Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Seminars
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Seminars


Seminar 00034.txt

On the Feasibility of Axial Tracking of a Fluorescent Nano-Particle Using a Defocusing Model
Dimitri Van De Ville, EPFL LIB

Test Run • 06 April 2004 • BM 4.235

Abstract
The image of a sub-resolution nano-particle in fluorescence microscopy corresponds to a slice of the 3D point spread function (PSF). This slice relates to the out-of-focus distance of the nano-particle. In this paper, we investigate to which extent it is possible to estimate the out-of-focus distance of the nano-particle from a 2D image based on the knowledge of the 3D PSF.To this end, we compute the Cramér-Rao bound (CRB) that provides a lower bound on the error of the best estimator of the axial position. The calculation of the CRB involves the specification of a 3D PSF model, the assumption of a signal-dependent Poisson noise, and some acquisition parameters. Our derivation shows that the CRB depends on the defocusing distance. Interestingly, nanometer precision can be attained over a range of defocus distances and for sufficiently high SNR levels. The theoretical results are confirmed with simulated experiments using estimators based on the least-squares (LS) and normalized cross-correlation (NCC) criterion. The results obtained are very close to the theoretical CRB.
  • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
  • Publications
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved