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Abstract—We introduce a variational phase retrieval algorithm
for the imaging of transparent objects. Our formalism is based
on the transport-of-intensity equation (TIE) which relates the
phase of an optical field to the variation of its intensity along
the direction of propagation. TIE practically requires one to
record a set of defocus images to measure the variation of
intensity. We first investigate the effect of the defocus distance
on the retrieved phase map. Based on our analysis, we propose
a weighted phase reconstruction algorithm yielding a phase map
that minimizes a convex functional. The method is nonlinear and
combines different ranges of spatial frequencies—depending on
the defocus value of the measurements—in a regularized fashion.
The minimization task is solved iteratively via the alternating-
direction method of multipliers. Our simulations outperform
commonly used linear and nonlinear TIE solvers. We also
illustrate and validate our method on real microscopy data of
HeLa cells.

Index Terms—Phase retrieval, transport-of-intensity equation,
sparse reconstruction, total variation regularization, weighted-
norm regularization, phase imaging, phase microscope.

I. INTRODUCTION

THE generic problem of imaging transparent objects is
highly relevant to biological research as most cells and

thin tissue samples do not absorb light and produce images
with very low contrast when observed under a standard bright-
field microscope (see Figure 1(a)) [1]. To reveal specific
structures in the sample, one can apply staining or use fluo-
rescent dyes and biomarkers. These exogenous contrast agents
then allow for the use of advanced light microscopy tech-
niques [2], [3]. These high-end modalities, however, require
careful sample preparation and are not well-suited to image
live cells (especially over extended periods of time) since the
contrast agents can be phototoxic [4]. Also, the observation
of the global tissue or cell morphology becomes harder [5].
For these reasons, label-free phase imaging techniques are
needed especially when minimal manipulation of the cell is
required (such as in stem cell and drug discovery studies) [6].
While transparent objects have insignificant absorption, they
do introduce phase shifts due to variations in the optical path
length in the sample. The information about the distribution of
the refractive index (hence, about the morphology of the cell)
is encoded in the phase. Two conventional imaging modalities
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that translate the phase shifts into detectable intensity differ-
ences are phase contrast microscopy (PC) [7] and differential
interference contrast (DIC) microscopy [8]. However, both
DIC and PC images are challenging to segment (and to track)
due to shade and halo artifacts (see Figure 1). This essentially
limits their use since segmentation is a key step in cell biol-
ogy [9]. Another well-established technique for phase imaging
is digital holography microscopy (DHM) [10], [11]. DHM
yields quantitative phase information, and hence shape maps
of the object being imaged. This allows for the segmentation
of cells and other specific structures. The downside of DHM
is that it is a hardware-based solution of higher cost compared
to bright-field, DIC, and PC microscopies [12].

In this paper, we consider a low-cost label-free phase
imaging approach that uses the transport-of-intensity equation
(TIE) [13]. This method has significant advantages: it is a
computational method that can be used with either bright-
field [14] or DIC [15] microscopes; the resulting phase dis-
penses with the unwrapping task required by interferometric
methods such as DHM [16]. As we shall see later, TIE puts
forward a linear mathematical formalism that relates the spatial
phase map of the sample to the derivative of its intensity map
along the propagation direction. In a practical setup, the phase
is recovered by using a set of images acquired at various
positions along the optical axis. Hence, TIE simply requires a
stack of defocus measurements to obtain the phase information
at the infocus plane (i.e., the axial location of the sample).

A. Overview of Previous Approaches

TIE has been extensively studied in the optics community,
where researchers have explored ways to obtain better esti-
mates of the axial derivative of the intensity. The simplest
approach has been to capture two images that are slightly
above and below the focus plane, followed by a centered finite
difference. Various refined models using additional defocused
images have also been proposed. In [17], the authors consider
computing higher-order terms in the Taylor development of the
intensity along the optical axis. The use of finite differences
results in a simple linear combination of defocused images,
but the estimate tends to be sensitive to noise. An alternative
approach is based on a pixel-wise polynomial fitting of the
intensity along the optical axis [17]. Again, it is carried out
at the expense of acquiring more images. A variation of this
technique is proposed in [18], where wavelet shrinkage is
shown to improve the accuracy over the polynomial fitting
method. The authors of [19] have presented a framework
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Fig. 1. Imaging the same HeLa cells with different microscopes. Infocus images for the same field of view are obtained by using (a) bright-field, (b) DIC,
and (c) PC microscopes. Profiles corresponding to the same line segment are given at the top-right corner of each image.

in which they estimate the axial derivative of the intensity
through fitting in the spatial frequency domain. Alternatively,
one may combine multiple TIE solutions that are obtained by
using different defocus measurements. In [20], two different
TIE reconstructions are spectrally weighted by using Gaussian
filters. The authors have designed spectral weighting coeffi-
cients that minimize the pointwise variance in the frequency
domain in [21]. In [22], multiple spectral bands are combined
via the Savitzky-Golay differentiation filter. Similarly, band-
pass filters that are specific to the defocus distance are used
in the frequency domain for the calculation of the phase
image [23]. What is common in all of these methods is that
they are all linear reconstruction algorithms and that the TIE is
solved directly by inverting the model. The latter suggests the
use of regularization to stabilize the solutions. Tikhonov [24]
and total variation (TV) [25]–[27] regularizations have been
considered.

B. Contributions
Fundamentally, TIE suffers from two problems. First, when

the model is inverted, the noise in the measurements is
integrated because TIE is a differential form. This typically
produces low-frequency errors (such as “cloudy” artifacts) in
the reconstructions. Second, the computation of the axial inten-
sity derivative by using centered finite differences necessitates
small defocus distances. Deviations from this requirement
introduce further errors. As we shall show in the coming
sections, these problems are tightly related. Extending our
previous research [27], we propose a nonlinear variational
method that provides a unifying framework for the resolution
of TIE. Our contributions are as follows:

� A joint model that is able to combine the spectral infor-
mation coming from different defocus distances within a
regularized reconstruction framework. The model is built
upon identifying reliable frequency ranges as the defocus
distance changes.

� The proposal of an iterative algorithm that allows us to
efficiently solve the related optimization problem.

� A detailed comparison of our method with common
TIE reconstruction algorithms. We show that we achieve
better phase reconstructions for both simulated and ex-
perimental data. The reconstructed phase images are also
validated by comparing them with DHM acquisitions.

C. Outline

The paper is organized as follows: In Section II, we explain
the underlying physics and introduce two complementary
models that constitute the core of our approach. In Section III,
we cast the phase reconstruction task as an inverse problem
and explain our iterative algorithm. Finally, we provide numer-
ical simulations, real data experiments, and discuss our results
in Section IV.

II. PHYSICAL MODELS

Consider the problem geometry given in Figure 2. We define
(x, z) as our coordinate vector where x = (x1, x2) ∈ R2

denotes the spatial location on a transverse plane that is
perpendicular to the optical axis z. The monochromatic plane
wave ejkz illuminates a thin object that lies on a bounded
domain Ω ⊂ R2. The wave function after traversing the object
is written as

U(x, z) = UA(x, z)ejkz , (1)

where UA represents the so-called complex amplitude of U ,
k = 2π/λ is the wave number with λ being the illumination
wavelength. The expression of the complex amplitude is given
by

UA(x, z) =
√
I(x, z)ejφ(x,z), (2)

where the real-valued functions I and φ are the intensity and
the phase, respectively.

For convenience, we shall assume that the object is located
at the axial position z = 0. Therefore, the wave field at the
object plane is specified by

O(x) = UA(x, 0) =
√
I0(x)ejφ0(x), (3)

where φ0(x) = φ(x, 0) corresponds to the spatial phase map
of the object. In practice, it is simpler to obtain the intensity of
the field. This necessitates establishing a relationship between
the phase information, which is lost during acquisition, and
the intensity measurements.

A. Transport-of-Intensity Equation

Suppose the propagation of UA is dominant along the z axis
(i.e., the paraxial approximation is valid). Then, the physics



BOSTAN et al.: VARIATIONAL PHASE IMAGING USING THE TRANSPORT-OF-INTENSITY EQUATION 3

Fig. 2. Representation of the measurement model (and the corresponding problem geometry) in this paper. A transparent object is located at the input plane
of an ideal imaging system. A magnified version of the object field is generated at the image plane. Defocus images are captured by moving the object
symmetrically around the focus position. The phase map at the infocus plane is then obtained by using the defocus images in (10).

of UA is governed by the paraxial wave equation(
∇2
⊥ + 2jk

∂

∂z

)
UA(x, z) = 0, (4)

where ∇2
⊥ is the transverse Laplacian operator defined by

∇2
⊥ =

(
∂2/∂x21 + ∂2/∂x22

)
.

By multiplying (4) by U∗A on the left-hand side, and separat-
ing the real and the imaginary parts, Teague [13] has derived
two equations. In particular, the imaginary part1 specifies the
transport-of-intensity equation (TIE)

−k ∂
∂z
I(x, z) = ∇⊥ • (I(x, z)∇⊥φ(x, z)) , (5)

where ∇⊥ = [∂/∂x1 ∂/∂x2]T is the transverse gradient
operator and • denotes the dot product. We see that (5) is an
elliptical second-order partial differential equation that links
the phase information to the axial derivative of the intensity
of the field. Practically, TIE bears an important outcome: the
spatial phase map φ is computed by measuring the intensity
I and its axial derivative ∂I(x, z)/∂z, where the latter can be
approximated by finite differences.

We now investigate TIE in relation to our problem settings.
We consider an object that is at the input plane of an ideal
magnification system, generating a dilated version of the object
field at the image plane. As mentioned in Section I, we are
interested in imaging unstained biological samples. Such class
of objects are modeled as phase-only objects, meaning that
they do not significantly absorb or scatter the illuminating
field [5]. We further assume that the illumination is uniform so
that I0(x) is constant: I0(x) = J0. Therefore, (5) is rewritten
as

− k

J0

∂

∂z
I(x, z)

∣∣∣
z=0

= ∇2
⊥φ0(x). (6)

To simplfy our notation, let us define

b(x) =
I(x,∆z)− I(x,−∆z)

J0
(7)

as our measurement, obtained by a centered finite difference
around z = 0 for ∂I/∂z. We then specify TIE in the Fourier

1The real part provides us with the so-called transport-of-phase equation
(TPE). However, TPE requires the measurement of the axial derivative of the
phase ∂φ/∂z. This makes TPE impractical as φ itself is unknown.

domain as
b̂(ω) = 4πλ∆z‖ω‖22φ̂0(ω), (8)

where the Fourier transform of a function f : R2 → C is given
by

f̂(ω) = F {f} (ω)

=

∫
R2

f(x)e−j2πω•xdx. (9)

Consequently, the sought phase is obtained by

φ0 = F−1
{
b̂ ĥ−1TIE

}
, (10)

where

ĥTIE(ω) =

{
ε, ω = 0
4πλ∆z‖ω‖22, otherwise, (11)

with ε > 0 being introduced to deal with the singularity at
the origin. This makes the inverse filter ĥ−1TIE well-defined. In
practical terms, (10) explains that a conventional reconstruc-
tion of the phase requires one to capture three images (the
infocus image recorded at z = 0 and the two defocus images
recorded at z = ±∆z), and to use a Fourier-domain filtering
operation.

We now would like to discuss how the defocus distance
affects the reconstruction performance. From a mathematical
point of view, ∆z should be as small as possible so that
∂I/∂z is well-approximated. However, in practice, the intu-
itive appeal of choosing a very small defocus is suboptimal.
To see this, let us assume that the measurement b contains
some amount of white noise that does not depend on ∆z.
The spectrum of the noise in the reconstructed phase φ0 is
shaped by ĥ−1TIE which is essentially a two fold integrator
(since ĥTIE ∝ ‖ω‖22). Therefore, the phase image (especially
the lower spatial frequencies) is perturbed more as ∆z gets
smaller (see Figure 3). This aspect of TIE is well-known and
discussed in several works [13], [20], [28], [29].

In summary, by increasing the defocus distance, TIE-based
methods resolve lower spatial frequencies better as noise-
induced artifacts are reduced. However, for large ∆z, the
implicit linearity in the finite difference approximation breaks
and one obtains coarser ∂I/∂z estimates. It is thus reasonable
to use large defocus measurements for reconstructing low
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Fig. 3. Radial profile of the inverse transfer function ĥ−1
TIE for λ = 632 nm

using two distinct defocus distances. For simplicity, the profile is shown only
for positive spatial frequencies.

frequencies as we rely on small defocus measurements for
the high ones. To have a better understanding of how to
combine the two regimes, we shall explore a complementary
formulation.

B. Contrast Transfer Function

In the sequel, we base our approach on the principles
of wave propagation. Under the paraxial approximation, the
intensity of the wave field is expressed as

I(x, z) = |U(x, z)|2
= |O(x) ∗ p(x, z)|2, (12)

where ∗ denotes the convolution operator and

p(x, z) =
ejkz

jλz
exp

(
jk

2z
‖x‖22

)
(13)

represents the impulse response of the Fresnel propagation [?].
We remark that

p̂(ω, z) = ejkze−jπλz‖ω‖
2
2 . (14)

In effect, the term exp(−jπλz‖ω‖22) represents the optical
transfer function for the propagation. The complex amplitude
is given by ÛA(ω, z) = Ô(ω, z)e−jπλz‖ω‖

2
2 .

As we are interested in imaging thin biological samples, we
assume that φ0 is small. The object field is approximated by

O(x) ≈
√
J0 (1 + jφ0(x)) . (15)

Then,

ÛA(ω, z) ≈ (16)√
J0

(
δ(ω) + φ̂0(ω)

(
j cos(πλz‖ω‖22) + sin(πλz‖ω‖22)

))
.

Also, we remark that

Î(ω, z) =
(
ÛA
∗
(−·, z) ∗ ÛA(·, z)

)
(ω) (17)

and that φ̂0 is Hermitian-symmetric since φ0 is real-valued.
Then, by developing (17) up to the first-order term in φ0 (i.e.,
neglecting the higher-order terms that include the convolution
φ̂0 ∗ φ̂0), we obtain

Î(ω, z) = J0

(
δ(ω) + 2 sin(πλz‖ω‖22)φ̂0(ω)

)
, (18)

ω1(µm−1)0 1 2

large defocus (∆z = 0.6 µm)

Region 1

ω0 ωmax

ω1(µm−1)0 1 2

small defocus (∆z = 0.1 µm)

Region 2

ω0 ωmax

ĥTIE ĥCTF

Fig. 4. Radial profile of the transfer functions for λ = 632 nm. For
simplicity, the profile is shown only for positive spatial frequencies.

which is known as the contrast transfer function (CTF) [30].
As suggested by its name, the CTF explains how the phase and
the propagation distance is changing the image contrast. For
instance, in the present case, it points out that the visibility
of phase-only objects is increased by introducing a suitable
defocus (see Figure 7(a)). Evaluating (18) at points z = ∆z
and z = −∆z yields the TIE-like equation

b̂(ω) = 4 sin(πλ∆z‖ω‖22)φ̂0(ω). (19)

Similar to ĥTIE in (10), we define

ĥCTF(ω) =

{
ε, ω = 0
4 sin(πλ∆z‖ω‖22), otherwise. (20)

Considering ĥTIE and ĥCTF, let us further develop our ap-
proach for the phase retrieval problem. First, it is important
to notice that the models are undistinguishable when ∆z is
sufficiently small. In contrast, as ∆z gets larger, the models
still agree up to a certain frequency ω0, and differ afterwards
(see Figure 4). The validity of utilizing TIE with large defocus
measurements is enforced in the region where it agrees with
the CTF model [31]. Above ω0, the two models tend to
disagree and it is therefore safer to exclude these frequencies.

We shall use large defocus intensity images to recover low
frequencies up to ω0 (denoted as “Region 1” in Figure 4). For
the rest of the spectrum (denoted as “Region 2” in Figure 4),
we rely on the small defocus images. We remark that similar
approaches have been carried out in [20]–[23].
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Fig. 5. Radial profile of the spectral filters used to weight low and high
frequencies of the measurements, computed for two defocus distances.

III. RECONSTRUCTION ALGORITHM

In this section, we put our phase recovery problem in
a variational framework. We shall work with two defocus
distances and base our approach on a weighted reconstruction.
To effectively combine low- and high- frequency components
of the phase, we first construct the spectral weighting filters.

A. Spectral Weighting Filters

Considering the physical principles explained in Section II,
we introduce two isotropic functions that are appropriate for
the spectral weighting of the measurements. We denote these
functions by WLP and WHP, for low-pass and high-pass
weighting, respectively. They are defined as follows:

WLP(ω) =


1, ‖ω‖2 < ω0 − L

2

g(ω), ω0 − L
2 < ‖ω‖2 < ω0 + L

2

0, ‖ω‖2 > ω0 + L
2 ,

(21)

where

g(ω) =
1

2

(
1 + cos

(
π

L

(
‖ω‖2 − ω0 +

L

2

)))
(22)

and

WHP(ω) = 1−WLP(ω). (23)

The parameter ω0 denotes the cutoff frequency; the values
of WHP and WLP are equal for ‖ω‖2 = ω0. Note that (22)
provides a smooth transition zone of width L around ω0. A
graphical representation of our filters is seen in Figure 5.

It is noteworthy that ω0 specifies the limit spatial frequency
up to which the phase reconstruction based on a large defocus
is reliable. For the frequencies that are higher than ω0, we
shall rely on the measurements obtained with a small defocus.
Considering (11) and (20), we define ω0 as

ω0 =

√
θ0

πλ∆z
, (24)

where θ0 is the critical value after which the difference
between ĥTIE and ĥCTF is not negligible.

B. Discrete Formulation

We consider that two distinct defocus values, ∆z1 and ∆z2
with ∆z1 < ∆z2, are used. Let b1 and b2 represent the
corresponding measurements computed via (7) for ∆z1 and
∆z2, respectively. Since the measurements are only known at
discrete pixel locations, we collect their sample values in the
vectors2 b1, b2 ∈ RN with N being the total number of pixels
on the detector. Then, in the noise-free scenario, (8) implies
that

b1 = H1Φ,
b2 = H2Φ, (25)

where Φ ∈ RN is the discretized version of the original phase
map and H1, H2 ∈ RN×N correspond to hTIE for ∆z1
and ∆z2, respectively (thus, represent Laplacian operators up
to different multiplicative factors). These operators are self-
adjoint in the sense that HT

1 = H1 and HT
2 = H2, where

(·)T denotes the matrix transpose.
We then define our weighting matrices as

W1 = FHΣHPF,

W2 = FHΣLPF, (26)

where F is the discrete Fourier transform (DFT) matrix, (·)H
denotes the Hermitian transpose, and ΣLP, ΣHP ∈ RN×N
are diagonal matrices whose entries are the discrete samples
of WLP and WHP, respectively. In practice, a small positive
constant can be added to the diagonal elements. This construc-
tion makes W1 and W2 positive-definite matrices.

We propose the data-fidelity term

D(Φ) =
1

2
‖H1Φ− b1‖2W1

+
1

2
‖H2Φ− b2‖2W2

, (27)

where ‖ · ‖2Wr
is the weighted norm defined as 〈Wr·, ·〉 for

r = 1, 2. This corresponds to a maximum-likelihood (ML)
functional under the hypothesis that the measurements are
degraded by additive white Gaussian noise (AWGN) [32].

Based on this formalism, we aim obtaining a phase recon-
struction Φ̃ such that

Φ̃ = arg min
Φ

(D(Φ) + τR(Φ)), (28)

with R being the regularization functional given by

R(Φ) =
∑
i∈I
‖LiΦ‖p2, (29)

where I is the index set of all pixel locations, p is a positive
scalar value, and L is the discrete analogue of the transverse
gradient operator. Thus, LiΦ ∈ R2 represents the first-
order finite differences of Φ along the vertical and horizontal
directions at location i. Our data term selectively incorporates
the high- and low-frequency information coming from the
measurements taken at ±∆z1 and ±∆z2, respectively. The
regularizer imposes smoothness on the reconstructions, where
the strength of the smoothness is controlled by the regulariza-
tion parameter τ > 0.

2The vectorization of the measurements are assumed to be lexicographically
ordered.
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Let us explain some special cases of the proposed frame-
work. Discarding the spectral weighting (i.e., W1 and W2 are
identity operators) and setting p = 2, one obtains the classical
Tikhonov regularization, which can be seen as the conventional
way of solving TIE. Assuming periodic boundary conditions,
these linear methods can be directly solved using the fast
Fourier transform [33]. The case p = 1 gives the total variation
(TV) regularization [34], which has been considered in [25]
and [27] in the context of TIE. More importantly, if weighting
is nontrivial and Tikhonov regularization is considered, the
solution is given by

Φ̃Tik = A−1 (H1W1b1 + H2W2b2) , (30)

where A =
(
H1W1H1 + H2W2H2 + 2τLTL

)
. Note

that (30) can also be interpreted as some Wiener filter. As
τ → 0 (i.e., no regularization), one recovers a method that
is in spirit of [20]–[23]. We note that the matrix inversion
in (30) is well-defined, even in the absence of regularization.
However, in cell imaging applications, it is often desirable
that the specimens be well-isolated from the background [12].
Therefore, we combine our data-fidelity term with a TV
functional, which is known to preserve discontinuities better
than Tikhonov-type regularizations [34].

For the phase-reconstruction problem, we propose the non-
linear optimization problem

Φ̃ = arg min
Φ

(1

2
‖H1Φ− b1‖2W1

+
1

2
‖H2Φ− b2‖2W2

+ τ
∑
i∈I
‖LiΦ‖2

)
. (31)

TV regularization can be suboptimal for phase profiles that
do not exhibit discontinuities. In such cases, staircase effect
can occur and thus a higher-order regularization should be
incorporated into our model [35].

C. Optimization Algorithm

In the sequel, we are going to solve our specific phase
reconstruction problem using generic optimization tools: the
alternating-direction method of multipliers (ADMM) and
proximal operators, which have recently become quite popular
in the field [36]. We first cast (31) as a constrained optimiza-
tion problem given by

Φ̃ = arg min
Φ

(1

2
‖H1Φ− b1‖2W1

+
1

2
‖H2Φ− b2‖2W2

+ τ
∑
i∈I
‖ui‖2

)
s.t. u = LΦ, (32)

where u is an auxiliary variable. To solve (32), we introduce
the associated augmented Lagrangian functional

LA(Φ,u,α) =
1

2
‖H1Φ− b1‖2W1

+
1

2
‖H2Φ− b2‖2W2

+ τ
∑
i∈P
‖ui‖2

−αT(u− LΦ) +
β

2
‖u− LΦ‖22, (33)

where α is the Lagrange multiplier and β > 0 is called the
penalty parameter. We then use ADMM [36], [37], where the

main idea is to individually treat LA over each of its arguments
while the others are assumed to be fixed. This results in an
iterative framework whose steps are

ut+1 = arg min
u

LA(Φt,u,αt), (34a)

Φt+1 = arg min
Φ

LA(Φ,ut+1,αt), (34b)

αt+1 = αt − β(ut+1 − LΦt+1). (34c)

We note that the minimization over u in (34a) is separable and
amounts to the proximal operator associated with ‖ · ‖2 [38].
This implies that the solution is obtained by solving the N
minimization problems

ut+1
i = arg min

ui

(
τ‖ui‖2 +

β

2
‖ui − zti‖22

)
, ∀i ∈ I, (35)

with the closed-form solution being

ut+1
i = max

{
||zti||2 −

τ

β
, 0

}
zti
||zti||2

, (36)

where zti = LiΦ
t+

αt
i

β . Since the minimization can be imple-
mented for each pixel location in parallel, ut+1 is computed
efficiently.

The second subproblem (34b) has the form of a standard
quadratic minimization. In this case, the solution is expressed
as

Φt+1 =
(
H1W1H1 + H2W2H2 + βLTL

)−1
Mt, (37)

where

Mt =

(
H1W1b1 + H2W2b2 + βLT

(
ut+1 − α

t

β

))
.

(38)
It is actually seen that a Tikhonov-type minimization is
computed. Similar to (30), this problem is solved directly for
certain boundary conditions (in other cases, iterative solutions
are obtained via linear solvers). The last step (34c) is a
standard update of the Lagrange multiplier.

IV. EXPERIMENTS

We illustrate the utility of our phase reconstruction method
by performing experiments in simulated and practical con-
figurations. In every experiment, the images are extended
using periodic boundary conditions. The ε parameter in (11)
is set to 1 so that the filter ĥTIE is mean-preserving. The θ0
parameter in (24) is set to π/10, and the associated width L is
manually tuned according to the maximal frequency present in
the signal. For synthetic data, this maximal frequency is set to
the inverse of the pixel size; for real data experiments, it is the
minimum of the inverse effective pixel size (i.e., the camera
pixel size divided by the magnification) and the resolution
imposed by the diffraction limit (i.e., twice the numerical
aperture divided by the wavelength). For ADMM-based re-
constructions, we fix β = 10τ . We also fix the stopping
criterion as reaching either a relative `2-normed difference
of 10−4 between two successive iterates, or a maximum of
250 iterations. All numerical schemes are implemented in
MATLAB (The MathWorks, Inc., Natick, MA).
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Fig. 6. Ground-truth spatial phase maps used in the simulations. From left to right, they are referred to as 1) Boat, 2) Bridge, 3) Cameraman, 4) CIL214,
5) CIL38921, and 6) CIL39789.

A. Synthetic Data

The original object field is assumed to have a unit inten-
sity, and the spatial phase map is given by the set of two-
dimensional images shown in Figure 6 3. All the ground-truth
phase maps are of size (256 × 256) pixels and have values
in the range of [0, 1] radians. We set the pixel size to 2 µm
and the wavelength λ to 632 nm. The original object field
is propagated to axial distances of ±50 µm (small defocus)
and ±300 µm (large defocus) by using a Fresnel diffraction
kernel [39]. We generate the observed intensities by taking
the square modulus of the propagated complex fields. Finally,
the intensity images are degraded by various levels of AWGN.
The standard deviation of the noise is chosen such that a given
signal-to-noise ratio (SNR) is achieved. An example defocus
stack is illustrated in Figure 7(a).

We measure the quality of the reconstructed phase maps
by computing the regressed SNR—the regression is there to
get rid of additive and multiplicative constants. Between the
ground-truth map Φ and a reconstructed one Φ̃, this measure
is defined as

SNR(Φ, Φ̃) = max
a,b∈R

10 log

( ‖Φ‖22
‖Φ− (aΦ̃ + b)‖22

)
. (39)

The performance of our nonlinear method is compared against
the following algorithms:

1) Tikhonov regularization based TIE (TIE-Tik): We adapt
a linear reconstruction scheme by setting p = 2 in (29).
The method uses three images, the infocus image and
two symmetrically defocused images. We apply the
method separately with each set of measurements ac-
quired at ±50 µm and ±300 µm defocus.

2) TV regularization based TIE (TIE-TV): We make the
reconstruction nonlinear by setting p = 1 in (29).
Similarly, the algorithm uses three images and is tested
with both small and large defocus cases.

3) Composite TIE-Tik: We adapt the reconstruction scheme
given in (30). Composite TIE-Tik uses five images.
It linearly combines high and low frequency compo-
nents (together with a Tikhonov regularization) of the
phase maps obtained by using small and large defocus
measurements, respectively. The algorithm is compatible
with the ones proposed in [20]–[23].

As described in Section III, all linear reconstructions are
computed directly. The nonlinear ones are solved iteratively

3The biological images originate from the cell image database and are
available at http://www.cellimagelibrary.org.

using the proposed ADMM-based algorithm. For each recon-
struction algorithm, we tune the regularization parameter to
achieve the best-possible SNR performance using an oracle.
The output SNRs given in Table I are averaged over 10
realizations for a reliable comparison.

For the simulated measurements, we see that the proposed
method outperforms the other algorithms in almost all of
the cases. Especially for moderate and high levels of noise,
our method significantly improves the reconstruction quality.
A visual inspection of the reconstructed phase maps (see
Figure 7) demonstrates that our method is able to reconstruct
the high-frequency components accurately. However, the re-
constructions using intensity images taken at large defocus
distances are notably blurred. We also see that our algorithm
produces much fewer artifacts in the low-frequency regions.
Reconstruction errors are more visible for the other methods.
As one gets to very low levels of noise, TIE-TV (for small
defocus) and composite TIE-Tik methods become competitive,
and TIE-TV reconstruction can yield the best results for certain
configurations. This is explained by the decreased presence of
noise-induced errors (i.e., low-frequency artifacts). Next, we
assess our method in experimental settings to corroborate our
in silico findings.

B. Real Data

We imaged paraformaldehyde-fixed and unstained HeLa
cells at room temperature (∼ 22◦C). Acquisitions were per-
formed on a Zeiss Axio Observer Z1 microscope (Carl Zeiss
AG, Jena, Germany) equipped with a Leica HCX PL Fluotar
40×0.75 NA objective (Leica Microsystems GmbH, Wetzlar,
Germany). The camera pixel size is 6.5 µm and the illumi-
nation wavelength is 684.5 nm. The defocus images were
recorded with distances of ±2 µm and ±10 µm from the best
focal position.

A region of interest (ROI) of size (512 × 512) pixels
is chosen. Based on the previous results, we compare the
reconstruction performance of TIE-Tik, TIE-TV, composite
TIE-Tik, and the proposed method in a qualitative manner.
We note that both TIE-Tik and TIE-TV methods use the mea-
surements recorded at ±2 µm. Since the ground-truth phase
is not available, the regularization parameters are manually
tuned (by paying attention to image contrast and physiological
relevance) for all considered methods. The algorithmic settings
of Section IV-A are kept the same for the reconstruction.

All TIE reconstructions improve the visibility of the cell
compared to the infocus bright-field image. However, a closer
examination reveals that the proposed approach enhances the
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−300µm −50µm 50 µm 300 µm0
z
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Fig. 7. Illustrative example of a phase-reconstruction simulation, where
the object field (at z = 0) has unit intensity and the phase is encoded
by the CIL38921 image: (a) Simulated measurements (SNR is 20 dB), (b)
TIE-Tik reconstruction using the measurements at 50 µm (SNR is 4.01 dB),
(c) TIE-Tik reconstruction using the measurements at 300 µm (SNR is 8.67
dB), (d) composite TIE-Tik reconstruction (SNR is 9.72 dB), (e) TIE-TV
reconstruction using the measurements at 50 µm (SNR is 8.31 dB), (f) TIE-
TV reconstruction using the measurements at 50 µm (SNR is 11.25 dB), and
(g) proposed method (SNR is 13.20 dB).

homogeneity of the background better than its competitors.
It allows one to better distinguish the cell membrane (see
Figure 8). These aspects suggest that the proposed TIE-based
approach is suitable for imaging phase-only objects.

C. Validation

Our final step is to compare different phase imaging tech-
niques. To have a reference, the HeLa cells are imaged
with a digital holographic microscope (DHM) that allows to
directly obtain the complex object field. The hologram image
is acquired in off-axis configuration on a T-1001 microscope
(LynceeTec SA, Lausanne, Switzerland) using a Leica HI
PLAN I 10×0.22 NA objective (Leica Microsystems GmbH,
Wetzlar, Germany). The DHM image is then reconstructed
numerically using the algorithm in [10]. A stack of bright-field
images is acquired using the same objective. Following the
lead of Kou et al. [15], we choose to apply our TIE formalism
to differential interference contrast (DIC) images. These au-
thors have investigated the DIC image formation model (under
the thin phase-only object assumption) and have demonstrated
the applicability of (11) for this modality (see [15] for further
details). Practically observing the implications of (20), we thus
acquire DIC images using an A-Plan 10×0.25 NA with a
DIC analyser II. Both image stacks include the infocus image
as well as images recorded at ±2 µm and ±10 µm defocus

TABLE I
PHASE RECONSTRUCTION PERFORMANCE OF THE ALGORITHMS

COMPARED IN THE SIMULATIONS. NUMBERS ARE GIVEN IN DECIBEL UNIT.

∆z = 50 µm ∆z = 300 µm

Input
SNR

TIE-Tik TIE-TV TIE-Tik TIE-TV Composite
TIE-Tik

Proposed
method

B
oa

t

20 10.72 12.26 12.85 14.52 13.47 15.22
25 11.64 13.86 14.52 15.63 15.94 17.19
30 12.34 15.24 15.84 16.32 18.10 18.70
35 14.16 16.74 16.78 16.88 19.88 20.01
40 16.09 17.98 17.09 17.11 20.69 20.73
45 18.08 19.20 17.19 17.20 20.95 20.96
50 19.99 20.19 17.23 17.23 21.04 21.04

B
ri

dg
e

20 8.59 10.56 10.91 11.99 11.69 13.11
25 9.51 11.68 12.39 12.99 13.95 14.88
30 10.30 12.40 13.27 13.44 15.43 15.80
35 12.40 13.73 13.99 14.01 16.77 16.84
40 13.67 14.74 14.20 14.22 17.24 17.28
45 15.68 15.96 14.28 14.28 17.39 17.40
50 16.86 16.89 14.30 14.31 17.44 17.44

C
am

er
am

an

20 8.00 13.83 13.17 13.91 14.37 15.89
25 9.77 15.54 14.11 14.26 16.00 16.67
30 12.57 16.38 14.43 14.48 16.82 17.08
35 14.77 16.79 14.56 14.55 17.09 17.18
40 16.46 17.23 14.61 14.60 17.18 17.24
45 17.52 17.60 14.63 14.62 17.25 17.29
50 17.70 17.72 14.63 14.62 17.24 17.27

C
IL

21
4

20 9.52 11.87 13.18 14.82 13.54 15.12
25 10.60 13.52 14.59 15.86 15.72 16.94
30 12.06 14.86 16.05 16.73 18.46 19.22
35 13.34 15.87 17.22 17.37 21.16 21.42
40 15.81 17.81 17.92 17.96 23.23 23.35
45 18.11 19.68 18.08 18.07 24.05 24.09
50 21.82 21.97 18.20 18.19 24.48 24.49

C
IL

38
92

1

20 3.85 8.30 8.49 11.15 9.43 12.63
25 5.30 10.89 10.64 12.11 13.13 15.55
30 7.10 13.41 11.51 12.48 15.41 17.88
35 9.75 15.51 12.46 12.80 18.52 19.77
40 13.06 17.54 12.87 12.95 20.65 21.11
45 15.34 18.86 12.96 12.99 21.35 21.53
50 18.33 20.51 13.02 13.02 21.81 21.84

C
IL

39
78

9

20 11.92 14.64 16.29 18.89 16.57 19.24
25 12.79 17.22 18.17 20.46 19.18 22.15
30 14.22 19.44 19.81 21.34 21.77 24.58
35 16.12 21.47 21.56 22.14 24.96 26.22
40 18.48 23.67 22.35 22.48 27.09 27.38
45 21.42 25.55 22.61 22.65 28.25 28.40
50 25.93 27.67 22.73 22.75 28.65 28.68

distances. Since the DHM measurements are performed on a
different setup, we have been unable to align the exact same
ROI. Instead, we choose a common ROI of size (256×256) in
all images. We perform TIE reconstructions using our method
on the chosen ROI.

We remark that the bright-field image has very low con-
trast, as explained in Section I. Meanwhile, DIC microscopes
increase the contrast (also the visibility) of the cells; the final
image can be roughly seen as the directional derivative of
the phase. Note that DHM records a hologram of the object
(i.e., single image acquisition) and produces the phase image
by demodulating the hologram, which is a linear operation.
However, DHM requires dedicated hardware and is much
costlier compared than bright-field and DIC microscopes. By
qualitatively looking at the results given in Figure 9, we see
that the two TIE reconstructions render the morphology of
the cells faithfully in accordance with the DHM image. We
remark that TIE with DIC images produces sharper results
than its counterpart using bright-field images. It is also seen
that the TIE reconstructions have homogeneous backgrounds.
Hence, TIE can be considered as a cost-effective alternative
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to DHM.
As last illustration of the potential of our technique, we

consider the problem of cell segmentation (i.e., automatic
delineation of the cell boundaries). We choose a larger ROI
and use the bright-field images for phase reconstruction. We
apply the watershed segmentation algorithm4. The segmen-
tation results given in Figure 10 are seen to be satisfactory.
By applying this basic segmentation algorithm to bright-field
images, it is not possible to achieve the same results as the
bright-field images lack contrast.

V. CONCLUSION

We have introduced a new nonlinear algorithm for the op-
tical phase retrieval problem. We have based our approach on
the transport-of-intensity equation (TIE). We have investigated
the implications of using TIE with measurements at small and
large defocus distances in terms of the spatial frequencies of
the reconstructed phase map. This has led to the formulation
of a weighted phase-reconstruction algorithm. By acquiring
measurements at two defocus distances and using our method,
we have been able to improve the performance of phase
reconstruction, as compared to previous algorithms. We have
also shown that our method is applicable to experimental
data. Finally, we have illustrated that the proposed method
is beneficial to image analysis.
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phase différentiel,” Journal de Physique et le Radium, vol. 16, no. 5,
pp. S88–S88, 1955.

[9] E. Meijering, “Cell segmentation: 50 years down the road [life sci-
ences],” IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 140–145,
2012.

[10] P. Marquet, B. Rappaz, P. J. Magistretti, É. Cuche, Y. Emery, T. Colomb,
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Fig. 8. TIE reconstruction results of different algorithms for experimentally acquired bright-field images of a HeLa cell: (a) Infocus bright-field image,
(b) TIE-Tik reconstruction with defocus images acquired at ±2 µm, (c) composite TIE-Tik reconstruction, (d) TIE-TV reconstruction with defocus images
acquired at ±2 µm, and (e) the proposed phase reconstruction method.
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Fig. 9. Validation of the proposed TIE reconstruction method on the same sample: (a) Reference digital holographic microscope (DHM) image of HeLa cells,
(b) result of the TIE reconstruction using bright-field images, and (c) result of the TIE reconstruction using differential interference contrast (DIC) images.
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Fig. 10. Delineation of HeLa cells: (a) Infocus bright-field image, (b) phase
image obtained by using the proposed TIE reconstruction, and (c) result of
watershed algorithm.
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École polytechnique fédérale de Lausanne (EPFL),
Lausanne, Switzerland, as the Head of software de-
velopment. He is in charge of both the coordination

of software development and of setting down the computing infrastructure
of the group. He is also involved in the development of open-source bio-
imaging software (super-resolution, tracking, deconvolution, segmentation,

quantification, ) and methods for computer-assisted teaching.

Michael Unser (M89-SM94-F99) received the M.S.
(summa cum laude) and Ph.D. degrees in Electrical
Engineering in 1981 and 1984, respectively, from the
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