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Abstract—Reconstruction algorithms for fluorescence tomog-
raphy have to address two crucial issues : (i) the ill-posedness
of the reconstruction problem, (ii) the large scale of numerical
problems arising from imaging of three dimensional samples. Our
contribution is the design and implementation of a reconstruction
algorithm that incorporates general Lp regularization (p > 1).
The originality of this work lies in the application of general
Lp constraints to fluorescence tomography, combined with an
efficient matrix-free strategy that enables the algorithm to deal
with large reconstruction problems at reduced memory and
computational costs.

In the experimental part, we specialize the application of the
algorithm to the case of sparsity promoting constraints (L1). We
validate the adequacy of L1 regularization for the investigation
of phenomena that are well described by a sparse model, using
data acquired during phantom experiments. 1

I. INTRODUCTION

Fluorescence molecular tomography (FMT) is an optical
imaging technique that offers the possibilities to monitor
cellular and molecular function in-vivo [1]–[3]. In FMT, the
distribution of biomolecules in tissue is assessed either by
detecting the fluorescence of probes that interact specifically
with the molecules of interest, or by detecting the intrinsic
fluorescence of biomolecules. This technique is already used
routinely for small animal research, in fields as diverse as
oncology [4], inflammation [5], cardiovascular disease, phar-
macokinetics, and bone metabolism [6]. Moreover, promising
results were obtained for breast cancer detection in humans
[7]–[9].

In the near-infrared (NIR), which is the practical wavelength
range of operation in FMT, scattering is the dominating mode
of light-matter interaction as light propagates through tissue.
As a result, propagation can be described reasonably well by
a diffusion equation. The task of reconstructing an image in
FMT, which corresponds to inverting the diffusion process,
is a severely ill-posed problem. To obtain meaningful results,
it is essential to include some form of regularization in the
inversion; for instance by exploiting a priori knowledge. In
early stage of cancer, for example, the biological mechanisms
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of interest occur in very localized regions. Images of the bone
metabolism, on the other hand, show larger regions of activity,
with defined boundaries. A common feature of the observed
biological function in these two examples is “sparsity”. In
the first case, the spatial distribution of biological activity is
confined to a small region (only a few pixels are activated). In
the second case, the spatial distribution of biological activity is
piecewise-smooth. It is characterized by its boundaries where
sharp transitions occur, or equivalently, a strong gradient. In
view of such examples, it appears that sparsity is an ingredient
in a number of biological mechanisms studied with FMT. As
a consequence, sparsity promoting regularization methods are
potentially beneficial in those cases.

In optical tomography the distribution of optical proper-
ties (accounting for the fluorescent probe) is computed by
minimizing the misfit between intensity measurements at the
boundary, and the measurements predicted by a physical
model; the forward model. In the most general case, one is
interested in recovering the spatial distributions of absorption,
scattering and fluorescence lifetime. The corresponding for-
ward model is non-linear and the reconstruction is typically
achieved by iterative optimization methods that are based on
the first-order approximation of the forward model, that is,
the jacobian. A variety of iterative procedures such as the
Born iterative method [10], the coodinate descent algorithm
[11], the Gauss-Newton method [12], the truncated-Newton
method [13], [14], the Levenberg-Marquardt method [15]–
[17], the BFGS method [18], [19], and the non-linear conjugate
gradient method [20] have been studied. When the goal
is solely to recover the fluorescent probe concentration, a
reasonable approximation is neglect the change in absorption
and scattering due to the presence of the fluorophores. This
results in a linear forward model [21], which is the context of
the present paper. A number of methods that include regular-
ization have been studied for linear reconstruction in optical
tomography; the Kaczmarz method (ART) with an appropriate
stopping criterion, the filtered singular value decomposition
and Tikhonov (L2) regularization [22]–[25].

In this contribution, we propose general Lp regularization
(p > 1) as a new regularization technique for the reconstruc-
tion of fluorescence data, together with an optimization method
developed specifically for Lp regularization. The practical
interest of such regularization is the sparsifying effect that
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is observed for p close to 1 [26]. Because of the particular
structure of the objective function, which is the sum of a
linear least-squares term and a Lp regularization term, specific
optimization methods have to be employed. Even though our
forward model is linear, the reconstruction method is non-
linear. It is based on the iteratively re-weighted least-squares
(IRLS) algorithm [27]. In the case p = 2, it reduces to
the traditional Tikhonov regularization. Some particular cases
of L1 regularization have been reported for diffuse optical
tomography (DOT) [16], [28], and FMT [29]. These works,
however, are limited to the case p = 1, with an emphasis
on spatial sparsity, or minimization of total variation. The
method presented in this paper provides a broader class of
regularization schemes.

The computation and storage of the jacobian matrix (or
system-matrix) is a limitation of many reconstruction methods
in optical tomography of complex shaped specimens [30]. One
can reduce the computation time and memory allocation of the
optimization methods referenced above by employing matrix-
free techniques. Methods that do not store a system-matrix
are referred to as matrix-free methods. Adjoint differentiation,
also termed reverse differentiation, is such a technique. It was
explored for optical tomography in [13], [19], [31]. Other
matrix-free methods, based on the adjoint equation, were
proposed for bioluminescence tomography in [32], and for
multiple-wavelength fluorescence tomography in [33]. In order
to improve the computation time and memory allocation of
IRLS, we have used the adjoint equation to derive a matrix-
free IRLS for fluorescence tomography. Finally, the last feature
of interest of our method is a fully continuous formulation. We
will see in Section III that it leads naturally to the matrix-free
method based on the adjoint equation.

We have taken special care to validate the method on
synthetic and measured phantom data. Specifically, we have
compared L1 regularization versus L2 regularization in order
to demonstrate the advantages of the proposed scheme. The
performance was assessed in terms of visual quality, contrast-
to-noise ratio (an indicator of reconstruction quality [34]), and
robustness to noise.

The article is organized as follows. In Section II we de-
scribe the light propagation model for FMT. In Section III
we review standard reconstruction methods and present our
algorithm. Section IV elaborates on the numerical aspect of
the reconstruction method. First, we explain how we handle
L2 regularization, which yields a linear algorithm. Then, we
describe the algorithm for non-quadratic Lp regularization. In
Sections V and VI, we discuss the numerical simulations and
phantom experiments. In Section VII, we analyse the compu-
tational and memory costs of the proposed method. Finally,
we conclude the paper in Section VIII with a discussion of
the results.

II. PHYSICAL MODEL

The propagation of light within biological tissue can be
modeled using the diffusion equation [35], [36]. Let Ω be a
domain filled with some turbid medium and ∂Ω its boundary.
The optical properties of the medium are summarized by the

absorption coefficient µa and the reduced scattering coefficient
µ′s. In the time independent case, an internal source s generates
a stationary light field whose fluence rate u satisfies:{

−∇ · (D∇u) + µa u = s in Ω
u+ an · ∇u = 0 on ∂Ω (1)

where D = 1/(3(µ′s + µa)) is the diffusion coefficent, a is a
coefficient that depends on D and the refractive index of the
sample, and n is the unit vector normal to ∂Ω.

Fluorophores are characterized by their excitation and emis-
sion spectra, and their quantum yield η. The quantum yield is
the ratio between emitted fluorescence photons and absorbed
photons. Thus, the stationary light field generated by a fluo-
rescent marker can be described by (1), in which the source
term is given by s(r) = η µaf (r)uin(r), where µaf (r) is the
absorption due to the marker, and uin is the fluence of the
excitation wave. µaf (r) is directly proportional to the marker
concentration c(r), so we can write s(r) = s0 c(r)uin(r). In
all generality, the total absorption µa in (1) is µa = µaf +µai,
the sum of the absorption of the flurorophore and the absorp-
tion the non-fluorescing chromophores. In this work, however,
we make the common approximation µa ≈ µai, so that the
fluorophore determines only the source term of the diffusion
equation. We obtain a linear relation between the concentration
and the emitted light field.

In FMT, an excitation light source illuminates a portion
∂Ωin of the surface of the investigated object (source positions)
and detectors capture fluorescence light emitted from a subset
∂Ωout of the surface (detector positions). Measurements are
performed for a number of different pairs

(
∂Ωin, ∂Ωout

)
. This

situation is described by the set of equations : −∇ ·
(
Din∇uin

)
+ µin

a uin = 0 in Ω
uin + ain n · ∇uin = v on ∂Ωin

uin + ain n · ∇uin = 0 on ∂Ω\∂Ωin
(2)

{
−∇ · (Dout∇uout) + µout

a uout = s0 · c · uin in Ω
uout + aout n · ∇uout = 0 on ∂Ω

(3)

with the corresponding notation :
uin, uout fluence rates at excitation and emission

wavelength, λin and λout respectively;
v fluence rate of the excitation field entering

the boundary;
Din, Dout diffusion coefficients at λin and λout respectively;
µin

a , µ
out
a absorption coefficient at λin and λout respectively;

ain, aout coefficients depending on Din, Dout respectively
and on the refractive index of the medium;

c fluorophore distribution (to be recovered).

In this model the measurements m are the values of uout

on ∂Ωout, i.e. m(r) = uout(r), r ∈ ∂Ωout. Since the fluo-
rophore concentration determines the source term in equation
(3), we effectively obtain information about the fluorophore
concentration from these measurements.

III. RECONSTRUCTION OVERVIEW

We begin by describing a standard reconstruction algorithm
with an explicit system matrix, which we refer to as direct



3

method. We then proceed with the derivation and presentation
of our approach.

A. Direct method

The direct reconstruction method is derived from the Fred-
holm integral formulation of the FMT problem. Specifically,
let Gout be the Green’s function of equation (3), and uin

s be
the fluence generated by a source at position rs. The measured
fluence at detector position rd is given by :

uout(rd) =
∫

Ω

Gout(r′, rd) s0 c(r′)uin
s (r′)dr′ (4)

Now, let us assume that Ω has been subdivided into N voxels.
The discretization of (4) yields

Ms,d = s0 dV
N∑

k=1

Gout
k,d CkU

in
s,k (5)

where Ms,d denotes the fluence observed by a detector at
voxel d for a source in voxel s, Gout

k,d is the Green’s function
evaluated at detector d for a point source in voxel k, U in

s,k is
the excitation fluence in voxel k generated by a source placed
in voxel s, Ck is the fluorophore concentration at voxel k and
dV is the voxel volume. We see that in order to obatin Ms,d

one needs to compute Gout
k,d and U in

s,k, k = 1..N . Using the
reciprocity principle of light propagation [30], we have that
Gout

k,d = Gout
d,k . Thus, in order to evaluate (5), it is necessary to

solve Ns + Nd diffusion equations, where Ns is the number
of sources and Nd the number of detectors; Ns equations to
get the values U in

s,k, and Nd equations for the values Gout
d,k . Let

us assume that there are Nsd source-detector pairs. One can
write Nsd equations such as (5); one per source-detector pair.
By re-arranging these equations in matrix form we obtain :

m = Wc (6)

where W is an Nsd × N matrix, and c is the vector of
fluorophore concentrations at each voxel. In general, this linear
system of equations is solved using ART, SVD, regularized
SVD or Tikhonov regularization [22]–[24]. Note that there
are several numerical methods to determine Green’s functions
(finite differences, finite elements, finite volumes).

B. Proposed method

We specify the reconstruction problem in a variational
framework. Specifically, the fluorophore distribution is com-
puted by minimizing a cost functional that consists of a data
term and a regularization term; the data term ensures that the
computed solution is in agreement with the measurements,
while the regularization term promotes solutions with pre-
scribed properties in order to overcome the ill-posedness of
the problem. We consider the following class of continuous
functionals with parameter p ∈ [1,+∞[:

Jp(c) =
1
2

Ns∑
k=1

∫
∂Ωk

(uout
k (r)−mk(r))2dσ(r)

+
α

2

∫
Ω

‖Rc(r)‖p2dr (7)

In this expression, σ is the surface measure, Ns is the number
of sources, and uout

k , mk, and ∂Ωk, k = 1..Ns are respec-
tively the fluence at emission wavelength, the measurements,
and measurement positions for the k-th source. R is a suitable
linear operator chosen for the regularization, and α is a
parameter used for controlling the tradeoff between penalty
and data consistency. Rc(r) is possibly vector valued; for
instance we can have R = ∇. The right hand side integral
in (7) is the Lp-norm of Rc to the power p. Indeed, for a
scalar valued function f , the Lp norm is defined by

‖f‖p =
(∫

R
|f(t)|pdt

) 1
p

(8)

In order to extend this definition to a vector valued function
g(t), one applies it to the real valued function ‖g(t)‖2. The use
of functionals of the type of (7) is termed Lp-regularization.
Few authors in the field [12] use a fully continuous cost
functional. This enables us to take advantage of current setups
where the detector is a CCD camera imaging at high resolution
a wide portion of the boundary of the domain. Such an
approach differs from the common practice which is to use
point-like detectors, and to formulate a discrete data term in
the cost functional. Notice that the source-detector pairs in
the two approaches do not correspond. In the latter approach
(point-like detectors) there are Ns×Nd source-detector pairs,
whereas in the former there are Ns source-detector pairs (as
many as sources). Finally, remark that the use of a continuous
Lp norm as regularizer in (7) is original.

Using calculus of variations, it is possible to formulate the
minimization of the quadratic functional J2 (corresponding
to p = 2) directly over function spaces. Some authors use a
constrained optimization framework with the Lagrange formal-
ism, incorporating (3) as a constraint [12]. Another possibility
is to consider the measurements operators Ak : L2(Ω) →
L2(∂Ωk), c 7→ uout

k |∂Ωk
, k = 1..Ns, where L2(X ) denotes

the space of finite energy signals with support in X . Notice that
the Ak’s are linear. Computing uout

k = Akc requires solving
equations (2) and (3), with v in (2) corresponding to the k-th
excitation light source. The gradient of J2 with respect to c is
given by the Fréchet derivative [37]

∂J2

∂c
=

Ns∑
k=1

A∗k (Akc−mk) + αc

where A∗k is the adjoint operator of Ak and R = I for
simplicity. In a similar way as what was done for DOT in
[38], we can prove (see appendix) that the adjoint operator
A∗k : L2(∂Ωk) → L2(Ω), v 7→ A∗kv is defined by A∗kv =
s0 u

in
k ϕ where ϕ is the solution of the equation

−∇ · (Dout∇ϕ) + µout
a ϕ = 0 in Ω

ϕ+ aout n · ∇ϕ = aout

Dout v on ∂Ωk

ϕ+ aout n · ∇ϕ = 0 on ∂Ω\∂Ωk

The structure of the problem is as follows. Denoting A the
operator c 7→ Ac =

∑Ns

k=1A
∗
kAkc, and m̃ =

∑Ns

k=1A
∗
kmk,

we have
∂J2

∂c
= (A+ αId) c− m̃. We see that the operator A

plays the same role as the system-matrix times its transpose, in
a discretized setup. However, A has been defined over function
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spaces, in terms of partial differential equations (PDE). There-
fore, we do not need to assemble explicitly a system-matrix to
evaluate A. One only needs to solve the corresponding PDEs.
This can be done rapidly with efficient linear solvers such
as preconditioned conjugate gradient, GMRES or multigrid
for instance. In addition, the use of a continuous framework
guarantees that our numerical solution is consistent regardless
of the discretization employed. Our main concern will now be
to find an efficient numerical way of computing a minimizer
of Jp. We will first present a numerical method to implement
efficiently the operator A. The knowledge of the operator A
yields the gradient of the data term in (7), which is the key
step for the application of most optimization techniques.

IV. ALGORITHM

A. Discretization

For computational purposes, the diffusion equations (2) and
(3) and the functional (7) must be discretized. To that end, we
use the finite-elements method with triangular elements. We
define a triangular mesh of the physical domain, and approxi-
mate the quantities of interest uin

k , k = 1..Ns, u
out
k , k = 1..Ns

and c using piecewise-polynomial basis functions (polynomial
in each triangle). We use separate meshes for the different
quantities, which makes the implementation more flexible. In
mathematical terms this translates into

uin
k (r) ≈ uin

h,k(r) =
N in∑
j=1

uin
k,j U in

j (r), k = 1..Ns (9)

uout
k (r) ≈ uout

h,k(r) =
Nout∑
j=1

uout
k,j Uout

j (r), k = 1..Ns (10)

c(r) ≈ ch(r) =
Nc∑
j=1

cjCj(r) (11)

where h is the element size, U in
j , j = 1..N in,Uout

j , j =
1..Nout and Cj , j = 1..N c are the basis functions associated
with the meshes used for uin, uout and c respectively. We
see that the approximations uin

h,k, u
out
h,k and ch are uniquely

defined by the vectors uin
k = (uin

k,1, . . . , u
in
k,N in)T ,uout

k =
(uout

k,1 , . . . , u
out
k,Nout)T , k = 1..Ns and c = (c1, . . . , cNc)T .

The following matrices and vectors enter the computations :

Li,j =
∫

Ω

∇Uout
i (r)·∇Uout

j (r) + κUout
i (r)Uout

j (r)dr

+
1
a

∫
∂Ω

Uout
i (r)Uout

j (r) dr (12)

(Mk)i,j =
∫

∂Ωk

Uout
i (r)Uout

j (r) dσ (13)

(Sk)i,p =
∫

Ω

Uout
i (r)uin

k (r)Cp(r) dr (14)

Rp,q =
∫

Ω

〈RCp(r),RCq(r)〉 dr (15)

(mk)i =
∫

∂Ωk

Uout
i (r)mk(r) dσ (16)

where i, j = 1..Nout, p, q = 1..N c, k = 1..Ns.

We obtain a numerical approximation for the solution of
(3) by solving the linear system Luout

k = Skc for uout
k . For

simplicity, we assume that the medium is homogeneous and
we define κ = µout

a /Dout. Note that the method can also
handle varying coefficients. One simply has to use a varying
κ in (12). We also implicitly assume that uin

k was obtained by
solving (2) using the FEM as well.

B. Quadratic functionals

In this section we focus on the quadratic case, namely J2(c).
Replacing ch by its expansion over the basis functions and
using the notations introduced above, we obtain

J2(ch) =
1
2

Ns∑
k=1

{
uout

k
T Mkuout

k − 2mT
k uout

k

}
+
α

2
cT Rc + C0 (17)

where C0 is a constant. Besides, we know that uout
k =

L−1Skc. After some algebraic manipulations, we get

J2(c) =
1
2
cT

(
Ns∑
k=1

ST
k L−T MkL−1Sk + αR

)
c

−

(
Ns∑
k=1

ST
k L−T mk

)T

c + C0 (18)

Dropping the constant C0 which is irrelevant for the min-
imization, we are left with a quadratic function to min-

imize:
1
2
cT Hc − bT c where we have H = A + αR,

A =
Ns∑
k=1

ST
k L−T MkL−1Sk and b =

Ns∑
k=1

ST
k L−T mk. In this

expression, the matrix A is the discrete counterpart of the
operator A introduced in Section III. It is equivalent to the
matrix WT W in the direct method.

A crucial property for our formulation is that the matrix H
is symmetric positive-definite. Consequently we can use the
conjugate gradient algorithm (CG) to perform the minimiza-
tion.

C. Efficient gradient computation

The key step in CG, and more generally in any gradient
based algorithm, is the computation of the gradient of the
functional. The gradient of J2 is Hc− b. It can be split into
the gradient of the data term Ac− b, and the gradient of the
regularization term αRc. The matrix R is obtained during the
discretization, and because it is sparse, the calculation of the
product Rc is a computationally cheap operation.

Computing Ac − b is more involved. The proposed strat-
egy is to perform the matrix-vector multiplication Ac =∑Ns

k=1 ST
k L−T MkL−1Skc without assembling and storing the

matrix A explicitly. Specifically, we break the computation of
ST

k L−T MkL−1Skc in three steps :

1. solve Ly = Skc for y (19)
2. solve Lz = Mky for z (20)

3. return ST
k z (21)
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In this way, Ac is evaluated via the solution of 2×Ns linear
systems involving L. Since L is a sparse symmetric positive-
definite matrix, this is rapidly achieved with CG as well.

D. Non-quadratic functionals

We will now show that we can handle non-linear regulariza-
tion (p 6= 2) by considering a sequence of quadratic problems
of the same form as above. Numerically, the regularization
integral in (7) is computed using the Gauss quadrature formula
[39], ∫

Ω

‖Rc(r)‖p2 dr ≈
∑
e∈E

ωe ‖Rc(xe)‖p2 (22)

where E is the set of elements, xe for e ∈ E are fixed quadra-
ture points and ωe for e ∈ E are quadrature weights. Let Q(x)
be the matrix formed by concatenating the column vectors
RCj(x), j = 1..N c, such that we have Rch(x) = Q(x)c.
Note that the dependency on the variable x is accounted for
in the matrix Q(x). For instance, in a two dimensional setup,
if R = ∇, we have

Q(x) =
(
∂1C1(x) · · · ∂1CNc(x)
∂2C1(x) · · · ∂2CNc(x)

)
(23)

and ∇ch(x) = Q(x)c. Because the operator R is usually
local (for instance I or ∇), the matrix Q(x) depends only
on the few basis functions interpolating ch at the position x.
Thus, evaluating (22) is not more costly than a sparse matrix
multiplication with a vector.

With this notation we can write

Jp(ch) =
1
2

Ns∑
k=1

{
uout

k
T Mkuout

k − 2mT
k uout

k

}
+
α

2

∑
e∈E

ωe ‖Q(xe)c‖p2 + C0 (24)

where C0 is a constant.
In order to minimize such a functional we use the iteratively

re-weighted least-squares algorithm (IRLS). This algorithm
builds a sequence of estimates obtained from the minimization
of quadratic surrogate functionals. The intuitive idea behind
this is as follows. When c lies close enough to the current
n-th estimate c(n) we have :∑

e∈E

ωe ‖Q(xe)c‖p2 ≈
∑
e∈E

ωe

∥∥∥Q(xe)c(n)
∥∥∥p−2

2
‖Q(xe)c‖22

(25)

where the terms depending on c(n) are assumed to be fixed.
Thanks to this weighting procedure we are left with a quadratic
functional to minimize, which is readily done using the frame-
work we introduced above. For further analysis of the IRLS
algorithm we refer to [40]. Figure 1 shows the evolution of the
cost functional with IRLS iterations in practice; minimization
of total variation (i.e. the L1 norm of the gradient) in that
case. We see that the cost converges to a minimum, which
indicates that the iterates converge to a minimizer because the
functional is convex.
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Fig. 1. Cost functional across IRLS iterations for TV regularization (p =
1, R = ∇).

V. METHODS

A. Phantom experiments

The setup employed to acquire FMT data is depicted in
Fig. 2. We use a non-contact, trans-illumination setup in the
continuous wave mode. The beam of a diode laser emitting at
655 nm is focused onto the surface of a cylindrical phantom
containing either one or two fluorescent inclusions. A sensitive
CCD camera (iKon-M, Andor Technology, Belfast, Northern
Ireland), cooled to −60◦C to reduce dark-counts, records
the light emitted from the opposite side of the phantom. An
interference filter is placed in front of the camera objective
(f/1.8, f = 50 mm, Linos AG, Goettingen, Germany) to
block the light emitted by the laser. In order to further reduce
the detection of spurious signal from the laser, a clean-up
interference filter is placed between the laser diode and the
focusing lens. To obtain a complete data set, the sample is
rotated with respect to the laser/camera reference and images
are taken every 10◦.

Two cylindrically shaped phantoms made of silicon with
diameters of 35 mm and 25 mm respectively were used in
the experiments. The 25 mm phantom contained a cylindrical
hole (4 mm in diameter) parallel to the symmetry axis and
the larger phantom contained two holes (4 mm). Otherwise,
the cylinders were homogeneous. Absorption and scattering
coefficients were adapted to be similar to those of biological
tissue by adding the required amounts of india ink as an
absorber and titanium oxide as a scatterer. The values of the
optical coefficients are shown in table I. The holes were filled
with an aqueous solution of Alexa Fluor 680 (Invitrogen AG,
Basel, Switzerland). The absorption and scattering coefficients
of this solution were adapted to those of the silicon by adding
the adequate amounts of india ink and Intralipid.
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CCD camera

Excitation laser

Cylindrical phantom

Fluorophore inclusion

perform a sweep to acquire 
a 360° dataset

filter

filter

lens

Fig. 2. Experimental setup

TABLE I
OPTICAL COEFFICIENTS

Wavelength Absorption Reduced scattering
(mm−1) (mm−1)

Excitation λin = 655nm 0.018 1.68
Emission λout = 702nm 0.017 1.66

B. Contrast-to-noise ratio

Whenever possible, we assessed reconstruction quality by
visual inspection. Nevertheless, this approach has two draw-
backs. First, visual inspection is subject to personal appre-
ciation. Second, in experiments where several parameters
are varied, inspecting all the reconstructed images becomes
intractable. For large studies, one would rather employ a crite-
rion that can be computed automatically on all reconstructions.

The contrast-to-noise ratio (CNR) is a measure that indicates
if a localized feature in an image is well discernable or lost
in the image noise [41]. In [42] the authors use the CNR to
characterize the performance of a FMT reconstruction system.
The CNR is defined as the image contrast between a feature
that is to be detected and the background, divided by a measure
of the image noise. Specifically,

CNR =
µROI − µBCK

(wROI σ2
ROI + wBCK σ2

BCK)1/2
(26)

where µROI and µBCK are the mean concentration values in the
ROI (the region of interest to which the feature is confined)
and background respectively, σROI and σBCK are the variances,
and wROI and wBCK are weighting factors.

In our CNR computations, the ROI was defined by the actual
fluorophore inclusions. We treated as background the signal
in the complement of the ROI. The weights wROI and wBCK
were set to the fraction of area occupied by the ROI and the
background respectively.

C. Simulations

In simulation we modeled the geometry described in Section
V-A. The fluence rate of the excitation laser and the concentra-
tion were always set to one. Poisson noise was added to the

simulated measurements in the following manner. Denoting
m̂ the noise-free measurement vector output by the forward
model, we generate the noisy vector

m ∼ 1
γ
P {γ m̂} (27)

where γ is a parameter used to adjust the noise level,
and P {x} is the poisson distribution with mean x. We
assess the noise level with the signal to noise ratio, SNR
= 10 log10

(
‖m̂‖22/‖m̂−m‖22

)
. Because the forward model

is linear, the SNR and the CNR are invariant to scaling,
working with unit excitation and concentration is a valid
approach.

D. Experiments

In the experiments we adjusted the noise level by changing
the integration time and laser power incident on the phantoms.
The laser power was adapted by means of OD filters placed
in the laser beam. Computing the SNR required a reference
measurement, for which the noise was negligible. For each
experiment, such a reference was obtained using a long inte-
gration time and high laser power. The reference measurement
was then fitted to the noisy measurements with least squares
to yield m̂. Note that in this methodology, measurements that
are obtained with a long integration time and high laser power
are essentially considered as noise-free. Therefore, we do not
give an SNR value in that case.

VI. RESULTS

The reconstruction algorithm was implemented in two di-
mensions. All the phantoms considered were invariant by
translation along the symmetry axis of the cylinder which
enabled to apply a 2D reconstruction algorithm. Although
the results shown here are 2D, the proposed reconstruction
algorithm applies also to 3D, by employing a 3D forward
model. The improvement achieved by L1 regularization over
L2 regularization demonstrated in this section relies on the
sparsifying effect of L1 regularization, and is independent of
the linear forward model employed. It is therefore reasonable
to expect a similar improvement in a fully 3D setup.

For the results obtained with the IRLS algorithm (which
corresponds to a L1 regularization term here), it was necessary
to choose the number of IRLS iterations. The typical behaviour
of the IRLS algorithm is represented Figure 1. We see that
the decrease in the cost functional saturates after the first few
iterations. In practice we observed (by visual inspection) that
five IRLS iterations were enough in most cases.

The reconstructions presented in this section were per-
formed using grids that were restricted to the region enclosed
1.5mm away from the boundary of the sample. For instance, in
the case of a disk sample with diameter 25mm, the grid would
overlay the 23mm diameter disk that is centered on the sample.
This restriction helps handling boundary artifacts. Using these
restricted grids is reasonable since the diffusion approximation
is not valid close the boundaries, rendering reconstructions at
the boundary meaningless.
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A. Experiment 1 : synthetic data, a single inclusion.

We first present a representative reconstruction of simulated
data. The investigated sample was a cylinder with a diameter
of 25mm, containing a single cylindrical inclusion with a
diameter of 4mm. The inclusion was parallel to the symmetry
axis of the phantom, and centered 7.5mm away from the axis.
Poisson noise was added to obtain a SNR of 15dB. We used
I and ∇ for the regularization operator R. The regularization
parameter α was chosen by visual inspection, independently
for the different methods. Note that the so-obtained values
of α corresponded to reconstructions with CNR close to the
highest values (as a function of α).

Figure 3 displays the reconstructions. The values of CNR
for these reconstructions are given in Table II. Regardless
the regularization operator, the L1 reconstructions show less
artifacts and better accuracy for the marker location. In the
L2 reconstructions, the estimated fluorophore distribution is
spread over a large region, which can be interpreted as an
over-smoothing effect of L2 regularization. L1 reconstructions
are not affected by this over-smoothing. On image 3-(c), we
notice that for R = I , the L1 reconstruction found a marker
distribution that is smaller than the true distribution. This is
due to the sparsity promoting behaviour of the algorithm. In
that case, it did select a single basis function, which is the one
that explains best the observed data. The overall superiority of
the L1 method is confirmed by the CNR values of Table II.

On the cross-sections shown in 3-(e) and 3-(f), we see how
the methods compare in term of quantification. Both L1 and
L2 under-estimate the true distribution. L1, however, is slightly
more accurate, especially when R = I .

B. Experiment 2 : measured data, a single inclusion.

This experiment confirms on measured data, the results
obtained on synthetic data in Experiment 1. The geometry
of the phantom was the same as in Experiment 1. It is a
cylinder with diameter 25mm, containing a 4mm cylindrical
inclusion centered 7.5mm away from the axis. The fluorophore
concentration was 100nM. The data was acquired using an
integration time of 86ms, and laser power of 0.3mW. Note
that these experimental conditions are acceptable for in-vivo
experiments. The noise level was high, with a computed SNR
of 8.7dB. We performed reconstructions for R = I and
R = ∇. Similarly to above, the regularization parameter was
chosen by visual inspection.

In Figure 4, we show the reconstruction, in arbitray units,
obtained with R = I . Both methods (L1 and L2) located
accurately the marker, but the image L1 contains much less
artifacts. Similar to what was observed in simulation in Ex-
periment 1, the L1 reconstruction is more localized than the
true inclusion, and the reconstructed value is higher than the
value obtained with L2. L1 regularization with R = I has
favored a single basis function with a high weight to explain
the data. Although the values obtained with L1 and L2 differ,
the average values inside the inclusion do correspond. We
found 119 for L1 and 124 for L2. This indicates that the two
methods reconstruct the same quantity of fluorophore.

The CNR values of the reconstructions with R = I and
R = ∇ are given in Table II. They confirm the better quality
of the L1 images.

C. Experiment 3 : measured data, two inclusions.
There, we test the reconstruction algorithm on measured

data, with two inclusions. The phantom was a cylinder with a
diameter of 35mm. It contained two inclusions with diameter
4mm, centered 10mm away from the axis. The distance
between the centers of the two inclusions is 15mm. The phan-
tom is larger than in the two previous experiments, and the
marker inclusions are buried deeper inside. The fluorophore
concentration was 200nM in both inclusions. The integration
time was 1s, and the laser power 30mW. Again, these values
are compatible with in-vivo experiments. Since the integration
time and laser power are high enough, this data set is essen-
tially noise-free (according to our noise estimation method).
We performed reconstructions for R = I and R = ∇, and
chose the regularization parameter visually.

Reconstructions for R = ∇ are shown in Figure 5. In this
case, both methods yield comparable reconstructions. The L1

method, however, yields slightly less artifacts. In addition, the
L1 image is composed of sharper transitions, between constant
regions. This leads to a better CNR as we can see in Table II.

D. Experiment 4 : CNR study, measured data, a single inclu-
sion.

Next, we investigated the robustness of the reconstruction to
the noise on the measurements. The CNR presented in Section
V-B was used a performance criterion. The phantom was the
same as in Experiments 1 and 2. The fluorophore concentration
was 100nM. We varied the SNR of the measurements by
changing the integration time and laser power. The integration
time ranged from 0.13s to 1.53s, and the laser power was
0.3mW or 3mW. The regularization parameter was set such
as to maximize the CNR.

The results of this experiment are presented Figure 6. We
notice that the L1 CNR is consistently above the corresponding
L2 CNR, confirming the trend observed in the previous
experiments. This supports the adequacy of L1 regularization
for reconstructing localized inclusions.

E. Experiment 5 : CNR study, synthetic data, a single inclu-
sion of varying size.

The protocol of Experiment 4 was reproduced in simulation.
In simulation, we varied the input SNR by changing the
parameter γ of Section V-C. In addition, we repeated the
experiment for various diameters of the inclusion : 2mm, 4mm
and 6mm. This experiment enabled to confirm the validity of
our simulation, and to test the algorithm on two other inclusion
sizes.

The results are displayed in Figures 7 and 8. These sim-
ulations are in agreement with Experiment 4 : L1 achieves
best CNRs. Interestingly, I is more efficient than ∇ on
small inclusions (2mm), whereas ∇ performs better on large
inclusions (6mm). This can be explained by the fact that with
R = I , the algorithm tends to select a single basis function,
while R = ∇ promotes large constant regions.
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Fig. 3. Experiment 1 : synthetic data, one inclusion with diameter 4mm in a cylinder with diameter 25mm. (a) R = I, L2; (b) R = ∇, L2; (c) R = I, L1;
(d) R = ∇, L1; (e) Cross-sections along a horizontal line of reconstructions (a) and (c); (f) Cross-sections along a horizontal line of reconstructions (b) and
(d).
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Fig. 4. Experiment 2 : measured data, one inclusion with diameter 4mm in a cylinder with diameter 25mm. (a) R = I, L2; (b) R = I, L1. Arbitrary
units.
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Fig. 5. Experiment 3 : measured data, two inclusions with diameter 4mm in a cylinder with diameter 35mm. (a) R = ∇, L2; (b) R = ∇, L1. Arbitrary
units.

TABLE II
CNR VALUES FOR RECONSTRUCTIONS OBTAINED IN EXPERIMENTS 1, 2

AND 3

CNR
Experiment R = I R = ∇

L2 L1 L2 L1

Experiment 1 7.4 8.7 7.7 11.2
Experiment 2 6.4 8.1 6.2 10.1
Experiment 3 6.6 8.9 7.7 9

F. Experiment 6 : Quantification of the marker concentration,
synthetic data

To further address the quantification issue, we simulated
again the setup of Experiments 1 and 2. We varied the

concentration (in arbitrary units) from 1 to 10, and evaluated
the maximum of the reconstructed marker concentration. The
reconstructions were performed using R = I . The SNR of the
synthetic data was 20dB. The results are presented in Figure 9.
We see that both L2 and L1 estimates are linear functions of
the marker concentration. From the linear trend, we may infer
that an appropriate calibration of the system would enable the
proposed reconstruction method to quantify the marker.
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Fig. 9. Experiment 6 : maximum of the reconstructed marker concentration as a function of the true concentration; reconstructions obtained using R = I;
(a) for L2, (b) for L1. Synthetic data, arbitrary units.

VII. COMPUTATIONAL COMPLEXITY AND MEMORY
REQUIREMENTS

In this section we analyze the computational complexity
and memory requirements of our method and compare them
to direct methods in the case of quadratic functionals (p = 2).
We further investigate experimentally the reconstruction time
and memory allocation. The results are presented in Table III
and Figure 10.

Let us start with the computational complexity. We first
recall the notations introduced in the previous sections : Nout

is the number of degrees of freedom for uout
h , and N c is

the number of degrees of freedom for ch. Further, Ns is the
number of sources, Nd is the number of detectors, and Nsd is
the number of source-detector pairs. With these notations, the
matrices W and L of Sections III and IV respectively have
size Nsd × N c and Nout × Nout. The matrix L is a sparse
matrix used for numerically solving the diffusion equation. It
is known from numerical analysis that computing y = L−1x
is most efficiently performed using iterative methods such as
CG. Let us assume that the number of CG iterations is fixed
to nit diff . This is a reasonable assumption because the error
in the CG algorithm can be bounded using the conditioning
of L only. Thus, because L is sparse, solving a diffusion
equation costs O(nit diff ×Nout). In the method we present,
we minimize quadratic functionals using the CG algorithm
as well. Let us assume that our estimate of the minimizer
is obtained after nit outer iterations of CG. From equations
(19)-(21), one can convince oneself that the overall cost the
method is O(nit outer×Ns×(2Nout+2nit diff×Nout+N c))
(all the matrices involved in (19)-(21) are sparse). In the
direct method, one first assembles the system matrix, and then
finds a regularized solution of the linear system Wc = m.
For instance, in the case of Tikhonov regularization one
would solve

(
WT W + αI

)
c = WT m. When c has a large

number of degrees of freedom, iterative methods have to be
employed for solving the latter system; CG in our case. Since

W is not sparse the cost of nit outer iterations of CG is
O(nit outer × (N c)2). The formation of W was discussed in
Section III, and has a cost of O(nit diff × (Ns +Nd)×Nout).
The total cost of direct method is thus O(nit diff × (Ns +
Nd) × Nout) + O(nit outer × (N c)2). Varying N c, all other
parameters staying unchanged, we see that the cost is O(N c)
for the matrix-free method, and O((N c)2) for direct method.
In two dimension, N c grows like the square of the number
of discretization points per direction and the gain obtained
with the matrix-free method is already significant. It becomes
even more favorable in three dimension when N c grows
like the cube of the number of discretization points per
direction. In practice however, the stopping criterion for the
CG algorithm is often a tolerance on the residual. Thereby, the
number of iterations nit outer depends in a non-obvious way
on the problem size. Later in this section we present actual
computation times of the two methods, which confirm that the
matrix-free method is indeed faster.

Let us now consider the memory requirements. The re-
construction method we propose does not need any memory
space other than the space required to store the FEM forward
model matrix which is sparse and in any case indispensable.
Direct methods, on the other hand, store the system matrix
W. Because W is not sparse, the number of elements to
store is O(Nsd×N c). For large size problems such a storage
requirement rapidly becomes an issue, as we show in the
following experiment.

We monitored the reconstruction time and memory allo-
cation of the direct and matrix-free methods on a two di-
mensional circular problem. The reconstruction was performed
employing Tikhonov regularization (L2) with R = ∇ for both
methods. The linear system in the direct method was solved
by the CG algorithm. We simulated 36 sources, and a camera
with a field of view of 250 degrees. For the direct method,
the detectors were placed on the boundary, every two degrees
inside the field of view. We varied the discretization step of
the reconstruction grid (and thus the number of degrees of
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TABLE III
RECONSTRUCTION TIME AND MEMORY ALLOCATION AS A FUNCTION OF

THE NUMBER OF DEGREES OF FREEDOM (DOF) FOR c, WITH AND
WITHOUT SYSTEM MATRIX. NOTICE THAT ABOVE 23280 DOF THE SIZE OF
THE SYSTEM MATRIX EXCEEDED WHAT OUR COMPUTER COULD HANDLE,

SO ONLY VALUES FOR THE MATRIX-FREE METHOD ARE SHOWN.

number of Time Time Memory Memory
dof for c Matrix Free System Matrix used Matrix used System

(sec) (sec) Free (Bytes) Matrix (Bytes)
1,372 14.1 10.1 12,878,792 43,344,224
1,578 14.9 10.2 13,505,096 49,852,176
1,829 16.47 10.8 14,305,064 57,781,768
2,708 20.4 14 16,842,056 85,551,136
4,146 26.6 20 20,740,872 130,980,432
7,472 37 33 29,051,976 236,055,424
16,025 51.5 127.6 48,341,928 506,261,800
23,280 69.5 300.4 62,983,048 735,461,760
29,671 76 517.9 74,335,208 937,366,232
33,599 86.7 80,087,784
38,397 92.7 86,655,912
52,686 122.26 102,144,200
81,759 172 125,435,752
131,885 249.1 153,523,624

freedom for c), keeping the other parameters unchanged. The
computations were made on a workstation equipped with a
2.6GHz dual core processor, and 10GBytes of RAM. Table
III summarizes the results. Notice that for a large number
of degrees of freedom (dof), the size of the system matrix
exceeded what our computer could handle. In those cases, the
table shows only results for the matrix-free approach. Figure
10 presents a plot of reconstruction time as a function of the
number of degrees of freedom per direction for c. Calling nc

be the number of dof per direction, we have N c = (nc)2,
since we are in two dimensions. We see that the actual
computation times are lower than the upper bounds that we
gave above. From the data we collected the computation time
is O((nc)1.21) instead of O((nc)2) for the matrix-free, and
O((nc)2.52) instead of O((nc)4) for the direct method. The
fact that some of the libraries we used exploit the two cores
available in the computer could partly explain this trend. Still,
we observe a (nc)1.31 speedup, and we do expect the gain to
be much greater in three dimensions. Moreover the matrix-
free method is not limited by the size of the system matrix as
opposed to the direct method.

VIII. DISCUSSION AND CONCLUSION

We have presented a method for FMT reconstruction that
integrates forward modeling and reconstruction into a sin-
gle algorithm. In terms of implementation complexity, our
algorithm stands between direct methods, and more sophisti-
cated high-end finite-element-based methods [43]. We showed
that our strategy improves the computation time and mem-
ory requirements for FMT reconstruction compared to direct
methods by eliminating the need to explicitly calculate the
system matrix. Our scheme includes an efficient method for
computing the gradient of the reconstruction functional, using
only the forward model FEM matrix and fast linear solvers
for sparse systems of equations. This approach of computing
the gradient is general and can be applied within any gradient
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Fig. 10. Measured reconstruction time as a function of the number of degrees
of freedom per direction in two dimensions for c (logarithmic scale). The plot
shows the times for the direct method (with system matrix) in blue, and for the
matrix-free method in red. The dashed lines are linear fits of the experimental
points. For the direct method the fit as a slope of 2.52, and for the matrix
method 1.21.

based optimization algorithm; in practice we employed the
conjugate gradient.

Our reconstruction algorithm is based on a variational
formulation. One advantage of this approach is flexibility. In
this work we used I or ∇ as regularization operators, but
other operators can be employed to promote images that satisfy
prescribed properties. A possibility is to incorporate a priori
information in the form of a penalty term. This, in conjunction
with our gradient computation scheme, would result in an
efficient way of making use of a priori knowledge.

Many biological functions occur in localized regions, or in
larger regions with defined boundaries. A priori constraints
such as spatial sparsity, or sparsity of the variations are
therefore appropriate to characterize these biological mecha-
nisms. We have proposed a general Lp-regularization scheme
for FMT reconstruction. In particular, we investigated the
reconstruction quality improvement due to the sparsifying ef-
fect of L1-regularization, on localized and piecewise constant
fluorophore distributions. A quantitive study was conducted
using experimental FMT data acquired on phantoms. We relied
on the contrast-to-noise ratio to obtain a quantitative assess-
ment of reconstruction quality. For fluorophore distributions
that are aptly described by a sparse model, L1-regularization
reconstructions showed less artifacts and better localization
than reconstructions obtained with a linear algorithm; L2-
regularization in that case. By varying the noise level on the
FMT data, we also observed that L1-regularization was more
robust to noise than L2-regularization.

APPENDIX 1 : DERIVATION OF THE ADJOINT OPERATOR

Let us recall that the measurement operator Ak is the linear
operator defined by Ak : L2(Ω)→ L2(∂Ωk), c 7→ uout

k where
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uout
k is the solution of (3) in which uin is the excitation wave

generated by the k-th source. The adjoint operator A∗k satisties∫
∂Ωk

Akc v ds =
∫

Ω

cA∗kv dx

Using Green’s theorem we obtain the following formula :∫
Ω

∇ · (Dout∇ψ)ϕ− ψ∇ · (Dout∇ϕ) dx

=
∫

∂Ω

Dout(n · ∇ψ ϕ− ψn · ∇ϕ)ds

This is equivalent to∫
Ω

∇ · (Dout∇ψ)ϕ− µout
a ψ ϕ− ψ∇ · (Dout∇ϕ) + µout

a ψ ϕ dx

=
∫

∂Ω

Dout(n · ∇ψ ϕ+
ψ ϕ

aout
− ψn · ∇ϕ− ψ ϕ

aout
)ds

Now let us set ψ = Akc = uout
k is the above equation. We

have∫
Ω

−s0 c u
in
k ϕ+ uout

k (−∇ · (Dout∇ϕ) + µout
a ϕ) dx

=
∫

∂Ω

−Dout uout
k (n · ∇ϕ+

ϕ

aout
)ds

Defining ϕ to be the solution of
−∇ · (Dout∇ϕ) + µout

a ϕ = 0 in Ω
ϕ+ aout n · ∇ϕ = aout

Dout v on ∂Ωk

ϕ+ aout n · ∇ϕ = 0 on ∂Ω\∂Ωk

yields ∫
Ω

s0 c u
in
k ϕ dx =

∫
∂Ωk

Akc vds

In the above expression, we identifiy A∗kv = s0 u
in
k ϕ.

APPENDIX 2 : IMPLEMENTATION DETAILS

Our algorithm formulation requires direct access to the
sparse matrices (12)-(16). We therefore had to undertake a
custom implementation of the finite elements method. The
algorithm generates triangular meshes with the CGAL soft-
ware library, and Matlab as a first step. We tried T3 linear
elements, and T6 quadratic elements in practice, and noticed
that the linear elements gave a sufficient precision in our
case. We use separate meshes for excitation, emission, and
fluorophore distribution, and have implemented interpolation
procedures to do the mapping between different meshes. The
finite elements code was developed in the form of a C++
library that interfaces with Matlab through mex files. The
C++ code assembles matrices in the sparse format of Matlab,
which enables us to use the available optimized functions to
efficiently handle these data structures. In particular, we used
the Matlab implementation of the preconditioned conjugate
gradient algorithm to solve the finite elements linear systems.
The preconditioning of those systems was done using an
incomplete Cholesky decomposition.
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