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Anisotropic Interpolation of Sparse, Generalized
Image Samples
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Abstract—Practical image-acquisition systems are often mod-
eled as a continuous-domain prefilter followed by an ideal sam-
pler, where generalized samples are obtained after convolution
with the impulse response of the device. In this paper, our goal
is to interpolate images from a given subset of such samples.
We express our solution in the continuous domain, considering
consistent resampling as a data-fidelity constraint. To make the
problem well-posed and ensure edge-preserving solutions, we
develop an efficient anisotropic regularization approach that is
based on an improved version of the edge-enhancing anisotropic
diffusion equation. Following variational principles, our recon-
struction algorithm minimizes successive quadratic cost func-
tionals. To ensure fast convergence, we solve the corresponding
sequence of linear problems by using multigrid iterations that
are specifically tailored to their sparse structure. We conduct
illustrative experiments and discuss the potential of our approach
both in terms of algorithmic design and reconstruction quality.
In particular, we present results that use as little as two percent
of the image samples.

Index Terms—Anisotropic diffusion, diffusion tensors, edge-
enhancing diffusion, generalized sampling, image interpolation,
image magnification, image reconstruction, inverse problems,
iteratively reweighted least squares, multigrid techniques, PDE-
based methods.

I. INTRODUCTION

Shannon’s sampling theorem [1] states that a bandlimited
signal can be perfectly reconstructed from its samples, pro-
vided that Nyquist’s criterion is satisfied. In that case, the
solution can be found by sinc interpolation. However, in
an imaging context, bandlimited functions do not correctly
match the physical reality [2]. This classical assumption can
thus lead to inaccurate results for such classes of problems.
Specifically, optical acquisition systems do deviate from an
ideal sampler in practice as they involve filtering associated
with their impulse response prior to sampling. When taken
into account, those effects impose consistency constraints
on generalized samples [3], which makes the reconstruction
more intricate. Several works have successfully dealt with this
non-ideality [4], [5], [6], [7], [8], [9], yielding results that
are visually sharper as compared to the standard sampling
paradigm. Nevertheless, these approaches are typically focused
on pure magnification cases, and have not been applied to
sparse-interpolation problems.
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In this paper, we introduce a novel interpolation approach
that simultaneously handles generalized and sparse image
sampling. The objective of our method is to reconstruct a
continuous image from a subset of its generalized samples. As
a first step towards specifying our problem, we define a data-
fidelity measure that is based on consistent resampling. The
unknowns being under-constrained, regularization is needed to
find a suitable solution.

Variational formulations are commonly employed for regu-
larization in the literature. In particular, quadratic regulariza-
tion has been previously considered to develop fast sparse-
interpolation approaches [10], [11]. Despite their efficiency,
these linear methods tend to blur image contours [4]. In or-
der to produce edge-preserving reconstructions, nonquadratic
functionals are required [4]. A classical solution is the total-
variation (TV) norm [12], which is also associated with fast
algorithms such as primal-dual approaches [13], [14]. How-
ever, the behavior of standard edge-preserving regularization
techniques is not adapted to sparse interpolation for it produces
singular points [15]. Thus, recent works on image interpolation
involve more advanced formulations, especially when the
sampling rate is low, or when the available data consist in
a reduced set of samples as in our problem. Promising results
have been obtained in the variational framework using a non-
local approach [16]. Unfortunately, the associated computation
time tends to be prohibitive.

Some of the most efficient regularization strategies in the
area of inpainting and sparse interpolation involve partial
differential equations (PDEs) that are based on anisotropic
diffusion1 [15], [17], [18]. The behavior of these methods can
be fine-tuned via the specification of diffusion tensors. A high-
quality technique based on an edge-enhancing-anisotropic-
diffusion (EED) PDE has been devised by Galić et al. to
interpolate sparse image samples [15]. This approach enjoys
remarkable edge-reconstruction performance even at very high
sparsity levels.

Nonlinear PDEs can be solved using explicit or semi-
implicit schemes that are based on finite-difference approxima-
tions of the original formulation [19]. An alternate approach
involving lagged-diffusivity fixed-point iterations has been also
investigated for the TV flow, and subsequently for other
types of isotropic diffusion equations [20], [21]. In order to
obtain rapid convergence, each iteration involves a linearized
version of the flow where the diffusivity terms are fixed
according to some current solution estimate. Despite their

1In this paper, anisotropy of a given diffusion process is understood in
the sense of [15], implying tensor diffusivities. Though nonquadratic, the TV
functional only acts as an isotropic regularizer following that definition.
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increased complexity [22], tensor diffusivities can also be
handled efficiently in large-scale problems. In that regard, a
novel class of algorithms based on fast explicit diffusion (FED)
has been devised in [23]. This approach follows a coarse-to-
fine strategy, and allows to implement advanced PDE-based
methods such as [15].

The above PDE-based regularization approaches are most
efficient for interpolation and inpainting problems. Variational
approaches, on the other hand, do result in efficient imple-
mentations for a larger class of inverse problems, including
image restoration [24]. In particular, variational formulations
are most adapted to our extended interpolation model. They
allow to efficiently handle our specific data-fidelity constraint
that involves an analysis kernel before sampling.

The distinction between both types of methods, however, is
not clear-cut. Indeed, regularization-based methods are related
to PDE formulations through the Euler-Lagrange equation
[12]. Consequently, the basic steepest-descent method applied
to the given cost functional is equivalent to the correspond-
ing gradient flow. Similarly, the iteratively reweighted least-
squares (IRLS) technique [25] that is used for nonquadratic
regularization is associated with linearized versions of the
gradient of the original functional [21], [26]. This provides
an interpretation that relates IRLS to lagged-diffusivity fixed-
point iterations.

In this work, we develop a hybrid regularization frame-
work that combines advantageous aspects of both PDE and
variational formulations using similar principles based on
lagged diffusivities. The specificity of our design is that it
stems directly from the definition of an anisotropic-diffusion
equation. As a consequence, our regularizer consists in a
series of quadratic functionals that are based on successive
tensor-valued diffusivity estimates. While being adapted to
our particular problem, this cost-functional approach exhibits
similarities with the FED method of [23] where first-order
approximations of the underlying diffusion process are taken.
Regarding the actual specification of the flow, our central
contribution is to propose our own PDE as an extension of the
EED solution considered in [15]. In particular, we redefine the
associated tensor diffusivities so as to further improve edge-
reconstruction capability on natural images.

Although not strictly originating from a variational for-
mulation, our regularization approach yields an anisotropic
version of the IRLS technique [25]. Starting from a quadratic
data-fidelity constraint, our reconstruction algorithm called
anisotropic IRLS (AIRLS) entails the partial resolution of
successive weighted linear problems. Since the diffusivity
estimation of our method is constrained to weight updates, they
do not affect the overall algorithmic performance significantly.
We also devise a fast multigrid solver that is adapted to the
sparse structure of our linear problems and that is inspired
from previous works [10], [11]. Note that the obtained AIRLS
framework can then be used to implement distinct regulariza-
tion PDEs as well, including the one of [15].

The paper is organized as follows: In Section II, we present
our continuous interpolation framework where the unknowns
are expressed as coefficients in a shift-invariant basis. In Sec-
tion III, we consider classical variational approaches to express
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Fig. 1. The continuously defined image f is convolved with ϕ0 (the impulse
response of the acquisition device) before being sampled at integer intervals
M along each dimension. The resulting sequence f1 is then masked, which
yields f2. Starting from these masked samples, our algorithm outputs the
coefficients c of the reconstructed image. The continuously defined solution
f̃ can be then be obtained from these coefficients according to (3).

our reconstruction problem. Our actual strategy resulting in
an IRLS-type procedure is introduced in Section IV. The
associated linear problems are then specified in Section V, and
their iterative resolution using our own multilevel approach is
addressed in Section VI. In the experiments of Section VII,
we consider distinct interpolation cases where our method is
compared with the state of the art, both quantitatively and
qualitatively. Implications of our results are finally discussed
in Section VIII.

II. SAMPLING AND RECONSTRUCTION

A. Forward Model

As represented in Figure 1, the input signal of our model
consists in the continuous-domain image f . Assuming gener-
alized sampling, the latter is first convolved with a prefilter
ϕ0 that corresponds to the impulse response of the acquisition
device [3]. The intermediate image is then sampled at inte-
ger intervals M along each dimension, which results in the
sequence

f1[k] = (f ∗ ϕ0) (x)|x=Mk , (1)

where ∗ denotes continuous-domain convolution. Only a sub-
set of the sequence f1 is retained through the binary mask w,
which yields the masked samples

f2[k] = w[k]f1[k]. (2)

Assuming that the sampling process and the binary mask
are known, we define our interpolation problem as the task
of accurately reconstructing the original image f from the
available samples in f2. We elaborate on our reconstruction
approach below.

B. Reconstruction Space

Following the generalized sampling theory of [3], our re-
construction space is in the continuous domain and spanned
by normalized translates of an analog generating kernel ϕ.
Specifically, the reconstructed image f̃ takes the form



BOURQUARD AND UNSER: ANISOTROPIC INTERPOLATION OF SPARSE, GENERALIZED IMAGE SAMPLES 3

f̃(x) =
∑
k∈Z2

c[k]ϕ(x− k), (3)

where c is a discrete sequence of coefficients that describes
the solution exactly. The reconstruction is defined on a grid
that is M times finer than the acquisition in each dimension.
In our implementation, the image data are defined over some
rectangular domain Ω and are extended periodically outside.

The formulation (3) enables the solution to be computed
and stored in terms of its coefficients, despite its continuous
character. In this framework, we specify ϕ as a B-spline
function [27] of order η, which makes straightforward sub-
pixel post-processing (e.g., registration) of the reconstructed
data possible, and allows to properly define our reconstruction
approach. The interpolating B-spline is differentiable and has
suitable approximation properties, such as reproduction of
polynomials [27].

C. Constraints

In order to be accurate, the solution (3) has to be consistent
with the available samples f2. While adopting the consistent-
measurement principle of [3], we nevertheless want to ac-
commodate for noise and model imperfections. Therefore,
we propose a soft form of this constraint, demanding that
f̃ reintroduced in place of f into the generalized-sampling
system of Figure 1 results in measurements f̃2 that are close
to f2. The image f̃ and the samples f̃2 are related in the same
way as f and f2 through (1) and (2). Accordingly, we propose
to define the data discrepancy measure as the squared `2-norm

D(c) =
∥∥∥f2 − f̃2

∥∥∥2

`2
, (4)

which is an implicit function of the expansion coefficients in
(3). Note that, in the sequel, we shall use implicit functions of
the solution coefficients when appropriate. As a soft constraint,
we impose

D(c) < K, (5)

where K is a positive constant. The sequence f̃2 is derived
from the above relations as

f̃2[k] = w[k]

(
ϕ0 ∗

∑
n∈Z2

c[n]ϕ(· − n)

)
(x)

∣∣∣∣∣
x=Mk

. (6)

Given (6) and the binary nature of the mask, (4) can be
rewritten in the explicit form

D(c) =
∑
k∈Z2

w[k] |f2[k]− {b ? c}↓M [k]|2 , (7)

where ? denotes discrete convolution, and where the sequence
b is defined as

b[k] = (ϕ0 ∗ ϕ) (x)|x=k . (8)

Therefore, we want any valid solution f̃ to have a low
discrepancy measure D. In this work, we assume that the

prefilter ϕ0 used in our generalized-sampling model (1) is
nonnegative, which itself implies the non-negativity of b given
the definition of ϕ as a B-spline.

Under (5), our reconstruction problem is still ill-posed.
We thus have to define additional regularity constraints that
make the problem well-posed. In the sequel, we discuss
reconstruction approaches that satisfy this requirement while
ensuring low data discrepancy.

III. EXISTING VARIATIONAL APPROACHES

The variational framework lends itself well to the specifi-
cation of our reconstruction problem. It allows the solution to
satisfy a constraint of the form (5) under suitable regularity
criteria. In this section, we review some classical regularization
functionals that are used for image reconstruction. Their
properties as well as their links with IRLS and PDE formu-
lations also serve as background for our own reconstruction
method introduced in Section IV. Their expressions are readily
introduced within our reconstruction framework, which allows
to predefine relevant quantities and relations for the sequel. In
this variational setting, the generic reconstruction problem is
to minimize the functional

J (c) = D(c) + λR(c), (9)

where D is the quadratic data-fidelity term defined in (7), and
whereR is a generic term that penalizes non-desired solutions.
The constant λ > 0 balances the influence of both terms,
which determines an implicit K value for (5). While D is
fixed according to our forward model, the choice ofR strongly
determines the quality of the solution. Its proper specification
is therefore extensively discussed below.

A. Quadratic Regularization

When applied to our framework, an extended class of
quadratic functionals can be written as the Sobolev-type norm

RS(c) =
∥∥∥Lf̃(x)

∥∥∥2

L2

, (10)

where L is a linear differential operator. These regularizers
penalize high responses of L at each spatial location, which
promotes regular solutions. Given (3) and the quadratic nature
of both functionals (7) and (10), the associated minimization
problems consist in discrete sets of linear equations.

When the data-fidelity term reduces to the denoising case
(i.e., M = 1, ϕ0 is the Dirac distribution δ(·), and w = 1),
these regularization functionals are linked with the standard
form of the so-called smoothing splines. Indeed, for appro-
priate L, the minimizer of (9) defined in the spline space (3)
coincides with the optimum among all possible functions [28].
Note also that the noiseless magnification case (i.e., ϕ0 = δ(·),
w = 1, and λ→ 0) has been specifically addressed in [7]. In
a similar framework, some authors have proposed fast linear
solutions to interpolate very sparse samples [10], [11]. These
approaches exploit the B-spline expansion of the solution in a
multigrid fashion, yielding fast iterative algorithms.
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B. Nonquadratic Regularization

Edge-preserving reconstruction is achievable with non-
quadratic regularizers. In this section, we review a class of
such functionals described in [26], [29] and defined in our
framework as

R0
N (c) =

∫
R2

Ψ(‖∇f̃(x)‖)dx, (11)

where Ψ : R+ → R denotes a potential function. In addition,
we discuss the associated IRLS technique that is widely used
for reconstruction. As shown in the sequel, the structure of the
latter is closely related to our approach developed in Section
IV. The edge-preserving potential Ψ grows less fast than a
quadratic function [26] unless R0

N degenerates to RS with
L = ∇. For instance, TV regularization corresponds to the L1-
norm of the image gradient, i.e., to the choice Ψ(t) = |t|. This
case has already been considered in the context of generalized
sampling for image magnification [4], [5], [13], [14].

In order to yield a tractable reconstruction problem, (11)
is typically discretized before minimization. This approach
is standard when dealing with sampled data. For instance, a
discrete form of TV based on a graph model is formulated
in [30]. Following a similar idea, the gradient values entering
in the original continuous-domain definition are approximated
using first-order difference filters in [31]. In our context,
all discrete quantities are a natural outcome of the B-spline
expansion (3) after replacing the integral (11) by a sum.
Here, we select a configuration where the partial derivatives
of the gradient are evaluated in-between the grid nodes. This
avoids the creation of spurious oscillations or divergence of
the solution2. Accordingly, we define

RN (c) =
∑
k∈Z2

Ψ(‖∇̊f̃(x)‖)x=k. (12)

The upper-ring notation modifies the gradient—and similar
vector operators—as ∇̊ = S∇, where S shifts a continuous-
domain vector function v as

Sv(x) = (v1(x1 + 1/2, x2), v2(x1, x2 + 1/2)). (13)

The explicit form of (12) in terms of the solution coefficients
is then

RN (c) =
∑
k∈Z2

Ψ(‖(c ? g)[k]‖), (14)

where g is the discrete multivariate filter

g[k] = ∇̊ϕ(x)|x=k. (15)

In order to minimize (9) with the nonquadratic term (12),
we can resort to an IRLS approach. Starting from an initial
solution estimate c(0), this method consists in the partial
minimization of augmented quadratic functionals J (·|c(n))
that are based on the original J (·) and successively updated
according to the current solution estimate c(n). Following

2Similar schemes ensure numerical stability in computational fluid dynam-
ics [32].
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I. ALGORITHMS

1) Initialize at n = 0 with the solution c(0)

while n < Ni do
a) Minimize J (·|c(n)) with initialization c(n)

s.t. J (c(n+1)|c(n)) < J (c(n)|c(n))
b) Store the solution c(n+1)

c) Establish the new bound J (·|c(n+1))
d) Count n← n+ 1

end

if h < H − 1 then
a) Update dh+1 ← I↓R(Ωh)
b) Run FMG(h+ 1)
c) Correct ch ← ch + I↑ch+1

d) Count n← n+ 1
end
2) Run V(h) ν0 times

1) Iterate at Ωh with I(↓, h)
if h < H − 1 then

a) Update dh+1 ← I↓R(Ωh)
b) Run V(h+ 1)
c) Correct ch ← ch + I↑ch+1

end
2) Iterate at Ωh with I(↑, h)

Fig. 2. Generic IRLS procedure.

the multiplicative form of half-quadratic minimization [26],
[33], we obtain the iterative procedure given in Figure 2. The
augmented functionals yielding the solution are defined as

JN (c|c(n)) = D(c) + λRN (c|c(n)). (16)

This form of minimization is called multiplicative because the
structure of RN (·|c(n)) involves multiplications with weights.
Specifically, each augmented regularizer is defined as the
quadratic functional

RN (c|c(n)) =
1
2

∑
k∈Z2

θN (c(n), ψ)[k]‖(c ? g)[k]‖2, (17)

where the weight sequence θN at each index k depends on
the current solution c(n) as

θN (c(n), ψ)[k] = ψ(‖(c(n) ? g)[k]‖). (18)

The scalar function ψ : R+ → R is derived from the potential
function Ψ of the regularizer (14) through the constraint that
the successive J (·|c(n)) constitute valid upper bounds of J (·).
This constraint corresponds to

JN (c|c(n)) + const. ≥ JN (c),∀c, (19)

with equality at c = c(n); the scalar constant in (19) is inde-
pendent from c. In the TV case, we obtain ψ(t) = (t2+ε)−1/2,
where the small positive parameter ε is added to overcome the
non-differentiability of the original functional [21]. Note that
the use of this constant is avoidable with nonsmooth solution
initializations [31]. Minimizing an instance of (17) amounts
to solving a linear problem. As specified in Figure 2, each
quadratic cost need only be decreased slightly in IRLS. This
implies that each of these linear problems must only be solved
partially, which is doable using iterative methods.

As a prerequisite to our approach discussed in the next
section, let us now draw the link between IRLS and the fixed-
point interpretation discussed in [20], [21], [26]. Expanding
the regularization part of (16), its minimum with respect to
the coefficients c satisfies the first-order condition

λ−1D′(c) + gT ?
(
θN (c(n), ψ)(c ? g)

)
= 0. (20)

The solution of (20) depends on the current estimate c(n)

through the weights θN defined from ψ in (18). Following the
terminology of [20], [26], the latter quantities are identified
as lagged diffusivities. By extension, the IRLS algorithm of
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Figure 2 can be recast as a discretized lagged-diffusivity
fixed-point iteration, which consists in alternating between the
partial resolution of (20) and the update of c(n). Any sequence
c which satisfies

λ−1D′(c) + gT ? (θN (c, ψ)(c ? g)) = 0 (21)

is thus a fixed point of the IRLS process. Given (15), the
regularization part of (20) that involves the filters g and gT

corresponds to the spatially discretized form of

div
(
ψ(‖∇u(n)‖)∇u

)
, (22)

where u is the continuous-domain solution with its current
estimate u(n). Remarkably, the above expression is directly
related to isotropic-diffusion flows of the form

∂tu = div (ψ(‖∇u‖)∇u) , (23)

where isotropy is defined in the sense of [19]. Specifically, the
divergence term (22) is similar to the right-hand-side term of
(23), except that the diffusivities ψ are lagged in the former.

For general functions Ψ, it holds from [26] that the left-
hand-side terms of (20) correspond to the linearized gradient
of the original nonquadratic functional, up to discretization.
As a consequence, (23) corresponds to the gradient flow of
the original regularizer as specified by the Euler-Lagrange
equation. The IRLS method used for variational image re-
construction can thus be interpreted as fixed-point iterations
where the successive augmented regularization functionals are
related to lagged versions of the corresponding PDE.

IV. PROPOSED APPROACH

The above discussion emphasizes the theoretical pathway
that relates the regularization part of the IRLS structure to the
corresponding PDE formulation. In our approach developed
below, we first specify our own continuous-domain PDE,
and then transpose it into an IRLS-type framework using
similar concepts. Note that this section mainly deals with
our regularization strategy; after derivation, our method shall
involve a series of regularization functionals combined with
the same data-fidelity term as in (16).

A. Edge-Enhancing Anisotropic Diffusion

The EED equation has first been applied to interpolation
problems by Galić et al. [34], [15]. This PDE is divergence-
based as in (23), and involves tensor-valued diffusivities that
are determined from a smoothed gradient map Gu of the
current solution u. As compared to the regularizers presented
above, the anisotropic character of EED is associated with bet-
ter reconstruction properties. Equations of a similar structure
have been proposed for multichannel images by Roussos and
Maragos [8], [24], considering denoising and magnification
applications with a generalized-sampling model. The use of
tensor-driven diffusion equations has also been investigated by
Tschumperlé and Deriche for general imaging problems [35],
[17]. In this paper, we consider the original EED definition,
which we write as

∂tu = div (M(Gu, ψ)∇u) , (24)

where M ∈ R2×2 denotes a symmetric and positive-definite
tensor-diffusivity function. The first argument of M is a
smoothed gradient Gu(x), while its last one is the scalar
function ψ. The operator G denotes a modified gradient that
includes additional smoothing. As discussed in Section IV-C,
our contribution is to extend the definition of G so as to
better preserve certain image features. The definition of M
distinguishes EED from the other divergence-based anisotropic
PDEs considered in [35], [8], [24]. According to [15],

M(v, ψ) = ψ(‖v‖)Pv + P⊥v , (25)

where P and P⊥ are projectors onto the subscripted vector and
the perpendicular directions, respectively. While anisotropic
flows linked to an energy function (e.g., Beltrami flow) have
been studied for imaging applications3 [24], [35], [36], there
is not any known energy interpretation of (24). For example,
EED does not comply with the structure of [24] where the
diffusion tensor involves two distinct convolutions with the
same kernel. This absence of global interpretation is common
in the literature [29].

In order to ensure the positive-semidefiniteness of the dif-
fusivities and the stability of EED, we impose the function
ψ(t) to be nonnegative and nonincreasing in t with ψ(0) = 1.
Given these constraints, the tensor M(0, ψ) is well-defined
and corresponds to the identity matrix. Similar to its role
in (23), the purpose of ψ in (24) is to reduce smoothing
across edges. In this tensor case, however, the associated
flow modification is anisotropic. The action of M at each
position is to decompose the corresponding gradient ∇u(x)
into the sum of two orthogonal vectors that are respectively
parallel and perpendicular to Gu(x). The magnitude of the
parallel part of this gradient is reduced by multiplication with
ψ(‖Gu(x)‖), while the perpendicular one is left untouched;
this permits stronger diffusion along edges, hence the EED
effect. From Definition (25), the elements Mij of the tensor
M are expressed as

M11(v, ψ) = ‖v‖−2
(
ψ(‖v‖)v2

1 + v2
2

)
,

M22(v, ψ) = ‖v‖−2
(
v2

1 + ψ(‖v‖)v2
2

)
,

M12(v, ψ) = ‖v‖−2 (ψ(‖v‖)− 1) v1v2, (26)

where v1 and v2 are the coordinates of the vector v.

B. Specification of the Penalty Function

In our approach, we consider three diffusivity functions
ψ among those proposed in the literature. The first is the
Charbonnier diffusivity used in [15] that is defined as

ψ0(t) = (1 + t2/α2)−1/2, (27)

3These flows can remain anisotropic (e.g., tensor TV in [24]) or degenerate
[35], [36] when applied to single-channel data.
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where α ∈ R∗+ is a constant. The second one is linked to
the Huber potential through the multiplicative form of half-
quadratic minimization [33], and is defined as

ψ1(t) =

{
1, |t| ≤ α,
α|t|−1, otherwise.

(28)

Since ψ1(t) ∝ |t|−1 for large t, it tampers cross-edge smooth-
ing the same way as TV. Meanwhile, this function can restore
smoothly varying regions, because the associated potential is
quadratic for |t| < α. The functions ψ0 and ψ1 are closely
related because their values coincide when t tends to zero or
to infinity. The third alternative that we propose is the Perona-
Malik diffusivity

ψ2(t) = exp(−t2/β2), (29)

where β ∈ R∗+ is a constant. This function is well-known for
its contrast-enhancing properties in the case of isotropic [37]
as well as of anisotropic diffusion [19].

C. Specification of the Modified Gradient Operator

As discussed above, the map Gu is used to specify
anisotropic diffusivities. The operator G serves in the EED
equation (24) as an edge-information estimate that is more
robust than the standard gradient. In [15], this operator corre-
sponds to the Gaussian-smoothed gradient

G0 = ∇ ∗ φσ, (30)

where φσ is an isotropic Gaussian filter of standard deviation
σ. The associated results reported in [15] are very promising,
even when dealing with very sparse data. Note that, although
Gu only enters in the definition of M, it nonetheless deter-
mines the character of the edge-enhancing effect in terms
of flow regulation. As shown in Section VII, the potential
differences in terms of reconstruction behavior are important,
which suggests introducing some better estimates.

Anisotropic flows are obtainable without the requirement
of gradient smoothing in general [24]. This operation is
nevertheless necessary in our PDE to guarantee the anisotropy
of the diffusivities4. The smoothing process generally tends to
wipe out fine-scale edge information. Our contribution is to
specify an operator G1 that yields a directionally smoothed
version of the image gradient, which better preserves fine-
scale information compared to the Gaussian solution G0. In
order to determine the corresponding smoothing directions,
we compute orientation estimates τ ∈ [0, π[ that are matched
with the local edge features of the image argument u at each
position. These estimates are obtained as the solution of the
optimization problem described below.

Let us consider the class of segment cross-sections of
constant size Σ, centered at positions x, and with orientations
τ0 ∈ [0, π[. Given u, we associate this class to the local
oriented-mean measure

4Replacing G by ∇ in (24) would cause EED to degenerate to the isotopic
flow (23).

µ∗(u,x, τ0) = Σ−1

∫ Σ/2

−Σ/2

u(γ(t))dt, (31)

where

γ(t) = x + t(cos(τ0), sin(τ0)). (32)

The corresponding variance measure is given as

Var∗(u,x, τ0) = Σ−1

∫ Σ/2

−Σ/2

(u(γ(t))− µ∗(u,γ(t), τ0))2dt.

(33)
Given (33), we choose our estimates τ to match the minimum-
variance orientations of the image. In that context, Σ can
be interpreted as a scale parameter that is approximately
determined from the characteristic oriented-feature size. At
each position, the solution thus corresponds to a local edge-
orientation estimate that is expressed as

τ(u,x) = arg min
τ0

Var∗(u,x, τ0), (34)

which satisfies translation and rotation invariance with respect
to u.

At given scale Σ, our variance measure quantifies the image
fluctuations along each orientation τ0. In that respect, the mini-
mum argument of (34) is conceptually similar to the coherence
direction defined in [19] that is based on structure tensors. The
advantage of variance-based criteria is their ability to estimate
the orientation even in the vicinity of a contrast change [38].
As shown in Figure 3, the map τ provides accurate data on
the local feature orientations of the image. Adaptive filtering
of the gradient map along those directions can thus reduce
the loss of information associated with cross-edge smoothing.
Because no closed-form solution of (34) exists to compute the
weights, we propose to optimize τ among a discrete set of No
orientations. Note that similar discretization approaches have
been considered using candidate stencils for the evaluation of
image variations along oriented paths [9].

Prior to filtering, we make the gradient map of u consistent
with the estimated orientation map τ pointwise. Accordingly,
we only keep the component of each gradient vector ∇u(x)
which is perpendicular to the orientation τ(u,x). This projec-
tion operation yields the corrected gradients

∇cu(x) =
(
(∇u)(x)Te⊥(u,x)

)
e⊥(u,x), (35)

where

e⊥(u,x) = (− sin(τ(u,x)), cos(τ(u,x))). (36)

We finally smooth these corrected gradients along the corre-
sponding τ , using directional averaging filters with the same
Σ as in the mean and variance measures of (31) and (33). The
operator G1 thus acts as

G1u(x) = µ∗(∇cu,x, τ(u,x)). (37)

The invariances of (31) and (34) and the pointwise character
of (35) imply that G1 is intrinsically translation and rotation
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Fig. 3. Illustration of our orientation-estimation method. On the left,
Fingerprint. On the right, minimum-variance directions τ obtained according
to (34) with Σ = 25. The directions [0, π[ are mapped to the grayscale range
[black,white[. This map contains two large zones that are associated with the
two main feature directions of the original image. Note that abrupt black-white
transitions appear because orientations are only defined modulo π.

invariant as in G0. These important characteristics guarantee
that G is not biased towards particular orientations or positions
in the image.

D. AIRLS Algorithm

As previously discussed, the quadratic functionals of IRLS
are linked to the lagged-diffusivity forms of the gradient flow.
Similarly, we propose an IRLS procedure that is based on
lagged versions of the EED flow, following the concepts
introduced in Section III. Despite the fact that there is no
underlying maximization principle in our case, the successive
functionals that we define constitute linear approximations
of (24). Given one current estimate u(n), the lagged EED
equation is

∂tu = div
(
M(Gu(n), ψ)∇u

)
. (38)

According to the Euler-Lagrange equation, (38) is the gradient
flow which originates from the functional

R0
A(u|u(n)) =

∫
R2

〈
M(Gu(n)(x), ψ)∇u(x),∇u(x)

〉
dx,

(39)
up to a factor of 2 that we drop for convenience. Note that
the regularizer proposed in [39] is of similar form; it includes
structure tensors that are based on fixed estimates, but it is
nonquadratic unlike (39).

Expression (39) can be rewritten in a more intelligible form.
Indeed, defining D· and D⊥· as directional derivatives along the
subscript vector argument and the direction perpendicular to
it, respectively,

〈Pv∇u(x),∇u(x)〉 = (Dvu)2(x),〈
P⊥v ∇u(x),∇u(x)

〉
= (D⊥v u)2(x), (40)

which implies from (25) that R0
A(·|u(n)) expands as

R0
A(u|u(n)) =

∫
R2
ψ(‖Gu(n)(x)‖)(DGu(n)(x)u)2(x)dx

+
∫

R2
(D⊥Gu(n)(x)u)2(x)dx. (41)

Equation (41) gives further insight on how each quadratic
regularizer—which is linked to the linearized form of the
EED flow—penalizes u. In the first integral term, the di-
rectional derivatives of u that are parallel to Gu(n), i.e.,
perpendicular to the edge features, are weakly penalized given
their multiplication with ψ. Edges are therefore well-preserved
as in nonquadratic regularization. Simultaneously, regularity
along those same edge estimates is strongly enforced in the
second integral term, which is akin to an L2-norm. These
two simultaneous constraints favor curvature regularity of the
solution.

In order to obtain an IRLS procedure compatible with
the algorithmic framework of Figure 2, we discretize the
cost (39) and combine it with our data term. Indeed, as for
standard regularization techniques, computationally tractable
approaches require a discretized version of the continuous
quadratic costs R0

A(·|u(n)). Using the same discretization as
in (12), the expression

RA(c|c(n)) =
∑
k∈Z2

〈
M(G̊f̃ (n)(x), ψ)∇̊f̃(x), ∇̊f̃(x)

〉
x=k

(42)
is obtained for our solution coefficients. Along with (15), this
definition allows to rewrite (42) as

RA(c|c(n)) =
∑
k∈Z2

(c ? g)[k]Tθ(c(n), ψ)[k](c ? g)[k], (43)

where the tensor weights θ are determined as

θ(c(n), ψ)[k] = M(G̊f̃ (n)(x), ψ)|x=k. (44)

Equation (44) evaluates G̊f̃ (n) over a sequence of points
x = k. The corresponding means and variances used for G1

in (34) and (37) can be determined with arbitrary precision,
using the continuous-line integrals (31) and (33) for f̃ (n) in
the same way as for u in Section IV-C. This holds because
f̃ (n) is continuously defined from c(n) given our spline model
(3). For computational reasons, we approximate all integrals
by finite sums depending on uniformly spaced samples. This
discretization also allows to compute (34) recursively: each
of the No oriented-variance maps linked to G̊f̃ (n) can be esti-
mated using parallel sliding windows of size Σ and orientation
τ0. The samples of f̃ (n) and the local variance assigned to each
window are then updated recursively5. Equations (7), (43), and
(44) define our total quadratic functionals as

JA(c|c(n)) = D(c) + λRA(c|c(n)). (45)

5The computational performance is optimal when these updates are per-
formed along rows or columns of values. We maintain this condition for
τ0 /∈ {0, π/2} by applying approximate pre- and post-shearing transforma-
tions on the sample lattices.
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According to the generic optimization framework of Figure
2, our algorithm is first initialized with the solution c(0). We
define this sequence as the masked image samples f2 upsam-
pled by M using zero padding and smoothed by the filter
1
4 [1 2 1] along each dimension. Subsequently, we partially
minimize Ni successive costs (45) to obtain a solution. Each of
these minimization steps corresponds to a fixed-point iteration
where the next estimate c(n+1) is found from c(n) using fixed
tensor diffusivities θ. In that regard, our approach is similar
to the anisotropic technique proposed in [39] where a series
of convex problems is solved to denoise images. In our case,
however, the successive functionals to minimize are quadratic
and thus easier to tackle. Moreover, since (43) is an `2-norm
whose weights θ depend on c(n), our reconstruction method is
of IRLS type. We call it AIRLS according to the anisotropic
nature of the tensor weights in (44). Each cost JA(·|c(n)) has
a unique minimum that satisfies the first-order condition

λ−1D′(c) + gT ?
(
θ(c(n), ψ)(c ? g)

)
= 0. (46)

Ultimately, any fixed point of our global iterative process
satisfies

λ−1D′(c) + gT ? (θ(c, ψ)(c ? g)) = 0. (47)

In analogy with the case of Section III, Condition (47) is
the steady state of a discretized PDE whose regularization
part corresponds to the EED flow (24). This shows that,
in terms of asymptotic solutions, our approach is similar
to conventional PDE-based methods. It is, however, more
attractive computationally because the computation of the
smoothed-gradient map as well as the nonlinear operations
involved in the diffusivity estimations (44) are restrained to the
reweightings. As confirmed in our experiments, satisfactory
results are obtained with a small amount of reweightings Ni,
precisely as in standard IRLS.

The AIRLS algorithm is specified by the parameters {G, ψ}.
The first argument G corresponds either to the Gaussian-
smoothed gradient G0 defined in (30), or to our modified
operator G1 defined in (37). Similarly, the function ψ can
be chosen as the Charbonnier diffusivity ψ0 defined in (27),
the Huber diffusivity ψ1 defined in (28), or the Perona-Malik
diffusivity ψ2 defined in (29). Our specific EED settings
denoted by EED1 and EED2 correspond to {G1, ψ1} and
{G1, ψ2}, respectively. When using {G0, ψ0}, our algorithmic
framework reproduces the PDE-based method of [15]; the
related technique is then called EED0.

V. LINEAR PROBLEMS

The global minimum of each weighted quadratic cost (45)
corresponds to the solution of a linear system. In this section,
we derive the explicit form of those systems using matrix
notation, where lowercase bold-symbol vectors relate to the
corresponding non-bold sequences through lexicographic or-
dering, and where each matrix, as a vector multiplier, imple-
ments some linear operation acting on the related sequence.
Accordingly, the generic form of each matrix system is

A(n)c(min) = d, (48)

where c(min) contains the lexicographically ordered coeffi-
cients of the minimizer, where A(n) is the system matrix that
depends on our estimate c(n), and where d is a vector whose
components are constant.

The first step towards specifying A(n) and d is to reformu-
late (45) using matrix notation. Accordingly,

D(c) = (f2 −DMBc)TW(f2 −DMBc), (49)

where each vector is specified as discussed above. According
to the value of M used in our generalized sampling model
(1), the matrices DM and its transpose UM implement two-
dimensional M -fold downsampling and upsampling, respec-
tively, while B is a convolution matrix associated with the
filter b in (8). Finally, the diagonal matrix W is associated
with point-wise multiplication with the weights w used for
masking in (2). Similarly, we can write the regularization term
(43) in the compact form

RA(c|c(n)) = (Rc)TΘ(c(n), ψ)Rc, (50)

where R and Θ concatenate convolution and diagonal ma-
trices, respectively. The rectangular matrix R = (R1,R2)
implements the gradient. Specifically, each convolution matrix
Ri relates to the derivative component gi of the multivariate
filter g defined in (15). The square matrix Θ is updated
according to the current estimate c(n); it decomposes as
(Θ11 Θ12,Θ12 Θ22), where each diagonal matrix Θij is as-
sociated with point-wise multiplication with the corresponding
scalar sequence θij related to the tensor weights θ of (44).
Note that Θ structurally extends its counterpart in IRLS, as it
concatenates distinct and off-diagonal sub-matrices Θij . Based
on (49) and (50), we write the total cost as

JA(c|c(n)) = D(c) + λRA(c|c(n)). (51)

Since (51) is quadratic, its gradient with respect to c vanishes
at c(min). Enforcing this condition, and using matrix differen-
tiation, we obtain

A(n) = BTW̃1B + RTW̃2R, (52)

where W̃1 = UMWDM , and where W̃2 = λΘ(c(n), ψ).
Finally, the vector d in (48) corresponds to

d = BTUMf2. (53)

The matrix system (52) is extremely large due to the con-
siderable number of unknowns, which implies that Problem
(48) cannot be solved exactly. However, as stated in Section
III-B, the corresponding quadratic functional (45) needs only
be partially minimized with respect to the current solution
estimate to yield c(n+1). In Section VI, we propose to partially
solve (48) iteratively, initializing the next solution c(n+1) to
the current estimate c(n).
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VI. ITERATIVE SOLUTION

As mentioned above, our variational approach allows to
restrain the diffusivity estimations associated with the regu-
larization problem in the reweightings. This allows to focus
on the resolution of the subproblems derived in Section V.
In the sequel, we devise a fast iterative method to partially
solve these linear systems, considering their sparse structure.
In particular, the diagonal matrices entering the definition of
(52) are well suited for multigrid solvers.

A. Multigrid Approach

The multigrid strategy consists in solving problems by
iterating not only at their nominal scale, but also at coarser
ones, adapting their discretization accordingly. Multigrid it-
erative methods are beneficial for certain types of problems
where the additional lower-resolution iterates are of negligible
computational cost compared to their overall contribution in
terms of convergence rates [40]. In particular, iterating at
successively downscaled Cartesian grids is efficient for linear
image reconstruction from spatially sparse samples [10], [11].
In this context, according to the original formulation (48),
we define our linear problems at H distinct grids, using the
notation

Ahch = dh, (54)

where the superscripts h ∈ {0, . . . ,H − 1} relate quantities
to a specific grid Ωh. Each grid is constructed with a regular
step 2h in each dimension, which means that the number of
elements of ch scales as 4−h.

From (54), we use Full-Multigrid V-cycles [40] as an
iterative scheme to find the solution c(n+1). This method
is standard in the literature and involves transfer operations
as well as relaxations with an iterator I at each grid, as
described in Appendix A with the relevant definitions. In order
to maximize the performance of our approach, we use the
obtained ch to initialize the next linear problem at all grids.
The problem at grid Ω0 is (48), which implies that A0 = A(n),
d0 = d, and c0 = c(n+1). At coarser grids, Ah are scaled
versions of A0, while dh are the residuals produced from the
iterative process itself.

Since the solution is expressed as coefficients in a B-spline
basis, the corresponding prolongation and restriction operators
I↑ and I↓ exploit the two-scale relations [27]. Specifically,
they correspond to the B-spline scaling filter h2 of degree η
following upsampling by 2, and to the B-spline scaling filter
h2
T followed by downsampling by 2, respectively. In matrix

form, we write

I↑ = H2U2,

I↓ = D2H2
T . (55)

We now have to specify A at each grid. In order not to
complexify the problem formulation, we impose similar matrix
structures at all grids, decomposing Ah as

Ah = BhTW̃h
1Bh + RhTW̃h

2Rh, (56)

where the separate terms at Ω0 correspond to the ones of (52).
In order to specify the data part of Ah, we build a weight

pyramid, starting from the available fine-scale matrix W̃0
1.

Simplifying the coarser-scale convolution matrices Bh as
identity, we express the diagonal elements of W̃1

1 as

w̃1
1[k] =

{
w̃0

1 ? h
∨
2 ? b

∨}
↓2 [k], (57)

where ∨ flips a given sequence as ·∨[k] = ·[−k]. The
convolutive effect of B is thus taken into account at this first
weight level. For h > 1, the expression of w̃h1 takes the simpler
form

w̃h+1
1 [k] =

{
w̃h1 ? h

∨
2

}
↓2 [k]. (58)

Regarding the regularization term, the components of the
coarse-scale diagonal sub-matrices W̃h

2,ij involved in (56) are
obtained as in (58) through the relations

w̃h+1
2,ij [k] =

{
w̃h2,ij ? h

∨
2

}
↓2 [k], (59)

while Rh is defined as

Rh = 2−hR, (60)

according to the scaling properties of the gradient operator.

B. Successive Over-Relaxation

The phase and grid parameters given to the iterator I in
the Full-Multigrid V-cycles allow to specify distinct numbers
of iterations ν↓(h) and ν↑(h), as well as distinct relaxation
constants ω↓(h) and ω↑(h). For convenience, we denote the
relaxation constants by ω when referring to them in a generic
sense.

Given the symmetry and positive-definitness of the Ah

in (54), a certain class of iterative methods can be used
to specify I, including the well-known Conjugate Gradient
(CG). The successive over-relaxation (SOR) technique [41] is
especially efficient for our multigrid problem. It corresponds
to a damped version of the Gauss-Seidel iterative method, and
its convergence is guaranteed for ω ∈ [0, 2]. Given Ah and
dh, the SOR iterate at grid Ωh is defined as

ch ← ch + ω(Dh + ωLh)−1R(Ωh), (61)

where Dh and Lh stand for the diagonal and strictly lower
triangular parts of the matrix Ah, respectively.

Unlike exact resolution, this iterative approach only involves
partial matrix inversions. Structurally, each iteration is per-
formed by updating the coefficient vector ch componentwise.
The sparse structure of Ah makes these updates correspond to
space-domain operations of complexity O(N logN) at most.
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VII. EXPERIMENTS

In this section, we compare our AIRLS approach with
respect to the state of the art, considering interpolation exper-
iments on grayscale images6. Our implementation has been
coded in Java, and run on Max OS X with a Quad-Core Xeon
2×2.8 GHz and 4 GB of DDR2 memory. The computation of
the optimal orientations in (34) for G1 and the SOR updates in
(61) are parallelized using multithreading. The state-of-the-art
methods that are considered for comparison are also based on
parallel implementations7.

We consider B-splines of order η = 2, and compute
No = 16 orientations when using the operator G1 in (24). Fol-
lowing the generic IRLS procedure of Figure 2, our algorithm
reconstructs images by solving Ni = 10 successive linear
problems that are defined on H = 4 grids in (54). For each
linear problem, the iteration and relaxation constants common
to all experiments are ω↑(h) = 1.5, ν↓(h) = 2, ν↑(h) = 1,
∀h, and ω↓(h) = 1.5, ∀h > 0. The constants α and β
involved in the diffusivites (28) and (29) are scaled according
to the dynamic range Id of the image under consideration. For
convenience, we display unit-resampled versions of the con-
tinuous reconstructions [6]. The PSNR measures are evaluated
on the central portion of the images (80%) so as to discard
the influence of the boundary conditions.

A. Sparse Interpolation of Ideal Samples

In these experiments, we interpolate grayscale images from
2% of their samples, according to one realization of a binary
random mask. The sampling is ideal, meaning that the prefilter
ϕ0 used in our generalized model (1) reduces to the Dirac
distribution δ(·). The other parameters are λ = 0.01,M =
1,Σ = 25, σ = 4, ν0 = 1, ω↓(0) = 1.95, α = 2 · 10−3Id, and
β = 8 · 10−2Id. We consider sets of 256 × 256 images, the
corresponding binary mask being shown in Figure 4.

We compare our three EEDi methods with the fast PDE-
based approach of Tschumperlé [17] implemented in version
2.9 of GREYCstoration8 (GREY). We have also implemented
a PDE-based version of the EED flow using explicit time steps;
this approach is referred to as EED in the sequel.

Quantitative and visual results for these algorithms are
provided for the interpolation of several images in Table I
and in Figure 5, respectively. Observe that our specific tensor-
estimation approach in EED1 restores directional features
better than GREY, EED, and EED0, and yields higher SNR
values. Our EED2 method is quantitatively inferior to EED1

but restores very sharp edges as can be seen in Figure 5.
Its regularization behavior is consistent with the properties of
the Perona-Malik diffusivity mentioned in Section IV-B. Our

6The CT image is part of the Dicom stack CT HEAD-NK 5.0 B30s (Keith
E. Blackwell, M.D.). The standard Bird test image is found at http://www2.
isye.gatech.edu/∼brani/images/bird.gif, while the rest of the original data
belongs to the GCF-BM3D set found at http://www.cs.tut.fi/∼foi/GCF-BM3D.
The image histograms are rescaled to [0, 255] for all experiments.

7The implementations that are distinct from our method sometimes run
on different platforms, and can differ in their level of optimization and
parallelization. Caution should therefore be exerted to not overinterpret the
runtime results reported in Table I.

8This code is run with 15 iterations under default settings. The resulting
PSNR tends to degrade when iterating further.

Fig. 4. Masking process. The pseudo-random binary mask shown above
is applied before interpolation and only keeps 2% of the original data; the
average gap between the retained samples corresponds to 4.3 pixels.

PDE-based implementation of EED requires 5000 time steps
for convergence. It is much slower than EED0, as shown in
Table I, but yields similar results in terms of PSNR and visual
appearance. This corroborates the fixed-point interpretations
discussed in Sections III and IV.

These results demonstrate the suitability of our EEDi
methods to restore geometrical information from few image
samples. In general, our approach is less successful at restoring
textures because, in several cases, the latter are composed of
repetitive patches rather than well-defined oriented features.

B. Sparse Interpolation of Generalized Samples

In this second part, we wish to reconstruct the same images
from 2% of their samples, considering here generalized sam-
pling ϕ0 = a−2rect(a−1·), with a = 7. The EED approach
of [15] is not applicable here; it can be substituted with our
EED0 method as implemented in our more general AIRLS
framework.

Using the same mask and parameters as above, the results
are provided in Table I for our three EEDi methods and shown
in Figure 6 for EED0 and EED1. The improvement of EED1

relative to the other methods is comparable with the ideal
case in terms of PSNR and visual quality. Remarkably, all
results are better in terms of PSNR than their counterparts in
the ideal-sampling setting. As a matter of fact, the analysis
function ϕ0 acts as an anti-aliasing filter before sampling,
which causes the overall reconstructed features to be more
consistent with the original image. This emphasizes the interest
of using generalized sampling for sparse interpolation.

C. Image Magnification

In our framework, image magnification corresponds to a
particular instance of sparse interpolation where the sparsity
is regular and typically low. Our approach is well suited to that
problem because the presence of a prefilter before sampling is
inherent in practical acquisition devices [3]. For that case, we
compare our EEDi methods with quadratic regularization as
well as with distinct magnification algorithms that also handle
generalized sampling. The quadratic approach regularizes the
L2-norm of the image gradient. It is implemented in AIRLS
as the limit case ψ = 1 where one single unweighted linear
problem has to be solved. We further consider iterative TV
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Original GREY interpolation EED interpolation EED0 interpolation EED1 interpolation EED2 interpolation

Fig. 5. Ideal interpolation of CT and Lena (256× 256 crop) from 2% of samples.

EED0 interpolation EED1 interpolation

Fig. 6. Generalized interpolation of CT and Lena (256 × 256 crop) from
2% of samples acquired with a prefilter ϕ0.

reconstruction with an implementation9 of the primal-dual
method [14] as well as the PDE-based method of Roussos
and Maragos (R&M) provided by Getreuer as an online demo
[42]. Choosing a magnification factor of M = 4, we model the
sensor integration ϕ0 as a 2D Gaussian of standard deviation
0.35M in each dimension as can be specified in the R&M
demo. The parameters specific to AIRLS are λ = 0.01,
Σ = 9, ν0 = 2, ω↓(0) = 1.5, α = 2 · 10−3Id, and
β = 2 · 10−2Id. The other algorithms are used with their
default settings.

The available data consists in images that are primarily
downsampled according to the above generalized-sampling

9This Matlab implementation is based on a publicly available source code
of Y. Chen and T. Pock, Graz University of Technology, Austria. We have
modified the original version so as to handle the ϕ0 under consideration.
While the code structure is not optimized for multithreading, most low-
level Matlab functions that are involved are intrinsically parallelized (e.g.,
elementary operators). The algorithm is run until 400 iterations are reached,
or until the PSNR increase per iteration is lower than 10−3.

settings. The corresponding reconstructions are obtained by
magnification and compared with the known oracles; the
results are shown in Table I and Figure 7. In Figure 8, we
perform a similar magnification experiment on an image that
is provided as such without any prior downscaling.

We observe that the combination of consistent-resampling
constraints with edge-preserving regularization yields high-
quality reconstructions in terms of feature preservation, as
discussed in [5]. This emphasizes the interest of taking the
sensor integration into account for image magnification. The
results of Figures 7 and 8 demonstrate that all nonlinear
methods restore sharper edges than quadratic regularization.

As compared to the isotropic TV solution, the anisotropic
EED0, EED1, and R&M methods better preserve certain fine
structures as well as the curvature of the objects, thanks to
the associated flows. They also avoid staircasing artifacts but
introduce some edge smearing. The EED2 method yields the
highest-quality results because it benefits from the desirable
properties of anisotropic diffusion while preserving image
sharpness nearly at the same level as TV. It also yields the
highest PSNR values for several images as shown in Table I.

VIII. CONCLUSIONS

We have designed a method that reconstructs continuous
images from a sparse set of generalized samples. Combined
with consistent data-fidelity constraints, our anisotropic regu-
larization approach was designed to preserve the edge infor-
mation accurately, and to be functional at high sparsity levels.
In the experiments, promising results have been obtained with
nonuniform interpolation of images as well as with consistent
image magnification.

From an algorithmic perspective, the low computational cost
of our method demonstrates that approaches based on itera-
tively reweighted least squares (IRLS) can successfully handle
anisotropic regularization in sparse inverse problems. This low
cost legitimates the use of linear-multigrid approaches. As
in IRLS, we have successfully maximized the algorithmic
performance by restricting the diffusivity estimations to the
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Original Input (downsampled) Quadratic solution TV solution

R&M solution EED0 solution EED1 solution EED2 solution

Fig. 7. Magnification of Bird after it was downsampled by a factor 4 along each dimension. The input downsampled image is shown at the same scale using
pixel duplication.

TABLE I
NUMERICAL RESULTS (PSNR VALUES AND AVERAGE RUNTIMES) OBTAINED IN OUR EXPERIMENTS.

Experiment Ideal Interpolation Generalized Interpolation Magnification
Method GREY EED EED0 EED1 EED2 EED0 EED1 EED2 Quad. TV R&M EED0 EED1 EED2

Runtime [s] 6.09∗ 134.90 3.62 5.73 5.00 4.22 6.52 6.60 1.31 5.32∗ 1.88∗ 5.46 7.45 7.59
Bird 19.86 20.45 20.77 21.02 20.42 23.28 22.98 22.49 27.22 28.16 28.31 27.99 28.43 28.68
Cameraman 17.37 17.68 17.58 17.90 17.40 19.58 19.73 19.50 21.73 22.37 22.16 21.99 22.18 22.42
CT 20.66 21.21 21.14 21.88 21.28 22.76 23.68 23.59 27.11 27.67 28.75 27.53 28.80 28.67
House 18.47 18.76 18.71 19.73 19.60 21.07 21.62 21.31 25.74 26.46 26.60 25.98 26.55 26.54
Lena (crop) 18.38 19.39 19.34 20.22 19.61 21.12 21.87 21.70 24.81 25.19 25.70 25.54 25.85 25.70
Montage 17.66 18.57 18.52 18.67 18.15 20.11 20.38 20.17 21.85 22.20 22.04 22.03 22.28 22.30
Peppers 19.00 18.97 19.12 19.15 18.49 20.77 21.21 20.80 25.36 25.80 26.21 25.85 26.38 26.54

* These runtimes are obtained from implementations on distinct platforms.

reweightings. This has led to a simple and efficient design
that drastically reduces redundancy in terms of operations.
Our algorithm has been optimized for sparse interpolation. It
is comparable to state-of-the-art implementations in terms of
computational efficiency.

Because it is based on IRLS, our variational approach is
modular. Its data term can potentially be redefined so as
to solve several types of inverse problems, such as multi-
image super-resolution or deconvolution. The structure of the
proposed regularization framework is also able to handle alter-
nate definitions of the anisotropic flow. Extensions to higher
dimensions are straightforward because the edge-enhancing
anisotropic diffusion that we formulated in Section IV is
generic. This emphasizes the flexibility of our method in terms
of applicability and leaves room for further improvements.
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APPENDIX A
FULL-MULTIGRID V-CYCLES

Each Full-Multigrid V-cycle FMG(h) parameterized by
ν0 ∈ N∗ corresponds to the recursive function shown on the
left of of Figure 9, the residual at a given grid Ωh being defined
as

R(Ωh) = dh −Ahch. (62)

The expression I↓ denotes a restriction operator, which trans-
fers a sequence from a grid Ωh towards a coarser grid Ωh+1,
while I↑ denotes a prolongation operator, which transfers a
sequence from a grid Ωh+1 towards a finer grid Ωh. The
operator V(h) performs one V-Cycle at grid Ωh, which is
itself a recursive function. The two arguments given to the
iterator I correspond to the descending or ascending phase
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Input (low resolution) Quadratic solution TV solution R&M solution

EED0 solution EED1 solution EED2 solution

Fig. 8. Magnification of Peppers (64× 64 crop) by a factor 4 along each dimension. The input low-resolution image is shown at the same scale using pixel
duplication.

of the V-Cycle, and to the grid level, respectively. They
determine the number of iterations to perform, as well as their
parameterization.
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I. ALGORITHMS

1) Initialize at n = 0 with the solution c(0)

while n < Ni do
a) Minimize J (·|c(n)) with initialization c(n)

s.t. J (c(n+1)|c(n)) < J (c(n)|c(n))
b) Store the solution c(n+1)

c) Establish the new bound J (·|c(n+1))
d) Count n← n+ 1

end

Full-Multigrid V-Cycle FMG(h)
if h < H − 1 then

a) Update dh+1 ← I↓R(Ωh)
b) Run FMG(h+ 1)
c) Correct ch ← ch + I↑ch+1

d) Count n← n+ 1
end
2) Run V(h) ν0 times

V-Cycle V(h)
1) Iterate at Ωh with I(↓, h)
if h < H − 1 then

a) Update dh+1 ← I↓R(Ωh)
b) Run V(h+ 1)
c) Correct ch ← ch + I↑ch+1

end
2) Iterate at Ωh with I(↑, h)
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