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Binary Compressed Imaging
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Abstract—Compressed sensing can substantially reduce the spatial redundancy in the associated measurements, which i
number of samples required for conventional signal acquigion,  suboptimal from the perspective of information content.
at the expense of an additional reconstruction procedurelt also In this paper, our first contribution is to propose a general
provides robust reconstruction when using quantized mease- framework for ’the binary compressed sensing of images
ments, including in the one-bit setting. In this paper, our gal . y P 9 ges.
is to design a framework for binary compressed sensing that Based on [8], we devise an extended forward model that can
is adapted to images. Accordingly, we propose an acquisitio take several binary captures of a given grayscale imageéh Eac
and reconstruction approach that complies with the high di- of these acquisitions corresponds to one distinct conislut
mensionality of image data and that provides reconstructias performed by an optical system. The flexibility of our ap-

of satisfactory visual quality. Our forward model describes data h all t0 i the statistical ties af th
acquisition and follows physical principles. It entails a sries of Pr0ach allows us to improve the statistical properties

random convolutions performed optically followed by samping @ssociated binary data, which ultimately increases théitgua
and binary thresholding. The binary samples that are obtaired of reconstructions.

can be either measured or ignored according to predefined  Using a variational formulation to express our reconstruc-
functions. Based on these measurements, we then express oufjon proplem, our second contribution is a fast reconsionct

reconstruction problem as the minimization of a compound lgorithm that b d-obtimizati incioles. Thsi
convex cost that enforces the consistency of the solution thi algorithm that uses bound-optimization principles. Theigie

the available binary data under total-variation regularization. Of this algorithm bears similarities witlthe optimization
Finally, we derive an efficient reconstruction algorithm rdying on  techniques [9], [10]. It yields an iteratively reweighteshst-
convex-optimization principles. We conduct several expéments squares (IRLS) procedure that is easily parameterizedraatd t
gn srtcz)i;éjhard images and demonstrate the practical interestfaour converges in few iterations.
PP ' We introduce our forward model for image acquisition
Index Terms—Acquisition devices, bound optimization, com- in Section Il. In Section Ill, we express our reconstruction
pressed sensing, conjugate gradient, convex optimizatiomverse  ,ohlem as the minimization of a compound cost functional.
problems, iteratively reweighted least squares, Nester&method, Based timizati derive th fructi
point-spread function, preconditioning, quantization. ase. on _Convex. opumization, We erive the reconstruction
algorithm in Section IV. In Section V, we perform several
experiments on standard grayscale images. We extensively

. INTRODUCTION discuss them and conclude our work in Section VI.
In the context of compressed sensing, the amount of data
to be acquired can be substantially reduced as compared to [l. FORWARD MODEL

conventional sampling strategies [1]-[6]. The key priteip A. General Structure
.Of this approac_h 'S 0 compress the _|r!format|on before '.t In this section, we establish a convolutive physical model
is captured, which is especially beneficial when the acqyjs¢ generated. binary measurement sequencesfrom a
sition process is expensive in terms of time or hardwar

For instance, in their previous work [7], Boufounes al. Slven two-dimensional (2D) continuously defined image

investigated the performance of compressed sensing in feunit square size. Following a design similar to the one
investig P P ng | [8], each of these sequences is obtained through optical

binary case where the extreme coarseness of the quamzagf))nvolution of f with a distinct pseudo-random filteh;
must typically be compensated by taking more numerous mediowed by acquisition through binary sensors.

surements than in the classical case. The original sigmal ca Specifically, each convolved imagex h; is sampled and
then be recovered from the available measurements thro%grt? ' !

: ) . Dtarized by a uniform 2D CCD-like array offy, x M,
numerical reconstruction, whose computational comg&exgensors the specific form f being defined in Section II-B
exhibits a strong dependance the structure of the forward ' .

model. Consequently. specialized acquisition aporoaches The actual sampling process is regular but nonideal, mganin
- q Y, SP . q appro: that each sensing area of sidé, ' has some pre-integration
required for compressed sensing when dealing with lar

. . Y¥rect modeled by some spatial filteér Therefore, the global

scale d.ata such as Images. For |nstanc§, we Were..qblecéﬂvolutive effect of our model before sampling correspond

extend in [8] the central principles of [7] to image acqudsit to the spatial kernels® = h; + ¢, yielding the pre-filtered

and reconstruction. Our associated forward model ge@ra\ﬁermediate images ' e

binary measurements that are based on randomvolution

principles [1]. Though demonstrating satisfactory re¢arcs 0/ 0

tion capability for image data, this method tends to create 1) = (£ xi) (), @)
where the vectox € R? denotes the 2D spatial coordinates.

The authors are with the Biomedical Imaging Group (BI&3ple polytech- Then. the sensor array samples each imﬁ,@ewith a step
nique fédérale de Lausanne (EPFL), CH-1015 Lausanngz&ieind (email: ’

71 . .
aurelien.bourquard@epfl.ch; michael.unser@epfl.ch). T = My ", which produces the sequerseg defined for each
Digital Object Identifier xx.xxxx/TIP.2011.XXXXX indexk € Z? as
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Unlike [8], we allow for a finite-differentiation process to Convolution Sampling
take place before the final quantization step. Denoting the [L x Myx Mo]
corresponding discrete filters &8;, the non-quantized mea- oy lk] e
surementsgy; are obtained as F(x) < Algﬁm |_
gilk] = (gzo * Vi) K], 3) Reconstruction Selection Binarization

. ) ) [Ng x Ny coeft.] w [K],A T

wherex denotes a discrete convolution. These operations can

be efficiently performed by the sensor array itself, foramse Fig. 1. General framework. The unknown continuously defiredge f

using voltage comparators. As discussed in the experimeﬁ:@aﬁrst convolved with L. distinct kernelsx;, producing the intermediate
h . - L . . . images f; = f * x;. Each f; is then sampled with stefi" to obtain the

section, f'mte_ dlfferen_tlatlon b_”ng‘?‘ . |mprovem_ents_ In sy sequenceg;. The last acquisition step consists in pointwise binaigratvith

of reconstruction quality and simplifies the calibrationtio@ thresholdr, resulting in the binary measurements. When retained, the

system. Note that no finite differentiation occurs whenrigki latter constitute the available information on the origidata. Based on these
V, to bé the discrete unit samphel-]. selected measurements, and assuming that the forward risokiebwn, our

o . reconstruction algorithm produces an estimftef the original image.
Defining = as a common threshold value, the quantized

measurement sequencegsare obtained as
B. Pseudo-Random Optical Filters

+1, glk]=7
vilk] = { 1 otherwise (4) As mentioned in Section II-A, thé filters h; are associated
’ to optical convolution operations. Accordingly, we makelea
The measurements; can be selectively stored according t9,; correspond to a distinct spatially invariant point-spread
discrete spatial indicator functions;. Eachv;[k] is actually function (PSF) that is generated by the same optical model.
kept and counted as a measurement if and only if the valie our setup shown in Figure 2, the imagieis associated
wilk] € {0,1} is unity for the samek. Note that, before with light intensities defined on a plane. For each of fhe
binarization, every measurementis a mere linear functional acquisitions, the intensities measured by the sensor aftey
of f. optical propagation correspond to the convolutjonh; up to
The successive operations that are involved in our forwagdometrical inversion.

model simplify to one single convolution in the continuous Tpe specific form ofh; depends on the profile of the
domain without subsequent discrete filtering, as summaiize central plane of the system called tifeurier plane [12].
Figure 1. The equivalent spatial impulse respopsef the fil- |5 our model, this plane transmits light through a circular
ter corresponds tg; (x) = 3=, Vi[k]x{(x — Tk). Tosum up, area and is further equipped for each acquisition with one
our forward model yields\/ = ALMj binary measurements gistinct instance of a phase-shifting plate whose effedbis
of the continuously defined imagein the form of L distinct  mytiply the transmitted-light amplitudes with pseudatam
binary sequences, whefeis the storage ratio associated to th%hase values. The resulting profileis modeled as a complex-
functionsw;. These captured sequences are complementaryyagied function expressed in normalizepatial coordinates
they are associated with distinct random convolutibefore 1],

sampling, binarization, and masking through the Since the Considering phase functions composed of square zones,

latter process allows to decreasé, the resolutionMy can  each zone associated with either ar 7 phase shift, we obtain
be kept constant. This avoids high-frequency losses due to

coarse-sensor integration.

Besides reducing data storage, the process of binary quan-
tization potentially consumes far less power than standard
analog-to-digital converters, and is less susceptibleh® twhere the phase valueg are independent and uniformly
nonlinear distortion of analog electronics [9]. Binary sers distributed random variables from the p4i, 7}, where rect
are also associated with very high sampling rates in geneigathe 2D rectangle functigrand wheref denotes normalized
[7]. In that regard, the selective subsampling that we $pecspatial coordinatesThe phase-shifting plates associated with
by w; may also lead to further reductions of the acquisitiothe x; are of finite extent since they only operate inside the
time if fewermeasurements are required; the acquisition of tieansmissive circular area of Figure 2. The latter is design
selected samples can indeed be performed efficiently throwgyich that the diameter of the cirab®versK phase zones in
randomly addressable image sendors the horizontal or vertical direction. It is thus specified thg

function

1The symbol- denotes a dummy variable. It can be used to create new
function definitions based on existing ones. For instaif¢e;- k) corresponds
to the original imagef shifted spatiallyby k. . 1, HSH < K/2

2lmage sensors that are based on the complementary-médal-ox CII’C(S) = 0. otherwise (6)
semiconductor (CMOS) technology allow for parallel andd@m access, as ’
opposed to other architectures that can only perform seiglieeadout [11]. . . . .
V\Fl)r?ile the potential benefits of binary senso);spfurther n:gu\nur Work[, th]e The proflle @i combines the phase shifts of (5) with the

proper development of such elements for optics remains tadoeessed. transmissivities of (6). It is defined as

pi€) = Y wilkJrecté — k), (5)

keZ?
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Moreover, since our continuous image is modeled as a linear
combination of B-spline basis functions, it is equivalgntl
described through the corresponding coefficients. Thea, th
substitution of (9) into our physical forward model natlyal
leads to a linear and discrete dependency between the image
coefficients and the measurements before quantization. Ac-
cordingly, the general relation between the unknown secgien
¢ and the sequences can be summarized into thmeasure-
ment matrixA € RM>~ whose structure is induced from our
Fig. 2. Optical setup. In our optical model, the imagemaps to light- continuous-domain formulation. In this paper, vectorseref

intensity values. Our optical device transforms this afifimage wavefront t0 lexicographically ordered versions of the correspogdin

using elements that are spaced by the same distance F. Fgjldve direction sequences. Using this convention, we obtain

z of light propagation, this system called 4F consists in #fe plane where

the imagef lies, one first lens L of focal length F, the central plane, one

second lens 4 identical to Ly, and the last plane containing the propagated g = Ac, (10)
wavefront to be captured by the sensor array.

where ¢ containsN = NZ coefficients and wherg con-
tains M measurements. Our measurement matrix generalizes
[8] and vertically concatenates several terfg of similar

¢ (&) = circ(€) exp(—jui(£)). (7) structure asA = (Ay,...,A;,...,AL). These terms are
associated with the sequences They depend from the

Due to the4F placement of the lenses, the propagation @responding kernelg; and from the rational sampling step
light implements a continuous Fourier transform [12]. The: They are defined as

light amplitudes are also modulated &yin the Fourier plane.

Accordingly, the impulse respongsé the system is defined up A; = Q,DyB, Uy, (11)
to scale as
whereD,; andU; denote downsampling-byand upsampling-
hi(x) = |F{a} (x) %, (8) by-j matrices. The integer$t and A are such that the right-
_ hand side of the equality/y /Ny = M /N is in reduced form.
where  F  denotes  the  Fourier  transformgjyen periodic boundary conditions, the circulant mafBx

Flai}(x) = [po 0:(€) exp(—jxT€)dE. The use of spatially is associated with the discrete impulse response
incoherent illuminatiod and the fact that the measured

guantities are light intensities results in a squared maoslir N N .

(8). Each filterh; is thus nonnegative, and depends upon theb;[k] = —— (Xi (—2) * 3 (—)) (X)|x=k. (12)
corresponding:; defined in (5). The latter can be generated N Mg N Mg M

electronically by a spatial light modulator [1]. Finally, each matrix2; is linked tow;. Specifically, it corre-
sponds to an identity matrix whose rows associated with the
discarded measurements are suppressed, if EBmg.overall

) structure ofA will prove to be beneficial for the reconstruction
The use of phase masks in our forward model producgSierms of computational complexity. The measurements are

random-like patterns in each of our binary-measurement $qeed related to the coefficients by mere discrete Fourier-
quences. This closely relates our method to the compressggnsiorm and resampling operations.

sensing paradigm of [7] and requires us to express all Ounyhen the unknown vectat is sufficiently sparsein some
unknowns in discrete form. To this end, we model the Co”t”&'dequate basis, which does not need to be known expli¢idy, t

uously defined functiorf as the expansion theory of compressed sensing offers guarantees on theyquali
of reconstruction in terms of robustness to measuremeast los

C. Connection with Compressed Sensing

fx) = Z c[k]p™ (x — k), ©) or quantization [6], [7], provided that the measurementrixat
kez? is appropriate. In the general case, a common and suitable
where the sequence corresponds ta Ny x Ny) real co- criterion for A is to be statistically incoherentwith any
efficients placed on a regular grid, and whese'(x) = fixed signal representatiprwhich means that the bases of

B (z1)p™(z2) for x € R? is the separable 2D B-splinethe measurement and sparse-representation domains of the

of degreem. Given their small support and polynomial-signal are uncorrelated with overwhelming probability .[2]

reproduction properties, B-splines are especially adbfsten  This propertyhas been shown theoretically to strictly hddat

both approximation and computational viewpoints. Theysthunatrices consisting of independent and identically disted

constitute a suitable approach to represent continuougemal(iid) Gaussian random entries [3], [6], and als® nearly

[13]. hold for other random-matrix ensembles [1], [4], [5], [14],

[15]. In this work, we resort to an experimental validation o

3Spatial incoherence means that the phases of the initiaéfremt on the §yr measurement matrix for binary compressed sensing. In

left plane of Figure 2 vary with time in uncorrelated fastsofThis implies . . .

that the effective response of our optical system is lineaintensity rather Part|(?UIar’ we shall demonStr_ate |n.SeCt|0n V that our model

than in amplitude [12]. is suitable for the reconstruction of images from few datal a
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that the quality of the solution is linked to relatively silmp more indirectly, from the phase-mask profiles Based on that

criteria relying on the measurements themselves. information, our goal is to reconstruct an accurate corotirsly
The appropriateness &£ in our generalized model ised defined estimatg of the original imagef according to some

to the set of discrete filters; defined in (12) and associatedsparsity priorR. Specifically, we demand our reconstructed

with the matrix termsA ;. Indeed, they share similarities withcoefficientsé to minimize

the Romberg’s random-convolution pulses proposed in [d] fo

compressed sensing. Firstly, their discrete Fourier aoeffts J(¢é) =D(¢) + AR(¢). (13)

a:\slgnh;\/;rprr;?ast?o\aawi?s :Ezt ?g?i{:;?g)mgeifgé?mgdeﬁt The first scalar ternD imposes the fidelity of the solution
9 b : Y m to the known binary measuremenis Due to quantization,

beln_g strictly "’?”'pass as in [1], our filters are alspread- fidelity alone is in general under-constrained and accualg
out in the spatial domainDue to these properties, the form o
up to contrast and offset. Then, the regularization t&&m

of b; has been shown to yield satisfactory reconstruction > iahted by encourades the sparsitv of the reconstruction
in the binary case [8]. Besides being adequate individualw 9 YA 9 P y '

these filters also producgé distinct sequenceg; from the

same imagef because they are associated withdistinct A. Data Term

pseudorandom phase-mask profiles in (7). In some sense, oufhe role of our data-fidelity constraint is to ensure that
multi-acquisition framework is the reverse of multichahnehe reintroduction of the reconstructed continuously defin
compressed-sensing architectures where one single oufmége f into the forward model results in a set of discrete
sequence combines several source signals through distvaiiesg; that are consistent with the known measurements
modulation or filtering operations [16], [17]. As will be~;, once binarized. In the context of 1-bit compressed sens-
discussed in Section V, the subsequent thresholding éperatng, the enforcement of sign consistency has been originall
(4) that is applied in our method yields binary measuremergsoposed in [7], where a one-sided quadratic penalty fancti
that follow an equiprobable distribution, as in [d]he proper was considered. Trivial solutions were avoided by reqgirin
specification ofthe additional acquisition parameters of outhat the signal lies on the unit sphere. Here, as in [8], we
system(including w; and L) will allow us to maximize the introduce a variational consistency principle that preser
reconstruction performance while maintaining a high compthe convexity of the problem without requiring additional
tational efficiency. non-convex constraints. Note that, although convexity is not
required to ensure nontrivial solutions, it is exploited foe
development of our algorithm and to ensiiteconvergence,

as described in Section IV. Regarding the data-fidelity term
For the general problem of binary compressed sensingir contribution is to propose a penalty functigrthat is also

the authors of [9] have recently proposed a reconstructigpitable for bound optimization. We express our functicasal
technique that is based on binary iterative hard threshgldi

(BIHT), using the non-convex constraint that the solution R L R
signal lies on the unit sphere. This approach extends pusvio D(e) = Z Z“’i[k]w(gi[k]% [kI), (14)
works [7], [18], and achieves better performance. The work =1k
of [10] uses a distinct strategy by formulating a convewhereg; andc are related in the same way gsandc in (10).
reconstruction problem solvable by linear programming. ARhe positive function) is defined as
extension of this principle to the case of noisy measurement
is also considered by the same authors in [19]. M-, t<0
In this paper, we propose to formulate our image- Y(t) = { M-L(M22 + Mt +1)~", otherwise
reconstruction problem in a variational framework. Specifi
cally, our solution is expressess the minimum of a convex wherel is the total number of measurements. Besides penal-
functionalthatincludes data-fidelity and regularity constraintsizing sign inconsistencies, the rationale behind this dtéfim
Using bound-optimization principles, the convexity of shiis to yield nontrival solutions while ensuring the convgaff
functional is exploited in Section IV to derive an efficienthe data term. The latter property holds because, accotding
iterative-reconstruction algorithm. The latter can harldrge- (15), the Hessian db is well-defined and positive semidefinite
scale problems because, from a computational perspeitivg21]. The functionw is itself C2-continuous and convex, its
involves the application of the forward model (whose form isecond derivative being always nonnegative. Moreoves, thi
essentially convolutive in our case) and of its adjointdesi specific piecewise-rational polynomial function is suléaln
each iteration as in other methods. Furthermore, besidals qithe development of analytic upper bounds, as addressed in
ity considerations, the specific structure of our recomsion  Section V.
problem will allow us to maximizeiterative performance  Given (4), negative arguments af correspond to sign
through preconditioning and Nesterov's acceleration.[20] inconsistencies. As shown in Figure 3, our penalty function
The available data consist of the measuremeptbtained is linear in that regime. In that regard, the authors of [9}eha
according to Section Il. In addition, we suppose ti#atis shown that, in the binary compressed sensing framework, suc
known. Its components can be deduced physically from tha ¢;-type penalty for consistency yields reconstructions that
L impulse responsel; produced by the optical system, orare of higher quality than with thé, objective used in [7],

IIl. FORMULATION OF THE RECONSTRUCTIONPROBLEM

(15)
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where eachf[k] is the norm of the gradient of evaluated

2 AYANY T T T T 1] T 7 oy . .
Wy ; g at positionx = k and where\’ is a small positive constant.
18 ANy ! ! 1 Based on a smoothing parametethe scaled Huber potential
16f “Q\:c\ K K 1 H is defined as
14r \“\ lll II ,'lf
P ] H(t) e, s (17)
= . ’ ,' i = .
"i r / ) K 2|t| —e,  otherwise
Sosf s - _," it K 8
06l *.;:'\ IR Re | The gradient-norm sequenées determined from the spatial
N e derivatives7/- and L of the solution sampled in-between the
04r \:""' grid nodes defined by the sum in (16). This type of discretiza-
021 N _,x' 1 tion yields numerically stable solutions without oscibigt
T 1‘5' = — modes. It bears similarities with the so-calledrker-and-cell
T vt ' ' methods used in fluid dynamics [29]. The expression afs

a function of¢ is

Fig. 3. Shape of our penalty function. As discussed in Sect\d and
further developed in Appendix A, the valugg~¢) (full line) can be bound N N

from above bythe quadratic function (¢|G(™,~) aroundt = §(™) (dot 0k] = \/(C* ﬁ) [k]? + (C* ;”2) k]2, (18)
mark). Function values and derivatives must coincide &t ploint to satisfy

(23). Among all possible parabolas (dashed lines), thetisalys, is the upper where the,” | are directional B-splinlerivativefilters de-
bound with infimum second derivative. 1.2

fined as
[18]. To some extent, these results confirm similar obseamwat ,
mentioned in [8]. This type of penalty also relates to the so- k] = BT (k +1/2)8™ (k2),
called hinge losswhich is considered a better measure than k] = 8™ (ko +1/2)8™ (k). (19)

the square loss for binary classification [9]. In our method,

the values of the solutio are defined up to a commonThe first derivative 3’ of a B-spline has the symbolic
scale factor, and also up to an additive constant becawsgression given in [13].

7 is not given. Norconstant solutions are favored by the

contribution of the small nonlinear penalty that remaingewh

the sign is correct. The transition between the linear and IV. RECONSTRUCTIONALGORITHM

nonlinear regimes of> is C2-continuous and takes place at the
origin. The applied penalty vanishes for increasingly fessi A. General Approach

arguments. In this section, we derive an algorithm to efficiently solve
(13). Our main strategy is to recast theginal formulation
B. Regularization Term of the reconstructiomproblem as the partial minimization of

For inverse problems, it has been shown empirical ccessive quadratic costg, that upper-boundy locally

X o - i i )
that frame-synthesisegularization, which acts on transform- roun_d _th_e cgrren_t solution e_?_tlml?i@ d. E_acg Jq can ;Tfn d
domain €.g, wavelet) coefficients of the signal of interest, i?e minimized using a specitically devised preconditione

outperformed byframe-analysigegularization, which directly conjugate-gr§d|ent method. ,
operates on the signal itself [22], [23]. Accordingly, reeo While sharing a common structure, every new quadratic

struction algorithms often involve the latter approach whefOSt is specified by the current solution. Its proper dedniti
dealing with images; total-variation (TV) [24] is frequént |_nyolves t_he pothlse non!lnear estlmanon of scalar quan
used as a sparsifying transform [1], [25], [26]. AIthough_t't'es’_ which is a reweighting process akin to the one of
suitable for regularization, the original form of TV is non iteratively reweighted least squares (IRLS). In our bound-
differentiable when the image gradient vanishes. As in tfPtimization framework, each successive solution paytial
NESTA algorithm proposed in [27] fahe recoveryof sparse minimizes., (/")) with respect to its current value &),
images, we therefore opt for a smooth approximation of tfgnding this solution amounts to partially solving a linear
TV penalty based on a Huber potential function [28]. iproblem with a given initialization. We propose to precdiudi

order to guarantee the well-posedness of the problem, we dfach of these linear problems according to its particular
include an additional energy term in our expression, sihee iStructure and find an approximate solution using the linear

nullspace ofA can indeed be nonempty depending oi. conjugate-gradient (CG) method. Th@s approac;h ensures.the
Approximating the Huber integral, our regulariz&ris then global convergence of our method without having to specify
defined as any step parameter.
According to Figure 4, the successive reweighting and
R(E) = ZH(Q[k]) + Nek)?, (16) linear-resolution steps can be interpreted as alternajaate
" tization and deconvolution operations, respectively.
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(2) Partial cost
minimization

Next iteration |«

(1A) Definition of
the next weighted
regularization term

Local cost

Initial solution } Solution
- - i
Dequantized data

(zero image) coefficients

Or S A 4,k

(1B) Definition of
the next weighted
data-fidelity term

Fig. 4. Overall principle of our reconstruction algorithifihe solution coefficients are first initialized to zero anértrupdated by minimizing successive
quadratic-cost functionals. Using the current solutift), Steps (1A) and (1B) determine the next local cost. Each esghtwo steps is related to a

deconvolution problem where the datato deconvolve correspond to dequantized versions of thiahiey;. An updated solution is found after minimization

in Step (2). It determines the coefficients of the next sofutiThe overall convergence of the process is guaranteealfe®ach quadratic cost is determined
according to a bound-optimization approach and minimizsidgithe current solutiog(™) as initialization.

B. Upper Bound of the Data Term where the subscripts have been dropped for convenience.
prhese relations constrain the value 1f and its derivative
- o (n). As illustrated in Figure 3, further optimizing,, to
upper-bound and approximat® around some initial or at g a

best approximate)(yt) exhausts every remaining degree of

current estimate of the solution. Following raajorization- freed Thi Lt d h 1 .
minimization(MM) approach [30], we build the local quadratic reedom. This solution corresponds to the smallest pesitiv

costDY(- |C(n ) for the corresponding estimaté” such that %2 in (22) that allows (23) to be satisfied. The particular
1 definition that we have proposed for the penalty function

¢ allows for fast noniterative evaluation of the coefficients

In this part, we derive functionals of simpler form whic

DO( mamy = pEm), a;. The actua_l _expressions are derived in A_ppendi>~<(A)\. The
q(c|c ) > D). (20) ;(Zsultmg coefficients then specify the quadratic d@%ﬁc )

For convenience, we bound the cost by the penaltyThis
fixes the structure oDY(-|¢(™)) as

L
DY (Ele™) = 3 3w lul™ ] (70 — )+ K.
k

=1

(n) [k 21 (24)
Dy(ele ZZ% 4 (@il ] al)). (22 where the scalak is constant with respect t& and where
=tk w!™ andd™ are sequences defined as
Wheregf") is the current estimate gf; associated with the
solution estimaté(™), and wherey, is a quadratic and scalar (n) PR
. ! k] = k
penalty function which takes the form w; " K] a2£9 k], vi[k]),
A" = —5(ayta)(@ I wlk). (25)

M 432 4a1 (3™, 7)Fi+ao(@™,vi), Since the value of the constart is irrelevant for mini-

(22) mization, we define the cogb,(-[¢")) as DY(-|c™)) minus
where thea; (g, " ),%) are polynomial coefficients. The valueshat constant. Dropping the subscrvptfor convenience, its
of g, and% depend on the solution estimate and the availabésplicit form in matrix notation as a function of the coeféinis
binary measurements. Constraints (20) are then satisfied rbgduces to
fulfilling the simpler scalar conditiongy € {—1,1} andVt €
R,

$a(Gilg i) = as (3!

D, (gle™ ZHW2 d;) ) ; (26)

’fz

I
<
=
2
S
B
=

¢q(§(n)|§(n),7) where W; is a diagonal matrix with diagonal components
Y (t1g™, ) > (), (23) w;w'™ and whered; is the vector associated with{" .
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C. Upper Bound of the Regularizer
The Huber convex functionak can be bound from above s'e =y, (35)

according to the same MM principles. The form7§f1(-|é<n)) ‘wherey’ is predetermined ag' = P~ 2y and where the actual
can be deduced from the results of [31]. Its matrix expressiQq tione of the original problem is recovered as- P

IS

1 -
—a2¢,

As a solution satisfying the above requirements, we conside

12
Rq(Ee™) = N |[E]l7, + HW(? RE| . 27) P — F*diag(FSF*)F, (36)

whereW, is a diagonal matrix with diagonal components whereF is the normalized DFT operator, wheRs denotes
its adjoint, and where didg is a projector onto the diagonal-
w(()”) [k] = max(e, 0[k]) !, (28) matrix space. Definition (36) corresponds to the optimal cir
culant approximation o8 with respect to the Frobenius norm
[32]. This solution is well-adapted to its convolutive nawas
compared to diagonal preconditioning.

and whereR = (R4, R») is the discretized-gradient matrix.
Each termR; is a circulant matrix associated withe filters
By defined in (19)

D. Quadratic-Cost Minimization F. Minimization Scheme

Combining the data and regularization terms (26) and (27S),The. successive .quadra.tlc bounds as We.” as the corre-
we obtain the local quadratic cost ponding preconditioned linear problems being defined, we
now describe the overall iterative minimization schemet tha
. - . initializatiors©® O
ZE™Y — D (&™) 4 AR (&8, 29 yields the solutiore, starting from an initializatiore'®). Our
Ja(Ele™) a(E[E) + ARq (€™ (29) overall scheme is composed of two embedded iterative loops.
In order to decreasé, the new estimaté("+1) must decrease The weight specification of the successive quadratic costs

J,(-]€™) itself. In other words, we have to satisfy corresponds to external iterations with soluti@® .
Since our algorithm involves upper bounds that are paytiall
T, (&™) < 7,@&™ ™). (30) minimized and that satisfy MM conditions of the form (20),

it is part of the generalized MM (GMM) family [30]. In
that regard, the continuity of our functiongl, implies that
the MM sequencd 7 (¢(?), 7 (&™), 7(€?),...} converges
- monotonically to a stationary point gf. The convexity of7
S¢=y, (31) also implies that the whole minimization process is confpati
with the system matrix with Nesterov’s acceleration technique [20], which we gppl
to update our estimates. This requires the use of auxiliary
L T’ 2 - . solutions that we mark with star subscripts, as well as the
S = Z A WA + A Z Ri WoR; +1 (32) ' gefinition of scalar values™. The steps of our global scheme
=1 =1 yielding the solutiore are described in Figure 5.

Defining ' = ANI, whereI is the identity matrix, the
minimum of 7, (-|¢™) is the solution of

and the right-hand-side vector We useZ.,; external iterations, each of which corresponds
. to a refined quadratic approximatign, of the global convex
cost. For the partial resolution of each internal problema, w
y=Y ATWd,. (33) P P

apply CG on the modified system (35). Accordingly, the
o o ) corresponding intermediate val@ is first initialized to the

The huge matrix sizes entering mto(nplay req%e_(Sl) 10 R&irrent solution estimate in the preconditioned domairg an
solved iteratively. The positivity ofw;™ and wy " in (25) then updated using;,,; CG iterations each time. In accordance

and (28) implies symmetry and positive-definitenessSof ith (9), the final continuous-domain image is obtained from
which allows for the CG method to be used. Initializing thene coefficients: as

latter at the current estimates, we guarantee the corrdsmmpn
approximate solutions to comply with (30). f(x) _ Z &)™ (x — k). (37)

keZ?

i=1

E. Preconditioning As demonstrated in Section V-A, the use Nésterov’s tech-

We also take advantage of preconditioning to obtain amnque and of preconditioning to solve the linear problems
approximate solutiod("+1) that is close to the exact minimumensure the fast convergence of our method.
with fewer iterations. We impose our preconditiofferto be
a positive-definite circulant matrix, and define the twoesid V. EXPERIMENTS

preconditioned system . .
We conduct experiments on grayscale images that are part

/I —lap_l of a standard test seEirst, we evaluate the computational
S'=P 2SP " =. (34) . . .
performance of our algorithm in Section V-And show
It is associated with the modified linear problem baseline results in Sectio#B. In Section V-C, we propose



1) Initial (@ taken as the zero vector

2) Initial values 6&0) =¢O n=0,00=1

while n < Z.,; do

a) Specification of S and y given &™)

b) Computation of the preconditioner P linked to S’
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[9]. Knowing that each instance of (35) can be solved partially,
the choice ofZ;,,; is meant to maximize computational perfor-
mance, while the value ¢f.,; is used as a stop criterioNote
that the values of and A cannot be reducefiirther without
impactingnegatively on the speed of convergence.

¢) External count n « n + 1 In order to provide a quality assessment in terms of signal-
d) Computation of y' = P~ %y to-noise ratio (SNR), the mean and variance of the solution
¢) Internal initialization & = P2&(n—1) coefficients are matched to the reference signal. We alsoelefi
f) Update of & with Z;,, CG iterations on S'¢/ =y’ a quantity called blockwise-corrected SNR (BSNR) whers thi

g) Nesterov’s solution update ¢ — psg same matching is performed blockwise usig 8 blocks. As
h) Nesterov’s step update discussed in Section V-D, the BSNR is consistent with visual
_1))\2 erception.
o™ = %(+)~/i(+ (0)-(71 D) percep
N~ ~(n ~(n—1
i) € = ¢ ) -1 A. ComputationalPerformance
]) 6("> — E*n) 4 O,(n) (U(n—l) o ].)E!* ]
end To evaluate the computational performance of our algo-

rithm, we perform a reconstruction experiment o25é x 256
test imageusing M3 = 256%, L = 1, A = 1, and no finite
differentiation The results are reported in Figure 6, includ-
ing a comparison with théIHT algorithn? introduced for
reconstruction from binary measurements in [Bjese results
an estimate of the acquisition quality based on the sp td?monstrate thalesterov’s acceleration methods well as

a L ; .
redundancy of the available measurements. In Sections \}% preconditioning used in our algorithplay a central role
and V-E. we address cases whe nsampiing and finite to obtain fast convergenc®y contrast, we have observed

differentiation are used for data acquisition. In particularthat?”000 lterations are required to ensure convergence with

) o %IHT—Which is used for the experiments of Section V-D—
we determine to what extent these strategies impact on the . : .
. . . . as opposed to a total df.,;Z;,; = 80 internal iterations
acquisition and reconstruction qualitwe finally assess the " : . )
' : . o with our algorithm. This corresponds to an order-of-magphét
optimal rate-distortion performanaé our method for distinct . o o
. . improvement in time efficiency.
amounts of measurements in Section V-F.
The discretization(9) d_oes not mducg any Ios.s. becausg' Baseline Results
we match the square grid a¥y x Ny spline coefficients to
the resolutionof each digital test imagechoosingm = 1. Our framework can handle several measurement sequences
Specifically, we determine beforehand such that interpo- unlike in [8]. Accordingly, thegoal in this part _is _to reconstruct
lates the corresponding pixel valdesn order to maximize h€512x512images.enaandBarbarafrom distinct numbers
the acquisition bandwidth, the siz& x K of the phase L of acquisitions withA = 1 and no finite differentiatiorEach

mask and the numbetl, x M, of sensors are themselveicauisition includes\/¢ = 512% samples, the total number of
set to Ny x No. The sampling prefilters is defined as a 2D Measurements being multiplied by the corresponding
separable rectangular window. The thresholds set to the _ '€ binary acquisitions and treorresponding reconstruc-
mean image intensitywhen no finite differentiation is used, ions with our algorithmare shown in the spatial domain
and to zero otherwise. The latter choice is a heuristic th Figure 7.1n both examples, theeconstruction quality
directly yields equidistributed binary measuremengsfrom substantlally_ {mprovesvlth L, one smgle acquisitionbeing

our data as in [8], without requiring any optimization orther already _sufﬁmemto_preserve substantial gray_scale and edge
refinement. For non-unit, we consider identical spatial maskdnformation. The binary measurements of Figure 7 are not
w; that correspond to horizontal and vertical subsamplingitérpretable visually because the image information feesb
which allows for the proper display and evaluation of oufPread out through the filters;. These measurements fol-

measurements. Our reconstruction parametersare10—* low a random distribution that originates from the pseudo-
N = 105 ¢ = 5-10°%, T,,, = 20, and Zp,, = 4 random phases; of the masks, and that is heavily correlated
- ) - ) exr - ) mn -

The smoothing parameter chosen for our regularizer aimsspatially as in [8]. As a matter of fact, random-convolution
at approximating TV as in [27], while the small vagief measurements do not display strict statistical incoher¢hl

the constarg )\ and \ ensure that the reconstructions ardVe investigate b_elow how spatial cor_relation can be quautifi
consistent with the binary measurements with enough acgur@nd reduced to improve reconstruction.

(|'e" about99% or above)' ) ) SWe have adapted BIHT to our forward model, assuming spaisitye
We have found that the most-consistent solutions are alSear-wavelet domainBesides its simplicity, the latter choice was observed

the ones of highest quality, which corroborates the resiflts 1 vield higher-quality results in our case than when usinghér-order
Daubechies wavelets, despite the generated block astif&etch iteration
involves a gradient step scaled 1&9§*1/2||A||2*1 and renormalization [9].
4Given our forward model and the high values &% involved in our A zero-meanA is used in the algorithm to handle the case wherés
experiments, the choice ef, has no significant impact. nonzero. The sparsity-level parameter specifying the rasduamount of
5This quantity corresponds to the mean component value of¢torg.  nonzero wavelet coefficients is set 2900. Both BIHT and the proposed
It is assumed to be known for reconstruction. algorithms have been implemented in MATLAB.

3) Solution coefficients & = &(")

Fig. 5.  Minimization approach described in matrix notation
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choose a fixed set of two perpendicular first-derivativerlte
whose Z-domain expressions arg;; — z; ') for the hori-
zontal orientation andz, — 2, *) for the vertical orientation,
respectively. Assuming an evdn the former filter is applied

on acquisition sequences of even index, and the latter one is
applied on the remaining indices. The operation of eaclr filte
V; followed by zero thresholding is physically realizable by
means of binary comparators that are connected to the two
corresponding pixels. From a practical standpoint, such an
approach eliminates the need of threshold calibration.

In order to compare the acquisition modalities with and
without finite differentiation, we perform experiments on
several256 x 256 images. These experiments involyg =
) s 0 15 20 131,072 measurements taken ih = 2 acquisitions using

Time [s] Mg = 256% and A = 1. Besides our own algorithm, BIHT
is also considered for reconstruction in each case results
Fig. 6. Reconstruction SNR as a function of time fontage(256 x 256).  are reported in Table I, and shown in Figure 8 lftwuse The

For our reconstruction method, the sole use of preconditip(dashed line) or best numerical values are emphasized in the tables usmg bol
Nesterov’s acceleration (dotted line) already improves dbnvergence rates

as compared to standard CG (mixed line). When both techsigre enabled Notation.

(solid line), thr? perforrrlancttieo r?f ;’?{) rf:\]lq%?]r(i:t:rgf ig}pHrgviess i%hvcir?llfx(/)-r fﬁé . Qur _qualitaf[ivc_e and quanti@ative results demonst_rate that

ggmgagrso%rl]ér; ?b:)?tct;)mnsdrgt(;). Inqhe latter case, each camespy iteration finite dlﬁerentlatlon gl.Oba”y yields the best reconstiaos.

lasts about half a second. The times that are given correspoan execution 1h€se solutions consistently correspond to loweralues as

of the algorithmson Mac OS X version 10.7.1 (MATLAB R2011b) with a well, which reflects itself visually in lesseedundant binary

Quad-Core Xeon 2« 2.8 GHz and 4 GB of DDR2 memory. measurements. Finite differentiation decreases redwydze:

cause it spatially decorrelates the image measuremgnts

before quantization. Because finite differentiation sertbe

) . ) high-frequency content of the measurements, most visaal fe
The potentialquality of reconstruction depends on the apyres such as edges are indeed better restored as compared to

propriateness oA for binary compressed sensing. We assumge other acquisition modaits In return, reconstructions tend

our matrix to be suitable for the specific data in hand when tig display slightly higher low-frequency error. Becauseitsf

corresponding binarized measurements behave as indegienggmuylative nature, the latter may then casséstantialSNR

and identically distributed random variables. As a pratticqeterioratiorin unfavorable scenarios. In such cases, however,

solution, we propose to estimate the “randomness” of thge amount of visual details is still higher, as illustrated

acquiredh; through their autocorrelation [33]. We specificallyrigure 8. For instance, fine details such as the house gutter

infer a correlation distance based on the unnormalized autoy e petter preserved. We observe that the BSNR measure is

correlationsp} of our (possibly subsampled) binary sequencegnsistent with visual impression, as it adapts to slownisity

7;- This distance is used as a quality indicator, inasmuch @gfts in the solution. For both acquisition modalities,rou

it measures the degree of spatial redundancy arising in QAiforithm based on TV yields the best reconstructicites

measurements. To determine this value, we first compute ®hfirms the suitability of TV for our problem, in accordance

characteristic lengtn’ of each autocorrelation peak, usinguith the discussion of Section II-B. Note, however, that

the standard deviation ¢p;|* for the sake of robustness. Theyroper adjustment of the sparsity level in BIHT is delicate.

autocorrelation being symmetric and centered at the aN@in oy instance, images that are sparser than the assumed level

write that might lead to suboptimal reconstructions in Table I.

1/2
e (zk |p:[k]|4||k||2) ”
Siloi [t
Averaginga’ overi then yields the final. As shown in the The following experiments address how reconstruction-qual

sequel, this value strongly depends on the parameters of t:?ecan be maximized given a fixed measurement budget, using

forward model. In particular, it can be decreased compared 1€ sam_a5_>6 x 256 Images as ab_ove. C_on3|der|ng the finite-
the case of Section V-B by enabling downsampling.(non- ifferentiation modality specified in Section V-Dur strategy

unit A) or finite differentiation in our frameworkote that, as is to further decreasepatial redundanchy sharing the mea-

o~ NS S
in [8], our choice for the threshold ensures the uniformity su:jemen_ts between more aqu|S|tloﬁ$rt]003|n3M0 I'_ﬂi256A
of the binary distribution of the measurements. and M = 32,768 as constraints, we thus adapt traio

to the number of acquisitions a&~' = 2L. On the one
o ) hand, minimizingL reduces to previous system configurations.
D. Influence ofAcquisition Modality On the other hand, maximizing it is highly inefficient, as it
In this section, we investigate the performance of finiteamounts to taking one single measurement per convolutive
differentiationwhen usedn our framework. To this end, we acquisition. A tradeoff has to be found between these two

C. Incoherence Estimation

(38) g Respective Influence af and L
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Fig. 7. Results orlLena and Barbara (512 x 512) for distinct numbersL of acquisitions usingMg = 5122 and A = 1 without finite differentiation
(M = L-5122 measurements in totalfFirst row, from left to right: first acquisitior; of Lenausing our model, and reconstruction from oid & 262,144,
SNR: 17.49 dB, BSNR: 22.35 dB), twa\{ = 524,288, SNR: 22.42 dB, BSNR: 24.61 dB), and foub/(= 1,048,576, SNR: 26.46 dB, BSNR: 27.13 dB)
acquisitions. Second row: first acquisition of Barbara using our model, and reconstruction from orde & 262,144, SNR: 13.96 dB, BSNR: 16.09 dB),
two (M = 524,288, SNR: 17.69 dB, BSNR: 17.74 dB), and four/(= 1,048,576, SNR: 20.3 dB, BSNR: 20.28 dB) acquisitions.

Modality Standard Approach Finite Differences
Reconstruction | Proposed (TV) | BIHT (Haar) Proposed (TV) | BIHT (Haar)
SNR BSNR | SNR BSNR| o SNR BSNR | SNR BSNR| o

Bird 25.64 27.80 | 19.80 2256 | 54.00 | 25.81 31.66 | 15.17 23.88 | 33.08
Cameraman 20.65 20.96 | 1595 16.32 | 64.99 | 22.63 24.04 | 5.87 17.16 | 16.04
House 25.67 26.44 | 2040 2158 | 47.82 | 24.38 28.85 | 13.83 22.30 | 20.16
Peppers 20.16 21.79 | 1471 1543 | 40.30 | 18.21 2495 | 7.15 15.61 | 19.87
Shepp-Logan 19.25 20.00 | 9.53 9.95 34.15 | 2296 25.24 | 5.72 12.26 | 11.58

TABLE |
ACQUISITION MODALITIES COMPAREDON 256 X 256 IMAGES USING MZ = 2562, L = 2, AND A = 1 (M = 131,072).

limits to improve the quality of the reconstructions whildramework (SF) of [8].The following experiments allow us
preserving the parallelism of our model. to evaluate their respective image-reconstruction peréoce
Our numerical results are reported in Table Il, the mean terms of the rate of distortiordefiningthe number of bits
surements and reconstructionRéppersbeing shown for two per pixel (bpp)asthe ratio betweern/ and the raw bitsize of
distinct settings in Figure 9. Thealuesof Table Il confirm the corresponding uncompressed 8-bit-grayscale image.

that the correlation lengtlx consistently decreases with. In order to decreasea within a reasonable amount of
Moreover, the SNR and BSNR improve by several decibelzqisitions, our forward model is parameterized with- 8
when increasing. This is further corroborated by the visual,,y A — L'z, depending on the chosen bitratein bpp
results of Figure 9. In particular, grayscale informatia ithe number of measurements taken on N x N, test
morefinely preserved in the solution displayed on the rigthage is thusM = N2 since My = No. Our method is
Interestingly, the increase in quality starts saturatifema oy 5)yated with (D) and without (S) finite differentiatidn. the
reaches near-optimal values, as shown in Table Il. The COBY casethe sensor resolution has to matthstrictly, because

pression performance of our method is thus optimal or neagy,e single convolution is performed without subsequenpdro

optimal with L > 8 for a given amount of measurementsy¢ samples. The forward model is configured accordingly,

Theseresultsconfirm the strong inverseorrelation between adapting the remaining parameters to the image size as in

measurement redundanagpd reconstruction quality. our method. That particular framework requires equal retio
factors for resamplingwhich implies that certain bitrates
F. Rate-Distortion Performance cannot beevaluated The reconstruction parameters are set as

In this section, we confront our global acquisition and the last experiment of [8].

reconstruction framework (GF) with the single-convolatio Results on several test images are reported in Table IIlI.
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Fig. 8. Acquisition modalities comparedn House (256 x 256) using Mg = 2562, L =2, andA = 1 (M = 131,072). First row, from left to right:
acquisitions; without finite differentiation, and reconstruction usingH8 (SNR: 20.40 dB, BSNR: 21.58 dB) and our algorithm (SNR:625dB, BSNR:
26.44 dB). Second row: acquisitiong with finite differentiation, and reconstruction using BIHSNR: 13.83 dB, BSNR: 22.3 dB) and our algorithm (SNR:
24.38 dB, BSNR: 28.85 dB).

Parameters | L =2, A = 1/4 L=4 A=1/8 L=8 A=1/16 L=16 A=1/32 L=32 A=1/64
SNR BSNR « SNR BSNR « SNR BSNR « SNR  BSNR « SNR  BSNR «
Bird 2262 28.89 13.76 22.77 29.25 1057 2430 2941 566 25.35 29.57 4.94 | 2537 2949 2.31
Cameraman | 18.73 2079 591 | 18.63 21.08 3.77 | 1991 21.30 1.92| 19.81 2126 159 1953 21.38 1.04
House 2071 2634 805| 21.10 2651 6.35| 2401 26.81 3.74 2405 26.88 283 2456 26.96 1.78
Peppers 1509 2129 801 | 1568 21.98 6.14 | 1895 2228 299 19.01 2242 263 19.19 22.47  1.49
Shepp-Logan| 16.88 19.42 4.26 | 16.84 1950 259 | 17.20 19.60 1.51| 17.48 19.64 127 | 17.49 1958 0.93

TABLE Il
INFLUENCE OFA AND L EVALUATED ON 256 X 256 IMAGES US|NGM§ = 2562 AND FINITE DIFFERENTIATION. THE SAME NUMBER OF MEASUREMENTS
M = 32,768 IS SHAREDBETWEEN DISTINCT NUMBERS OF ACQUISITION§M /N = 1/2).

Fig. 9. Results orPeppers(256 x 256) when sharingV/ = 32,768 measurements between distinct numbers of acquisitidtts finite differentiation and
Mg = 2562. From left to right: acquisition and reconstruction fbr= 2 and A = 1/4 with v; (SNR: 15.09 dB, BSNR: 21.29 dB), and fdr = 32 and
A =1/64 with v to y16 shown in concatenated form using a gray/white checkerbtypel display (SNR: 19.19 dB, BSNR: 22.47 dB).

They indicate that at least one version of our method alwagiscreased similarly since only one convolutive acquisii®
exceeds SF in terms of reconstruction quality. This confirnused. As previously observed, the (D) modality of our method
the relevance of sharing the acquired data between masn yield worse SNR values in certain configurations, while
acquisitions as a means of decreasing spatial redundamtigplaying superior BSNR performance globally. Neverks|
This strategy thus tends to compensate the non-idealtstatis these complementary results reveal an advantageous SNR
properties of binary measurements that are based on randmrformance of (D) at higher bitrates.

convolutions. In the case of SF, spatial redundancy can@ot b The efficiency of our method at/s bpp, which corresponds
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to a compression factor of 64, is illustrated for both magedi The remaining degree of freedam € R \ {0} is optimized
in Figure 10. Also shown is the plain JPEG version of theo as to best approximaté. The resulting optimahs cor-
image compressed at similar bitrate. In this example, the G&sponds to the lowest positive value satisfying (23). lat th
framework with finite differentiation yields the best BSNRconfiguration, the parabolg, (¢/3(", ) touches one and only
We observe that the corresponding reconstruction confiai@s one distinct point ofy(yt) att = G7. The convexity ofy
details despite the low amount of measurements. It is alsosures the existence and uniqueness of the solution.
visually more pleasant than the JPEG solution. This exper-

iment illustrates thenighestcompression ratio at which ourg g ,tion

method reconstructs images with reasonable qudfitym a
general standpoint, the results of this section demoestiat,
although generally inferior, the rate-distortion perfamae of ¥ andy(
binary compressed sensing can compete with JPEG at low )
bitrates. This can be deduced by comparing the plain-JPEG agt” + art + ag = P(7t). (40)
performance to the corresponding SNR values reported fRese solutions correspond to the set union

Table 1l and corroborates the analysis of [34] where com-

pressed sensing is compared to traditional image-comipress

According to (22), the abscissas of the intersections bertwe
g™, ) are solutions of

methods. S={t<0:Pi(t) =0 U{t>0:P2(t) =0}, (41)
where P12(t) = 0 gives the intersections between
VI. CONCLUSIONS ¥y(-13™),~) and the linear and nonlinear parts ¢f This

WE*jglgesponds to the separate formulas of (15) without the
gument condition. Accordingly, the polynomiéf? » are
ressed as

We have proposed a binary compressed-sensing frame
which is suitable for images. In our experiments, we hav/a'
illustrated how measurement redundancy can be minimized ¥
properly configuring our acquisition model. We have consid-
ered the single-acquisition case as well as a multi-adiprsi P, (¢)
strategy. In the two cases, our reconstruction algorithm h 2,2 2 -1
demonstrated state-of-the-art reconstruction perfoomamn P 2 (M + Mt +1){azt” + art +a0) = M~
standard images. In particular, detailed features haven bee (42)
successfully recovered from small amounts of binary data.The optimal Y, (t|g™, ) is tangent tow(vyt) at t =

From a global perspective, our results confirm the 1-bi5<n)’§7 € S, and intersects no other point. This causes the
compressed-sensing paradigm to be promising for imagifgo double rootsj(™ and g7 to appear in one of the two
applications. In that regard, the specific interest of outhme 5|ynomials, be it jointly or not. Either of these two roots
is to involve binary measurements that are suitable to convigancels the discriminar® of the associated polynomial. For
optimization. We have proposed an iterative algorithm thg{e sake of conciseness, we define- M~g™ and consider
combines preconditioning and Nesterov’s approach to @eviyyo distinct cases.

very efficient reconstructions of our measurements. Syiathe 1) The point;™ is in the nonlinear part of}: In this case,

= ast’ + (ar + )t + (a0 — M),

experiments demonstrate the potential of our method. whereu > 0, the coefficientsi, anda; are expressed as
ACKNOWLEDGMENTS aw = M7 ((u?+u+1)"" = M~ ulay — yuay)
The authors are most indebted to Christian Bovet, Jean-Paul,, - _, (2M uas + (2u + 1) (u +u+1)72). (43)

Canq and Anthony Saugey (Essilor International, France) for _ o _
their support and guidance. They also thank Christophe Modden, the optimal parabola can be tangent at a distinct point
(Ecole polytechnique féedérale de Lausanne, Switzejyland ©f ¢ either in the same nonlinear part, or in the linear part.

Chandra Sekhar Seelamantula (Indian Institute of Scien#e,g” lies in the linear part, the corresponding polynomial
Bangalore) for fruitful discussions. P, contains one double rogt’ for an optimala,. This first

subcase corresponds to the solution

APPENDIXA
COEFFICIENTS OF THEPENALTY BOUNDS ay = {ax€eRL:D(P(-)) =0}
A. Formulation of the Optimization Task _ 1 u(u?+2u+3)? (42)

2 3
The continuity ofy)(yt) and the upper-bound conditions on 47 (Wtu+tl)

1, (t[g™,~) impose that the value and first derivative of thesé 37 lies in the nonlinear part ofy, the correspondingP.
two functions coincide at = §™). This requires that contains two double roots. Its discriminant is thus alwagi®z
regardless ofi;. Nevertheless, this same quantity divided by
(t — §™)? is a viable indicator, as it only vanishes in the
P(vg™) = 3™ (G az + ar), optimal case. This yields the solution for this second ssbca
—2§May + ¢/ (vg™). (39) as

ao

ay
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Bitrate 1/16 bpp 1/8 bpp 1/4 bpp 1/2 bpp 1 bpp 2 bpp 4 bpp

Sampling Ratio A* 1/128 1/64 1/32 1/16 1/8 1/4 1/2

Image Method SNR / BSNR

Bird SF 18.357/21.85 - 212712444 - 22.95/26.05 - 23.78127.14

(256 x 256) | GF (S) | 19.44/21.94 21.65/23.40 23.74/25.04 25.58/26.41 27.13/27.76 28.36/28.96 28.58/29.57
GF (D) | 16.84/23.56 19.79/25.65 22.30/27.65 24.30/29.41 27.3431.19 30.67 33.07 33.17 34.54
Cameraman | SF 13.86 /14.79 - 16.34/17.02 - 18.147/18.94 - 19.33/20.34
(256 x 256) | GF (S) | 14.63/15.03 16.06/16.03 17.26/17.22 18.54/18.42 19.78/19.68 21.27/21.22 22.67/22.73
GF (D) | 11.33/16.11 15.00/17.84 17.20/19.57 19.91/ 21.30 21.96 23.01 23.73 24.63 25.72/ 26.09
House SF 17.36 /20.39 - 20.74 1 23.08 - 23.21/2510 - 24.60 /1 26.31
(256 x 256) | GF (S) | 18.39/20.40 20.62/21.87 22.67/23.32 24.47/24.73 25.74/2585 27.11/27.11 27.78/27.87
GF (D) | 15.48/21.25 18.56/23.47 20.94/25.15 24.01/26.81 26.62 28.23 28.78 29.80 30.39 31.10
Peppers SF 124371463 - 15.09/16.94 - 17.35/19.85 - 18.58 /1 21.49
(256 x 256) | GF (S) | 14.31/15.38 15.99/16.66 17.44/17.80 19.02/19.38 20.91/21.36 23.06/23.51 24.67/25.02
GF (D) | 10.84/15.70 13.40/17.80 16.11/19.97 18.95/22.28 21.20/ 24.57 23.87 26.58 26.73 28.26
Shepp-Logan| SF 7281 873 - 12.57713.88 - 17.33718.24 - 22.33722.89
(256 x 256) | GF (S) 8.52/10.21 10.95/12.12 13.34/14.18 15.53/16.17 17.78/18.30 19.52/20.13..372/ 22.25
GF (D) 7.98/11.74 10.91/14.49 14.1417.09 17.20019.60 20.14 22.22 22.94 2484 25.57/ 27.6
Barbara SF 112771411 - 127171482 - 13.97 /1598 - 13.39 / 16.00
(512 x 512) | GF (S) | 14.56/14.61 15.74/15.10 16.54/15.58 17.23/16.17 18.06/17.10 19.06/18.44 20.94/20.95
GF (D) 8.51/14.45 10.3815.49 12.50/16.80 15.79/18.69 18.64 21.22 21.95 23.87 24.85 26.43
Boat SF 14.13/16.16 - 16.17 /18.04 - 17.84/19.91 - 17.53/20.13
(512 x 512) | GF (S) | 16.28/17.09 17.70/18.19 19.21/19.53 20.83/21.02 22.54/22.69 24.28/24.35 25.99/26.00
GF (D) | 12.72/17.82 14.85/19.44 16.42/21.33 19.16/23.26 22.39/25.16 25.07 27.10 27.37 28.86

Hill SF 12.89/16.50 - 15.10/17.68 - 16.39/18.93 - 15.63 / 18.96
(512 x 512) | GF (S) | 16.28/17.34 17.74/18.34 18.96/19.26 20.33/20.50 21.62/21.72 23.27/23.29 24.51/2451
GF (D) 8.51/17.90 10.15/19.34 12.45/20.99 16.33/22.89 19.85/24.75 23.88 26.79 26.71 28.64
Lena SF 13.82/718.78 - 16.56 /20.52 - 18.02722.27 - 18.18 / 22.56
(512 x 512) | GF (S) | 18.03/19.55 19.63/20.69 21.32/22.11 23.00/23.56 24.75/25.14 26.45/26.69 27.92/28.10
GF (D) | 11.36/20.25 13.04/21.99 15.49/23.95 18.38/25.89 21.35/27.94 25.40/29.88 28.10/ 31.73
Man SF 13.03/16.33 - 15.47 /1798 - 16.96 / 19.61 - 16.50 / 19.83
(512 x 512) | GF (S) | 15.95/16.97 17.41/18.01 18.78/19.20 20.27/20.48 21.76/21.92 23.46/23.57 24.97 / 25.08
GF (D) | 11.33/17.42 13.97/19.03 16.56/20.89 18.80/22.89 21.94 25.03 24.83 27.11 27.65 29.09

* This parameter is used for GF with the constant number otistitpns L = 8.

TABLE Il
RATE-DISTORTION PERFORMANCE OFGFWITH (D) AND WITHOUT (S) FINITE DIFFERENTIATION COMPARED TOSF [8].

Fig. 10. Reconstruction dBird (256 x 256) at 1/8 bpp (M = 8,192) using three distinct methods. From left to right: @§ing M2 = 2562, L = 8, and
A = 1/64 without (SNR: 21.65 dB, BSNR: 23.4 dB) and with finite diffatation (SNR: 19.79 dB, BSNR: 25.65 dB), and JPEG (SNR: 2B, BSNR:
22.66 dB). The plain-JPEG compression is performed at vi®$b quality settings, which approximately yields the sdteate (the corresponding file size
is 10,280 bits, including header data).

a; = max(aj,a)
o = {aeRry: <<-—g<">>-2P2<->>=o} _ i, osust o
- u(uz+2u+3)2
37 (ur4+u+1)%

In this first case, the three coefficients are thus determniyed
combining (43) and (46) given.
Given its definition, the function) corresponds to the max- 2) The pointg(™ is in the linear part ofy)(yt): In this
imum between its linear and nonlinear constituents. Thisse, whera: < 0, the coefficientsyy anda; are expressed
determines our overall first-case solution as as
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[14]

MY (M uag + 1),
—y(2M ~tuay + 1),

ao

al (47) [15]

the optimal parabola being always tangent at some distirtd]
point in the nonlinear part ofy. Since the corresponding
polynomial P, contains one single double root in that conp
figuration, the corresponding solution is

as = {CLQ S R:_ : D(PQ()) = O} . (48)

[18]

The scalar value, corresponds to the positive and real root
of the cubic polynomial

Ps (t)

[19]
= 12(u® +u+1)%
+ (3u® + 68u* + 2140® — 24u® — 89u + 8) M2 [20
+ (14u® 4 168u? — 66u — 4) Mt
+ 27M3u, (49) 2]
[22]

for which the analytical expression can be found [35]. The

behavior of P; as a function ofu < 0 guarantees the [23]
unigueness of the solution. The coefficients are obtained in
this case by solving (49) and then using (47).
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