to two dimensions
as,

OF, OF
/S( o + 8—;)dxdy = ji(Fydx — F,dy) (7.2)

The first integral is evaluated over the atanclosed by the curve and the second
one along the curv@ in the clockwise direction. The computation of the moments
involves the evaluation of the integrﬂ x™.y".dxdy on the surface bounded by
the curve. This, by (7.2), is equivalent to

m, n+1
[ = ]§ Y (7.3)
’ c n + 1

with F = e, (2"2"); ¢, denotes the unit vector along thedirection. Note

that the choice of' is not unique. We choose the vector fidldhat makes the
computation simple. Another possible choice that has the same computational

complexity isF = —e, (*-")

7.2.2 Parametric Representation of a curve

We represent a closed curve in the— y plane as discussed in Section 2.4. We
repeat it here since the notations used in this chapter are slightly different. A
curve in thex — y plane can be represented in terms of an arbitrary parameter
t asr(t) = (x(t),y(t)). If the curve is closed, as discussed in the paper, the
functionsz(t) andy(t) are periodic.

When the curv€ is represented as abow¢t) can be approximated efficiently
as linear combinations of some basis functions, which makes the representation
compact and easy to handle. In this paper, we mainly focus on the representation
of the function vector(¢) in a scaling function basis as

r(t)= Y bpo(t—k) (7.4)

Hereb, denotes the sequence of vector coefficients givebyby (cx, dy). If the
period, M, is an integer, we havie, = b, ,,. This reduces the infinite summa-

tions to
M_

r(t) = brpp(t—k) (7.5)

k=0

—_
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where

ep(t) = Y ot —kM) (7.6)
k=—o0
In the context of wavelets; is called thescaling functionit satisfies the two-scale
difference equation

p(t) = h(k)p(2t — k), (7.7)

whereh(k) is the mask of the corresponding refinement filter [22]. The scaling
function representation enables us to have local control of the contour, which is de-
sirable in many applications. It also permits a multiresolution representation of the
curve [34, 35]. Moreover, the scaling function representation is affine-invariant;
an affine transformation of the curve is achieved simply by transforming the coef-
ficient vectorb,, £ = 0,1,...,M — 1. This is because of the linearity of the
representation and the partition of unity condition:

D elt—k) =1, (7.8)

k=—o00

which is satisfied by all valid scaling functions in wavelet theory. Among the
scaling functions, a case of special interespis= (", wheres" is the causal
B-spline of degree [27] defined by its Fourier transform

. 1—eiw\ "t
B*(w) = (—) | 7.9)

Jw

This yields spline curves which are frequently used in computer graphics [15]
and computer vision [36—38].

The description of in the scaling function basis is equivalent to a periodized
wavelet representation [34]. This implies that, if we have a wavelet description
of the curve, the scaling function coefficients at any scale can be obtained from
the wavelet coefficients using the fast reconstruction equation described in [116].
Hence, the theory is sufficiently general to include the wavelet curve descriptors
as well.

The representation of the curves in a sinc basis also falls in this class, as the
sinc function is a valid scaling function. The description of the curve in the sinc
basis as (7.5) is not efficient, as sinc has an infinite mask unlike most of the widely
used scaling functions. It is well known (c.f. [32]) that the sinc interpolation of a
periodic signal can be formulated into a numerically stable and efficient expres-
sion as

r(t) = Z by exp(j2]\7;[kt) (7.10)



where2L + 1 = M, assumingV/ to be odd. A similar expression is obtained for
evenM as well. Hereb,, is the discrete Fourier transform of the vector sequence
r(k). Note that (7.10) provides the Fourier series description of the curve, which
is frequently used for the representation of closed curves [10, 69].

7.2.3 Differentiation of scaling functions

We will use the property that the" derivative of a scaling functiorp can be
expressed as [117]

oW (z) = AF ot (2), (7.11)

where{*} () denotes the scaling function whose mask is givenddy? (») =
(HQ?)]“ H(z); H(z) is the mask ofp. A denotes the backward difference oper-
ator, defined ad n(z) = n(z) — n(z — 1).

The relation (7.11) follows from the fact that any" order scaling function

can be written as
R 1—e“\™ .
olw) = ( ) 4(w).
~————

Jw

prm=t(w)

where~ is a refinable distribution which does not satisfy the partition of unity.
The mask ofp is H(z) = <1+2£> H,(z). Note that(%) is the mask of

p™=1, and H, the mask ofy. Differentiatingy with respect tar, & number of
times ¢ < m) yields

oa) <Jw>’“¢<w>=<1—ej“)k(1;fw) ) Z AR

J/

14 ()
(7.12)

1 m—k
Thus the mask ap ™} () is H* () = (1+T) Hy(2) = (22=)" H(2).

7.3 Moment computation

To facilitate the understanding of our method, we first give a detailed derivation
of the formula for the area of the region bounded by the curve. We then extend
our formulation to the general case.
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7.3.1 Computation of the Area

For the parametric representation of the curve, the area of the region is given by

M
Ioo = /O y(t)dflit)dt (7.13)

When the curve is described in a scaling function basis as in (7.5), we have

ho =" des / ot — i)l (t — )it (7.14)
4,7=0
where 0
do
o, (t) = ;;

Substituting fory, () from (7.44), we get

Iyo = Z dic; / op(t — i)' (t — 7)dt, (7.15)

1,7=0

which is equivalent to

4,j=0 N _

-~

g6 (i—35)

Again, substituting forp,, from (7.44), we get the kernef (/) as the) periodized
version of

i) = | T (e - i (7.17)

o0

asgh(l) = > r2 . go(l+k M). With the simplification (7.11), the above equation
becomes

go(l) = Afo(), (7.18)
and

fule) = [ T oW plt — ) (7.19)

Note that, ifo(t) = ¢(r — t), then fo(x) can be written as the convolution
(W %) (1 + ). We prefer to represent the kerng in terms of f due to
its nice properties, discussed later.
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For the example given in Fig.2.5, we have
go(l) = A(B"pY) (1+2)=AF*)(1+2)
go : (0.5,0,-0.5); le{-1,0,1},
where(™ is the causal B-spline function of degreeNow for the polygong(k) :

(1,1,6,8,7,4) andd(k) : (1,6,8,5,1,0). Hence, by (7.16), we have

1
Iyy = 5((6, 8,5,1,0,1),(5,7,1,—4,—6,—3))
= 42 units

Here(x, z5) stands for the, inner product given by, ;(k)za (k).

7.3.2 General Formula

Having shown how to compute the area, we proceed on to the general case. The
formula for the computation of the general moments are given by the following
theorem

Theorem 3 LetC be a closed curve in the x-y plane represented in the parametric
form in a periodized scaling function basis as (7.5). Then the (m,n)"™ order area
moment of the region S, bounded by the curve C, given by

I = / ™y dxdy form,n >0 (7.20)
S
can be computed as
1 m n . :
[m,n - n+1 Z Z Ck, Ci[ }dj[ ] ggz—l—n(l - ka.] - k)? (721)
kER icrm+1

JER™

where R is the integer range [0... M — 1]. The kernel ¢, ., in (7.21) is

() = / T ) ot — k1) - plt — Konys)

—00

Herecl™ stands for then-times tensor produtt ® c... ® ¢ andi — k denotes
the sequenc@; — k,is — k, .. .01 — k).

2.0 is defined as the neutral elemedt @ cl™ = ™1,
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Proof For a parametric curve, the evaluation of the n)'" order moment given
by (7.20) can be reduced to

1 M dx(t)
Ipn = M) () =L dt 7.22
e eete (7.22)
by (7.3). When the curve is described in a scaling function basis, we have
1 0 M
Lo = —= > g /0 ot —i1) ... p(t — i)t —j1) ...

kER ierm+1
jERM

ep(t = jns1) @y (t — k)dt.
Substituting fory, () from (7.44), we get

1 i) [ . . .
J— n+1§ E g il ]dj[ H}/ Op(t —11) ... op(t —im)p(t —j1) - ..
kER ieRm+1 &
JERT

p(t = jng1) ' (t — k)dt.

The integral in the above equation is equivalent to

J I e IO e N S DI (PR s W3

o
J/

-~

G (i—k,j—F)
Hence them, n)'™® order moment is

1

I = = SN Mt gt G k- k).
kERge%m“'l
JERM

U
As in the case of the area, the kerpgls obtained by thé/-periodization of

%wwz/fwwwuwnwwwmwﬁw

(o)

wherek € Zt"+1, Expressingy’ in terms ofp (™}, we get

gm+n(k) = fm—i—n(k) - fm—i—n(k - 1)? (719)
where -
fm+n(X) = /; 90{1}(75)90(15 - $1)90<t - $m+n+1)dt7 (720)

wherex = (z1,Z2...,Tmins1) € R™™ L The kernelf has many interesting
properties, which are discussed next.
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7.3.3 Properties of the kernel -f

1. Finite support: As the kernel is an integral of products of the translates
of finitely supported functions, it has a finite support as well. If the scal-
ing function is continuous and has a supgortV], then the kernel will be
supported on the integer points in the interval

I=[-N+1,N=2|x...[-N+1,N—2] x [-N+1,N —2] (7.21)

2. Symmetry: The fact that the kernel is obtained from the integration of
similar translated scaling functions introduces a lot of symmetry. As (7.20)
IS symmetric with respect to the parametéfsk,, .., interchanging them
will not affect the value of the kernel. This implies

fk) = f(oi(k)) (7.22)

whereo; indicates all possibl¢m + n + 1)! permutation operators. In
addition, if the scaling functions are symmetric as in the case of splines, we
have

fk) = f(=k) (7.23)

Both these properties together im@y(m + n + 1)!) relations, which are
used to accelerate the computation of the kernel as well as the moments.

3. Two-scale relation: We now show that the kernel satisfies a two-scale rela-
tion, which is the key to our computational approach. This property follows
from the fact that the scaling functiongt) and (!} (¢), from which the
kernel is derived, satisfy two-scale relations. If we consider (7.20) and re-
write the andp!'} in terms of the corresponding two-scale relations (cf.
(7.7)), we get

lezm+l

wherek € Z™*!. The maskH in the above equation is

Ho(l by, o 1) = %Z ha(k).h(k — 1) h(k — L), (7.25)
k

The z-transform of the mask is given by

m
m

Ho(21, 29, . 2m) = %Hl( a0 [[He) (7.26)

k= k=1
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It is this property that enables us to compute the kernels exactly, by solv-
ing a linear system of equations.This technique, which is discussed later, is
analogous to the computation of the integer (or dyadic rational) samples of
a scaling function from the transition operator [22].

Note that a scaling relation similar to (7.24) was also considered by math-
ematicians in the context of the wavelet-Galerkin method for the compu-
tation of integrals involving products of scaling functions and their derivat-
ives [118,119]. The work of Dahmen and Miccheli is essentially theoritical;
Restrepo and Leaf concentrated on numerical issues and proposed a solution
which is equivalent to the computation of our kerpglinstead off,,,. This
slightly complicates the approach and also increases the dimensionality of
the problem; this issue is discussed further in Section 7.5.1.

The above mentioned properties imply that the kernel can be computed exactly
for any finitely supported scaling function, as discussed in section 5. In the next
subsection, we will give some examples for the kernels when the scaling functions
are B-splines.

7.3.4 Examples with Splines

Splines possess nice approximation properties. The B-splines have the maximum
approximation order among the class of functions that satisfy a two-scale rela-
tion with a given support. Hence they give better local control of the contour.
Moreover, they are symmetric, which facilitates the computation of the kernel and
moments as discussed before. So it is worthwhile to analyze the properties of the
kernels for a spline representation of the curve. For the results used in this section,
refer to [27].

We consider causal B-splines, as they satisfy a two-scale relation for all orders.
The refinement filter for a B-spline of degrees the binomial filter

h(k) = 2in (" Z 1) (7.27)

If we choose3*, a B-spline of degree, asy, thenpt't = 35-1; that is a spline of
degrees — 1. Hence the kernef as given by (7.20) is hox spline[120] sampled
at the integers. In particular,

fo(k) = g% (k +s+1). (7.28)

The spline functions have a closed-form representation in the Fourier domain,
which the kernels also inherit. By taking the continuous Fourier transform of

134



(7.20), when the scaling function is a B-spline, we get

fw); wez® =Y w) H (7.29)
where|w| stands fory 07, w;. By using Poisson’s formula

Z f2(w + 2k) Z F2(k)e2mk, (7.30)

we get the discrete Fourier transform of the kernel agthperiodized version
of (7.29).

We give some examples of kernels for the computation of the first three mo-
ments when we have a linear spline representation. For linear splines, the kernel

fm-1(k1, ka, ..., kn) is supported in the interval-1,0] x [—1,0]...[—1,0]. The
kernels are
1
1 1 2
fl(k17 kg), k?l, k?g - {—1,0} 6 . 2 1 (732)
11
fo(=1 ko, k)i ko, ks € {—1,0} : 13- 3 1
1 3 (7.33)
f2(07 k27k3);k27k3 € {_170} : % ' 1 1

It is interesting to see that the computation of the moments using the linear
spline kernel is the same as when the polygon is triangulated in a specified way
and the moments of individual triangles added up as in [112].

We also give the kernej, for the cubic spline representation.

1
folkryikr = =32« o[ 1, 57, 302, 302, 57, 1] (7.34)

The higher order kernels are omitted due to space constraints. They can be down-
loaded from http://bigwww.epfl.ch/jacob.

7.4 Implementation.

In this section, we analyze equation (7.21) and simplify it for faster computation.
We start with the simplest case: the area of the region.
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The area bounded by the curve (cf. (7.15)) is computed as

M-—1 N—-2
Lo=Y_c& > d 90, (7.35)
k=0 I=—N+1

whereg, is given by (7.17). The sequencésandd;, are M-periodized versions
of the coefficients;, andd, with respect to the period/. This is simply because
convolving a non-periodized sequence with a periodized kernel is equivalent to
convolving a periodized sequence with a non-periodized kernel. We have also
reduced the range of summation of the inner sum-16 + 1 to N — 2, which
is typically much less than the rangeo A — 1. Similarly, for the higher order
moments all the summations, except the outer one, are in the raNge 1 to
N —2.

From (7.35), we see that the computation of the area involves just a filtering
operation byy(—1) = g% (1), followed by an inner product. This can be written as,

I0,0 = <Cp, gg * dp>, (736)

where(.,.) stands for the inner produét, d) = "' c(k)d(k). With a similar
notation, the computation of the other moments are given as

(gl (1 @ 4

In = 1 (7.37)
n
dv, gh ok (Pl @ B
= _< + 7§1+ : ) (7.38)

As the(m + n + 1) — D sequence is separable, the filtering operation is much
simpler than the usuin + n + 1) — dimensional filtering.

The complexity in the computation of the momépt, is M.(2N —2)(m+n+2)
without taking the symmetries into account. Thus, for basis functions with small
support and reasonable andn, the complexity is quite managable.

7.5 Computation of the Kernel

In this section, we propose two schemes for computing the kernel. An exact space
domain scheme and an approximate one in the Fourier domain.

7.5.1 Exact Method

In this scheme, we compute the kernels in space domain making use of the prop-
erties of kernels discussed before. We start with the computatigy ahd later
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extend it to the general case. Making use of the finite support property, the two-
scale relation (7.24) can be rewritten in the matrix form as,

Ao.fy = fo, (7.39)

whereA, is the square matrix with coefficientd ., = Ho(2k —[) andf, is the
vector whose elements afg(n). As the support offy is [-N + 1, N — 2], the
indices ofAg run from—N + 1to N — 2.

It can be seen from the equation (7.39) thds an eigen-vector of the matrix
Ay, with eigen-valudl. Solving forf, is equivalent to solving for a vector which
falls in the nullspace ofA, — I), wherel is the identity matrix. Sincé # 0, A,
must have the eigen-value 1, which is in general single. This providgs to a
constant which is further set by the normalization identity

> folk) =1, (7.40)
k

which can be seen from (7.19). This is because the funetion has at least an
approximation order of one [22], which impligés, ¢(x + k) = 1. One of the
equations i Ay — I).fy = 0 can be substituted for by the equation (7.40) to yield
the system of equations given by

B.fy =y; (7.41)

B is the matrix obtained by substituting one of the row$Af — I) with the row
vector[1,1,...,1] andy is given by[0,0,0...,0,0,1]7 c.f[99]. NowB is a full
rank matrix, and hence the eigen-vedipcan be solved by matrix inversion.

To represent the two-scale relations of the higher order kernels in the matrix
form, we introduce a one-to-one functipn: [-N + 1, N — 2] — [0, (2N —
2)™ — 1]. Using this function, (7.24) can be rewritten as

(2N—2)m+i-1
Flp™ (k) = Y Hu (207" (k) = p7 (1)) fin (07*(1)
=0
which is a linear system of equations. This can be written in the matrix form as
A f, =1, (7.42)
where[A,,];; = Hy, (2p71(i) — p~1(j)) andf,,(¢) = f (p~'(i)). This equation is
of the same form as (7.39) and can be solved in the same way, with the normaliz-

ation constraind _, f,, () = 1.
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Let us now compare our computational solution with the method developed for
computingg,, in the context of wavelet-Galerkin approach [118]. For a scaling
function of supportV, the kernely,, is zero outside the interval

I'=[-N+1,N—1]x...[-N+1,N—1]x [-N+1,N—1]. (7.43)

as compared tg,, whose support is given by (7.21). Thus the direct computation
of g,, involves a linear system witf2 N —1)™ variables as compared (N —2)™

for f,, in our case. FoB dimensional kernels involving cubic splines, we achieve
a40% reduction in the number of equations. As the computational complexity in
inverting a linear system is proportional to the third power of the number of equa-
tions, this implies a performance improvement of aroGriobmes. The approach
becomes even more rewarding for higher order kernels. Moreover, the normal-
ization constraint (7.40) that we use to make the system full rank is much more
straight forward than the corresponding relation for the derivative functions.

Note that this simplification is covered by Dahmen and Michelli's general the-
ory for integrals of multidimensional scaling functions [119]. This is because the
mask of anymth orderl — D scaling function can be always factored as proposed
in[119, Corollary 3.3]. In the case of wavelet-Galerikin integrals, the performance
improvement can even more substantial depending on the number of derivatives.

7.5.2 Approximate Method for Splines

Because the spline kernel has a closed-form expression in the frequency domain,
the kernel can be obtained by taking the inverse DFT of the above mentioned
Fourier transform (7.30) sampled at an appropriate rate; we make use of the finite
support property of the kernel. As sinc is a decaying function, the periodization of
the Fourier transform may be approximated with an appropriately truncated sum
to achieve any desired accuracy. This is because we can have an upper bound for
the error that is a decreasing function of the summation range. Moreover, the sym-
metries of the kernel discussed before may be used for the efficient computation
of the box spline kernels as in [121].

However, this technique, besides being approximate, can be used only for
scaling functions that have a closed form expression in the frequency domain, i.e
splines in practice. This scheme may be useful to precompute the spline kernels
for very high order moments, where the exact scheme can be computationally
expensive.
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7.6 Computation of the Area Moments using Riemann
sums

An alternate approach to compute the moments is to approximate the integral (7.3)
by a Riemann sum:

MP-1
1

I = O ; (it (1/ P)]™ Jyine (1) P)]" (2 1/ P)], - (7.44)

where P is an appropriate oversampling factor. We show in this section that this
guadrature formula is exact when the curves are described in a sinc basis. For
other representations, it can be used for the approximate computation of higher
order moments.

Relative Error vs No. of Samples

——  Cubic Ssoline
--- Linear Spline

Relative Error
=

10° 10’ 10

Number of samples

Figure 7.1: Comparison of moment estimators

7.6.1 Sinc Representation of the curve

A curve represented in a sinc basis also falls into the framework of Theorem 3
because sira) is a valid scaling function. However, computing the moments as
described in Section 7.4 is expensive as the mask of the sinc function is not finitely
supported. We remind the reader that the representation of a periodic signal in the
sinc basis is equivalent to the Fourier representation as seen in (7.10).
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In this particular case, the moments can be computed exactly and more effi-

ciently using (7.44), where the oversampling factorjs any integer greater than

m4n+2
5

Proposition 5 The quadrature formula (7.44) is exact for the sinc representation
provided that P > [ 742427

The continuously defined functions,(t) andy;,(t) are obtained by inter-
polating the sample values of the curve at the integers, using the periodized sinc
function. The computation is exact because we implicitly assume that the func-
tionsx(t) andy(t) are bandlimited functions, with bandwidth = 2.

Proof The integral (7.3) can be considered aslan ;) inner product of two
functions, which arg ™+2+2] and | 2+2+2 | fold® products of the corresponding
band-limited functions. Hence they are bandlimited By = B[™+2+2] and

B" = BL%"HJ respectively. So these functions are exactly represented in the
basis{sinc(Px — k), Vk € Z}, where2nr P > B’. Because the sinc basis is or-
thogonal, thel, (g, ar) inner product is equivalent to thg  »,p—1) inner product.
Hence it is sufficient to compute the discrete summation instead of the integral.
Finally, the sinc function is interpolating, so that the coefficients of the basis func-
tions are the resampled curve values, and hence the result (7.44). O

Relative Error vs Stepsize

Relative Error

10° 10’ 10? 10’
sqrt(Area)/A

Figure 7.2: Variation of error vs% in a raster scan moment estimator

3|z| and[z] denote the floor and the ceiling operators, operating on a fractioryield the
lower and upper integers that bound
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Using the equivalence of the sinc and the Fourier representations, we can com-
pute the interpolated samples efficiently with/aP pointinverse FFT of the Four-
ier coefficients;, andd,,.

We will compare the sinc moment estimator with the scaling-function- based
moment estimator in the next section. One disadvantage of the Fourier(sinc) rep-
resentation of curves is the loss of local control property that we were having with
the finitely supported scaling functions.

The complexity in the computation of the moments in this schem&i¥ 3 log(M P)+
(m+n-+2)). Here3M P log(M P) is the cost of the inverse FFT of the sequences
¢k, dx andk.cg, and(m + n + 2) M P corresponds to the multiplications.

7.6.2 Spline Representation of the curve

The quadrature formula (7.44) is also applicable to the spline representation, provided
that the functionsr;,(¢t) and yi,(t) are obtained by interpolating the integer
sample values, using the corresponding B-spline functions. This scheme is no
longer exact, but it may be a viable alternative for computing the higher order mo-
ments. The necessary condition for the computation to be reliable is that the Four-
ler transform of the B-spline function is essentially bandlimited#@’, whereP
is the oversampling factor. The error in the moments computed with the approx-
imate method is thus proportional to the residual energy of the B-spline function
in the corresponding outband. As the Fourier transform of the B-spline is a decay-
ing function of the frequency, the error will be a decaying functioPads well.
Thus, any desirable accuracy may be achieved by chodsmgficiently large.

The complexity of the spline quadrature formula is

OM(m+n+2)(m+n+2+3N)P),

whereM (m + n + 2) P is the total number of resampled points. The evaluation
of the spline representation requirdsmultiplications to obtain one resampled
point from the corresponding B-spline representation. Then the computation of
the discrete sum costs+n+2 multiplications per resampled point. Interestingly,
the approximate scheme will give better results for higher order splines as these
functions will become bandlimited as the order tends to infinity [33].

7.7 Experiments and results.

In this section we compare the new technique with the existing ones: approxima-
tion using polygons and rasterizing. We first consider the exact scheme proposed
in section 7.4. We try to estimate the parameters of a known ellipse and choose
the relative error in the parameters as the criterion of comparison.
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Figure 7.3: Estimated ellipse for a real image

Our preferred choice is to represent the curve in a cubic B-spline basis due to
its nice approximation properties and minimum curvature properties. To compare
it with the approximation of the region as a polygon, the ellipse is sampled uni-
formly and the samples are interpolated using the two techniques (linear and cubic
splines). The average relative error in the three centered 2nd order moments vs
the number or samples are plotted in Fig 7.1. It can be seen that the relative error
is much smaller for the cubic spline interpolation even at low sampling rates and
that it exhibits a faster decay. In the traditional scanning approach, the ellipse is
scanned along the x and y axes with a step Aizend the monomials are computed
at the grid points assigned to the interior of the curve. Fig 7.2 shows the decay of

the average relative error for an ellipse Areafor three different orientations.

The plot clearly shows the dependence of the accuracy on the orientation of the
ellipse.

It can be seen that to achieve a relative errdi.©f the interior of the ellipse
has to be sampled at about 3600 points, whereas to achieve the same error using
the cubic spline interpolation we need only around 9 points on the curve. In
comparison, the polygon method (linear spline) requires more than 40 samples to
have a similar error. More interesting is the case when the interior of the ellipse
has to be sampled at abdub x 10° points to achieve an error 6f002% while
the cubic splines require only 25 samples to achieve the same accuracy.

In Fig 7.3, we show the ellipse corresponding to the 2nd order moments of
the central structure in the image. The contour of the object was estimated using a
snake where the curve was represented parametrically in terms of cubic B-splines;
the moments are computed using our algorithm. Note that the fit is astonishingly
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Figure 7.4: Shape of corpus callosum represented using a cubic B-spline

curve with 20 knot points.

good.

10' ; ‘ ‘ :
——  Cubic Spline
- Fourier Method

8 10

10 2 4
Oversampling factor

Figure 7.5: Comparison of Fourier Estimator with Cubic spline estimator.

Having observed that the cubic spline estimator performs better than the poly-
gon method, we now compare it with the Fourier(sinc) technique proposed in
section 7.6. It is not fair to use the ellipse as we did before, because it can be rep-
resented exactly in a Fourier series representation with2. So we choose the
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real shape of corpus callosum shown in Fig 7.4, represented in a linear spline basis
with 39 knot points as the reference shape. This shape was resampled at different
rates and these points were interpolated using cubic B-spline and Fourier repres-
entations respectively. The moments of the corresponding curves were calculated
using the respective algorithms discussed before. Fig (7.5) shows the decay of the
relative error with the resampling rate for both representations. We observe that
the spline estimator is better than the Fourier estimator for small sampling rates,
while the Fourier estimator performs better at very high sampling rates(typically
more than 8 times the number of points used for the descriptidf).dh the ex-

ample considered, the Fourier method performs better when the shape of corpus
callosum is represented with around 312 samples.

To evaluate the performance of the approximate scheme introduced in 7.6.2,
we now consider the case where the corpus callosum is represented by a cubic
B-spline curve with 20 knot points. The relative error in the computation of the
2nd order moments by the quadrature formula as a function of its relative com-
putational complexity(proportional t8) is shown in Fig. 7.6; here, the reference
method is the kernel based computation, which is exact. Our results indicate that,
for the 2nd order moments, the error of the quadrature formula is quite substantial
(eg.9.4%). Thus, it is not advantageous for computing the lower order moments.
However, the quadrature formula will eventually start to pay off for higher order
moments, because its cost increases only quadratically with the degree as com-
pared to exponentially for the kernel based method.
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Figure 7.6: Relative Error vs Relative Computational complexity.
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7.8 Synopsis

In this chapter we have presented a new approach for the computation of the mo-
ments of a curve described in a wavelet or scaling function basis. It is especially
useful for objects detected using parametric snakes. The main advantages of the
proposed scheme over the conventional methods are:

¢ the exactness of the computation;
e its independence of the orientation of the shape;

¢ the consistency with the snake model and the fact that it is the most direct
method available.

In addition, the method is reasonably fast and easy to implement.

We recommend using our exact kernel-based approach for computing the lower
order moments (typicallyn +n < 2) for which the kernels are available. For
higher order moments, we have proposed a quadrature formula that approximates
the continuous integrals with Riemann sums. The latter method is exact for the
sinc basis functions; otherwise it can be made as accurate as desirable by res-
ampling the model at a finer rat& (sufficiently large).
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Chapter 8

Conclusion

We have presented a coherent and consistent approach (cf. Fig. 1.4 ) for the estim-
ation of shape and shape attributes from images. In contrast with the traditional
sequential approaches, our scheme is centered on a shape model that drives the
feature extraction, shape optimization and the attribute evaluation modules. Since
it is more constrained that the traditional method, it is more robust to noise.

We have addressed several problems associated with the separate modules of
this framework, keeping in mind the overall structure. Specifically, we have ad-
dressed the extraction of features, the representation of the shape and the evalu-
ation of attributes from shapes. We applied the framework to solve two practical
shape estimation problems. The main contributions of this thesis are listed below.

8.1 Main Contributions

e A general approach for the design of 2-D features from a class of steerable
functions based on a Canny-like criterion: As compared to previous com-
putational designs, our approach is truly 2-D. It provides filters with closed
form expressions and better orientation selectivity than the conventional de-
tectors.

e Several improvements for parametric snakes: Since the widely-used gradi-
ent magnitude-based energy is parameter dependent, we proposed a para-
meter independent term based on a steerable feature space. This term ac-
counts for the direction of the gradient and hence is more robust. Using
Green’s theorem, we re-expressed it as a surface integral, thus unifying it
naturally with the region-based schemes.

We clarify some earlier statements about splines by showing that parametric
snakes can guarantee low curvature curves, but only if they are described
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in the curvilinear abscissa. Since normal curve evolution do not ensure
constant arc-length, we proposed a new internal energy term that will force
this configuration.

We introduced an efficient scheme to check for the presence of loops in the
curve. We also presented several practical enhancements to make the para-
metric framework even more attractive for the segmentation of biomedical
images.

e A carefully engineered algorithm for the shape estimation of 3-D DNA mo-
lecules from its stereo cryo-micrographs: We used a global 3-D model and
optimized its coefficients such that its projections matched with the micro-
graphs. We approximated the global model locally by a projection-steerable
elongated blob-like template; its projections onto the plane are contained in
a finite dimensional space. We also derived an efficient algorithm to com-
pute the likeliness of a 3-D filament with a specific orientation in 3-D space;
the image energy of the 3-D snake is obtained by integrating the likeliness
measures along the 3-D curve. Since we knew the final length of the DNA
molecule, we used it to constrain the reconstruction.

e Quantitative analysis of error of the parametric representation of closed
curves: We derived an exact expression for theerror in approximat-
ing a periodic signal in a basis of shifted versions of a generating function.
The formula takes the simple form of a Parseval’s like relation where the
Fourier coefficients of the signal are weighted against a frequency kernel
that characterizes the approximation operator. This expression can be used
to calculate the optimal number of coefficients and basis functions for a
specific family of shapes.

e Exact computation of area moments: Using Green’s Theorem, we showed
that the computation of the area moments of a scaling function curve is equi-
valent to applying a suitable multidimensional filter on the coefficients of
the curve and thereafter computing a scalar product. The multidimensional
filter coefficients are pre-computed exactly as the solution of a two-scale
relation. This algorithm can be used to evaluate the moments to constraint
the reconstruction as shown in Fig. 1.4.

8.2 Future work

We now discuss a few directions along which we plan to continue our work.

e 3-D steerable feature detectors: The framework introduced in Chapter 3
can be extended to design feature detectors in 3-D. We plan to generate a
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steerable feature space from the volume data and use it to detect specific
features like lines, surfaces, edges, blobs etc.

Multi-scale detection of image features and denoising: One can decompose
a given image using a multi-scale steerable pyramid to detect a a variety of
multi-scale features (edges, ridges, corners etc.). By selectively preserving
specific image features and reconstructing the image, we can obtain a de-
noised version of the image.

Model-based reconstruction in limited angle tomography: The concept of
projection steerablity can be used to reconstruct specific 3-D features from
their 2-D projections. A higher order projection-steerable detector may be
useful in tomography problems where the projections are noisy or when
more views are difficult or impossible to generate.

Account for the exact derivatives of the unified image energy: At the mo-
ment, the parameters of the probability distribution functions are assumed
to be constant. However, in practice these parameters are estimated from the
images depending of the current position of the contour. Thus these para-
meters are dependent on the curve coefficients. We would like to compute
the exact directional derivatives in the optimization scheme and study the
improvement.

Application of the snake to practical problems: We would like to customize
the snake models to practical biomedical problems. This will require several
enhancements ranging from the choice of the image energy and type of
shape constraint.

3-D active contour model: We plan to to extend the model-based consistent

segmentation using a steerable feature space to 3-D. The parametric rep-
resentation of general 3-D surfaces is difficult, unless the shapes assume
simple forms like a tube; in this case the surface can be represented as using
a spline model. Another promising approach may be to represent the shape
using spherical harmonics as in [122,123].

Performance bounds on DNA shape estimation: The estimate of the position
and orientation of the filament at a specified 3-D point will depend on the
orientation of the filament and the projection geometry. We plan to compute
the theoretical (Cramer Rao) bounds on the estimation error. These bounds
will enable us to understand the problem better.
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