Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Seminars
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Seminars


Seminar 00055.txt

WSPM: A new approach for wavelet-based statistical analysis of fMRI data
Dimitri Van De Ville, BIG, EPFL

Test Run • 09 June 2005 • BM 4.235

Abstract
Recently, we have proposed a new framework for detecting brain activity from fMRI data, which is based on the spatial discrete wavelet transform. The standard wavelet-based approach performs a statistical test in the wavelet domain, and therefore fails to provide a rigorous statistical interpretation in the spatial domain. The new framework provides an “integrated” approach: the data is processed in the wavelet domain (e.g., by thresholding wavelet coefficients), and a suitable statistical testing procedure is applied afterwards in the spatial domain. This method is based on conservative assumptions only and has a strong type-I error control by construction. At the same time, it has a sensitivity comparable to that of SPM. Here, we focus on the central paradigm of our framework, which separates approximation (obtained by processing the wavelet coefficients) and statistical testing. Interestingly, such a decoupling offers high flexibility on the type of processing that can be done in the wavelet domain. For example, we discuss the use of a redundant discrete wavelet transform, which provides a shift-invariant detection scheme. The key features of our technique are illustrated with experimental results. An implementation of our framework will be available as a toolbox (WSPM) for the SPM2 software
  • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
  • Publications
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved