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ABSTRACT
In the field of image segmentation, most of level-set-based
active contour approaches are based on a discrete represen-
tation of the associated implicit function. We present in this
paper a different formulation where the level-set is modelled
as a continuous parametric function expressed on a B-spline
basis. Starting from the Mumford-Shah energy functional, we
show that this formulation allows computing the solution as
a restriction of the variational problem on the space spanned
by the B-splines. As a consequence, the minimization of the
functional is directly obtained in terms of the B-splines pa-
rameters. We also show that each step of this minimization
may be expressed through a convolution operation. Because
the B-spline functions are separable, this convolution may in
turn be performed as a sequence of simple 1D convolutions,
which yields a very efficient algorithm. The behaviour of
this approach is illustrated on biomedical images from vari-
ous fields.

Index Terms— Level-set, B-spline, Variational methods

1. INTRODUCTION

Level-set based formulations have become a well-established
tool in the field of image processing [1, 2]. In image segmen-
tation, level-set-based methods corresponds to a class of de-
formable models where the shape to be recovered is captured
by propagating an interface represented by the zero level-
set of a smooth function (usually called the level-set func-
tion). The evolution at the interface is generally derived from
a variational formulation: the segmentation problem is ex-
pressed as the minimization of an energy functional reflect-
ing the properties of the objects to be recovered. Formally,
the minimization of this functional provides the evolution of
the level-set function as a time dependent partial differential
equation (PDE), which is usually solved using finite differ-
ences schemes [2].

In contrast with this now well-known discrete scheme, we
present a continuous approach, where the level-set function
is expressed as a continuous parametric function using B-
splines. A similar idea has recently been developed in [3, 4],

where the continuous representation is based on radial basis
functions (RBFs), which are then used to solve the level-set
PDE. In contrast with these approaches, we start from the ini-
tial level-set energy functional and propose to specify the so-
lution as a restriction of the variational problem on a space
spanned by B-spline basis functions. As a consequence, the
minimization of the functional is directly obtained in term of
the B-splines parameters.

The paper is structured as follows: In Section 2, we recall
the general form of the level-set energy functional, describe
the B-spline formulation of the problem and derive the min-
imization of the functional in terms of the B-spline parame-
ters. In particular we show how the gradient of the functional,
hence the evolution of the level-set, may be expressed as a
convolution. We discuss implementation issues of the method
in Section 3. We show in particular how reinitialization of the
level-set may be avoided by normalizing the B-splines param-
eters. In Section 4, we evaluate the behavior of the method
using biomedical images. The main conclusions and perspec-
tives of this work are given in Section 5.

2. PROBLEM FORMULATION

Let Ω be a bounded open subset of Rd and let f : Ω 7→ R be
a given d-dimensional image. In the level-set formalism, the
evolving interface Γ ⊂ Rd is represented as the zero level-set
of a Lipschitz-continuous function φ that satisfies

φ(x) > 0, ∀x ∈ Ωin (1)
φ(x) < 0, ∀x ∈ Ωout (2)
φ(x) = 0, ∀x ∈ Γ, (3)

where Ωin is a region in Ω bounded by Γ = ∂Ωin. The region
Ωout is defined as Ω \ Ωin.

2.1. Energy criterion

We consider in the following the classical problem of seg-
menting one object (possibly having several nonconnected
components) from the background. This problem is typically
handled by the evolution of one level-set whose steady state



partitions the image into two regions delimiting the bound-
aries of the object to be segmented. In this framework, we
use the well-known Chan-Vese functional [5], which aims at
partitioning the image into regions with piecewise constant
intensity. This approach corresponds to a particular case of
Mumford-Shah functional [6], known as the minimal parti-
tioning problem. The corresponding functional is given as:

J(φ, µ1, µ2) =
∫

Ω

(f(x)− µ1)2
Hε(φ(x)) dx1 · · · dxd

+
∫

Ω

(f(x)− µ2)2 (1−Hε(φ(x))) dx1 · · · dxd

+ ν

∫
Ω

‖∇φ(x)‖ δε(φ(x)) dx1 · · · dxd, (4)

where (µ1, µ2) are the two parameters of the energy function,
and where ν is a hyper-parameter that balances the influence
of the regions terms (first and second integrals) and of the
contour term (third integral). The functions Hε(·) and δε(·)
areC∞ regularized versions of the Heaviside and of the Dirac
functions, the latter being the derivative of the former.

2.2. B-spline level-set model

The model is obtained by expressing the level-set function
φ(x) as the linear combination of B-spline basis functions [7]

φ(x) =
∑
k∈Zd

c[k]βn(
x
h
− k). (5)

Here, βn(·) is the uniform symmetric d-dimensional B-spline
of degree n. This function is separable and is built as the
product of d one-dimensional B-splines, so that βn(x) =∏d
j=1 β

n(xj). The knots of the B-splines are located on a
grid spanning Ω, with a regular spacing. The coefficients of
the B-spline representation are gathered in c[k].

2.3. Functional minimization

In order to reach a local minimum of energy criterion (4),
we use a conventional Expectation Maximization (EM ) tech-
nique. First, keeping φ (i.e. c[k]) fixed, we minimize the en-
ergy criterion with respect to µ1 and µ2. These parameters
are then given as:

µ1 =

∫
Ω
f(x)Hε(φ(x)) dx1 · · · dxd∫
Ω
Hε(φ(x)) dx1 · · · dxd

µ2 =

∫
Ω
f(x) (1−Hε(φ(x))) dx1 · · · dxd∫
Ω

(1−Hε(φ(x))) dx1 · · · dxd
. (6)

Then, keeping µ1 and µ2 fixed, we minimize the energy
criterion with respect to the level-set model. In the classical
variational settings, this step is performed using either Euler-
Lagrange equations [5] or the Fréchet/Gâteaux derivatives [8,
9]. In contrast with these approaches, we use the B-spline

formulation (5) and perform the minimization with respect
to the B-spline coefficients c[k]. Such minimization implies
computing the derivatives of (4) with respect to each B-spline
coefficient c[k0]. These derivatives may be expressed as:

∂J

∂c[k0]
=
∫

Ω

w(x)βn(
x
h
− k0) dx1 · · · dxd, (7)

where

w(x) =
(

(f(x)− µ1)2 − (f(x)− µ2)2−

ν div(
∇φ(x)
‖∇φ(x)‖

)
)
δε(φ(x)).

(8)

Here, w(x) reflects the features of the object to be segmented
and will be called the feature function in the sequel. The min-
imization of energy criterion (4) with respect to the B-spline
coefficients does not lead to a closed-form solution. In or-
der to obtain a local minimum, we then perform a gradient
descent method which yields

c(i+1) = c(i) − λ∇cJ(c(i)), (9)

where ∇c corresponds to the gradient of the energy relative
to the B-spline coefficients. The corresponding expression is
given as:

∇cJ =
∂J

∂c[k]
=
∫

Ω

w(x)βn(
x
h
− k) dx1 · · · dxd. (10)

This last equation shows that the computation of the gradi-
ent of J with respect to a set of B-spline coefficients may be
interpreted as convolving the feature function w(x) with the
B-spline βn(x), and sampling the result on a grid spanning
Ω, with a regular spacing.

2.4. Discretization: gradient calculation as a discrete sep-
arable convolution

In practice, the feature function is usually available only on a
discrete grid. Let us call w[u] the corresponding discrete fea-
ture function, with u ∈ Zd. By applying the discrete B-spline
formulation of [10], we immediately obtain the discrete ver-
sion of (10). The centered d-dimensional discrete B-spline of
degree n is noted bn[u]; it is obtained by sampling its con-
tinuous version βn(x) at integer values. Similar to its con-
tinuous counterpart, the sequence bn[·] is separable and is
built as the product of d one-dimensional B-splines, so that
bn[u] =

∏d
j=1 b

n[uj ]. The discrete version of the formula-
tion is then obtained from (10) as

〈∇cJ〉 [k] =
〈

∂J

∂c[k]

〉
=
∑
u∈Zd

w[u] bnh(u− hk). (11)

The energy gradient thus corresponds to the convolution of
the feature image and the B-spline i.e.

〈∇cJ〉 [k] = (w ∗ bnh) [mk]. (12)



This last expression provides an efficient way of calculating
the gradient and thus the evolution of the level-set through
(9). Since the B-spline kernel bnh[u] is separable, the gradient
may indeed be computed as a simple series of d convolutions
of the feature image with a one-dimensional B-spline kernel,
followed by downsampling by h. In practice, we use mirror
boundary conditions.

3. IMPLEMENTATION

3.1. Bounded Level-Set

In the course of propagation, the level-set function may de-
velop steep or flat gradients, which, in turn, yield inaccuracies
in the numerical approximation [11]. This is usually taken
into account in classical implementations by reshaping the
level-set through periodical re-initialization of the level-set
function as the distance function to the zero level. As noted
in [11], such a strategy makes the level topologically less flex-
ible, since it prevents the level-set to develop new contours
(i.e., new zero-level components). As shown in [4], bounding
the level-set function allows one to avoid this re-initialization
step, making the solution topologically more flexible. Such
a bounding may be easily performed due to the fact that the
level-set function is expressed as a linear combination of basis
functions. Using B-spline properties, it can be easily shown
that the `∞-norm of the B-spline coefficients provides us with
a bound on the level-set function, i.e. formally:

|φ(x)| ≤ ‖c‖∞ . (13)

Hence, we can normalize the level-set function to the range
[−1, 1] by the following simple modification of the initial al-
gorithm provided by (9):

c(i+1) = c(i) − λ∇cJ(c(i)), (14)

c(i+1) ← c(i+1)∥∥c(i+1)
∥∥
∞
. (15)

3.2. Gradient descent algorithm

The minimization of the energy given in (9) is implemented
using a gradient descent with feedback step adjustment. At
each step i, a candidate update ci+1 and the associated energy
are computed from the current estimate ci using (9). If this
update yields the energy to decrease, the step is considered as
successful, the corresponding B-spline coefficients ci+1 are
accepted and the step size λ is multiplied by a factor αf ≥
1. Otherwise, a more conservative update is calculated by
dividing the step size by α

′

f ≥ 1, and the test is repeated.

4. EXPERIMENTS

We now validate the proposed approach by considering its
application to various types of biomedical images. In all ex-
periments, the images have an eight-bit dynamics and their

dimension is 256d (where d is the number of dimensions).
A cubic B-spline function is used as a basis for the level-set
representation. The parameters of the gradient descent step
adjustment are fixed as αf = 1 and α

′

f = 1.5. In each case,
the level-set is initialized using the following implicit func-
tion: φ0(x, y) = −

√
(x− 128)2 + (y − 128)2 + 110.

We give in Figure 1 an example of segmentation of a flu-
orescence microscopic image of yeast. The curvature term is
applied in this example by setting ν = 0.01 ∗ 2552. Figure
1(b) shows the final segmentation, where the multiple com-
ponents in the image are detected thanks to the topological
flexibility of the level-set. The final result is obtained in 6
seconds cpu time.

(a) Initialization (b) final result, 29 iterations

Fig. 1. Segmentation of a fluorescence microscopic image of
yeast with curvature weight ν = 0.01 ∗ 2552, cpu = 6s

We give in Figure 2 an example of application of the ap-
proach on a fluorescence microscopic image of a cell. The
curvature term is applied in this example by setting ν = 0.02∗
2552. Figure 2(b) show the final segmentation.

(a) Initialization (b) final result, 13 iterations

Fig. 2. Segmentation of a fluorescence microscopic image of
cell with curvature weight ν = 0.02 ∗ 2552, cpu = 5s

As shown in Figure 3, we have also applied the proposed
segmentation approach to a 3-D image of a calcaneus bone,
acquired on a micro-CT with a voxel size of 80µm3. The
segmentation was obtained without curvature term to preserve
the details structure of the calcaneus bone structure. We pro-
vide in Figure 3 a 3-D visualization of the resulting segmen-
tation, as well as two image slices. These results show the
ability of the model to handle complex topology.



(a) (b)

(c)

Fig. 3. Segmentation of 3-D micro-CT images of a calcaneus
bone. Level-set model without any curvature term (ν = 0).
(a)–(b) Two slices through the original data volume, along
with the obtained contours; (c) 3-D rendering of the resulting
segmentation. The cpu time is 540 s.

5. CONCLUSIONS

We proposed in this paper a new formulation to level-set-
based active contours, where the implicit function is mod-
elled as a continuous parametric function expressed on a B-
spline basis. This representation provides an overall control
of the level-set, and allows avoiding the reinitialization step of
the level-set via the normalisation of the B-spline parameters.
The B-spline formulation allows to express the level-set evo-
lution as a sequence of 1D convolution, yielding an efficient
algorithm. The behaviour of the proposed approach has been
evaluated from biological images from various field. The ob-
tained segmentation results show the interest of the method in
terms of computation time and flexibility.
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