Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Seminars
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Seminars


Seminar 00241.txt

Steerable Wavelet Machines (SWM): Learning Moving Frames for Texture Classification
Adrien Depeursinge, Emmanuel Soubies, EPFL STI LIB

Meeting • 03 May 2016 • BM 4 233

Abstract
Title 1: Steerable Wavelet Machines (SWM): Learning Moving Frames for Texture Classification Presenter 1: Adrien Abstract 1: We present texture operators encoding class-specific local organizations of image directions (LOID) in a rotation-invariant fashion. The LOIDs are key for visual understanding, and are at the origin of the success of the popular approaches such as local binary patterns (LBP) and the scale-invariant feature transform (SIFT). Whereas LBPs and SIFT yield handcrafted image representations, we propose to learn data-specific representations of the LOIDs in a rotation-invariant fashion. The image operators are based on steerable circular harmonic wavelets (CHW), offering a rich and yet compact initial representation for characterizing natural textures. The joint location and orientation required to encode the LOIDs is preserved by using moving frames (MF) texture representations built from locally-steered multi-order CHWs. In a second step, we use support vector machines (SVM) to learn a multi-class shaping matrix of the initial CHW representation, yielding data-driven MFs that are invariant to rigid motions. We experimentally demonstrate the effectiveness of the proposed operators for classifying natural textures. Title 2: Some results on MA-TIRF reconstruction and exact continuous penalties for l2-l0 minimization Presenter 2: Emmanuel Soubies Abstract 2: In the first part of this presentation, I will present some work related to Multi-Angle Total Internal Reflection Fluorescence (MA-TIRF) reconstruction. This microscopy technique is a method of choice to visualize membrane-substrate interactions. After an introduction on TIRF microscopy, I will present microscope calibration techniques which are essential for the success of reconstruction methods. Then, I will roughly introduce the reconstruction methods that can be used to solve the ill-posed inverse problem allowing to compute a quantitative depth map with high axial resolution. Finally, biological reconstructions on real samples will be presented. In a second time, I will focus on sparse approximation and more precisely on nonconvex continuous penalties approximating the l0-pseudo norm within the framework of the l0-regularized least squares problem. I will introduce the Continuous Exact l0 penalty (CEL0), an approximation of the l0-norm leading to a tight continuous relaxation of the l2-l0 criteria. Relationships between minimizers of the initial and relaxed functionals will be presented showing that the CEL0 functional provides an equivalent continuous reformulation of the l2–l0 objective. Thanks to the continuity of this relaxation, recent nonsmooth nonconvex algorithms can be used to address its minimization. Finally, applications in signal processing will be presented and an unification on such continuous exact relaxations will be shortly commented.
  • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
  • Publications
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved