Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Seminars
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Seminars


Seminar 00267.txt

Lipid membranes and surface reconstruction - a biologically inspired method for 3D segmentation
Nicolas Chiaruttini, University of Geneva

Seminar • 16 May 2017

Abstract
We present a direct 3D surface segmentation method, inspired from lipid membrane physics. Contrary to level-set or mesh-based methods, the segmented surface is defined by a set of independent “lipid” particles that have a position and a normal vector. "Lipids", that are also called surfels, exert a force along their normal vector to adapt to the underlying 3D image (data attachment term). Surface integrity is maintained by local surfels interactions which also allow for topological changes (surface merging or splitting). Segmentation of multiple self-excluding volumes is easily implemented by keeping only repulsive terms between different classes of surfels. We implemented this method into a scriptable ImageJ plugin, and parallelized time critical steps with CUDA. Using a standard desktop computer, we report the segmentation of - 3D tissue from confocal images (~ 800 cells) - human brain surface from MRI sections - and Endoplasmic Reticulum from FIB-SEM data. With a standard desktop computer, this method converges within minutes for ~500k particles. (demo video : https://www.youtube.com/watch?v=TBODq6dVczM).
  • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
  • Publications
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved