
SUBMITTED TO THE IEEE TRANSACTIONS ON IMAGE PROCESSING 1
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Abstract—Compressed sensing can substantially reduce the
number of samples required for conventional signal acquisition,
at the expense of an additional reconstruction procedure.It also
provides robust reconstruction when using quantized measure-
ments, including in the one-bit setting. In this paper, our goal
is to design a framework for binary compressed sensing that
is adapted to images. Accordingly, we propose an acquisition
and reconstruction approach that complies with the high di-
mensionality of image data and that provides reconstructions
of satisfactory visual quality. Our forward model describes data
acquisition and follows physical principles. It entails a series of
random convolutions performed optically followed by sampling
and binary thresholding. The binary samples that are obtained
can be either measured or ignored according to predefined
functions. Based on these measurements, we then express our
reconstruction problem as the minimization of a compound
convex cost that enforces the consistency of the solution with
the available binary data under total-variation regularization.
Finally, we derive an efficient reconstruction algorithm relying on
convex-optimization principles. We conduct several experiments
on standard images and demonstrate the practical interest of our
approach.

Index Terms—Acquisition devices, bound optimization, com-
pressed sensing, conjugate gradient, convex optimization, inverse
problems, iteratively reweighted least squares, Nesterov’s method,
point-spread function, preconditioning, quantization.

I. I NTRODUCTION

In the context of compressed sensing, the amount of data
to be acquired can be substantially reduced as compared to
conventional sampling strategies [1]–[6]. The key principle
of this approach is to compress the information before it
is captured, which is especially beneficial when the acqui-
sition process is expensive in terms of time or hardware.
For instance, in their previous work [7], Boufounoset al.
investigated the performance of compressed sensing in the
binary case where the extreme coarseness of the quantization
must typically be compensated by taking more numerous mea-
surements than in the classical case. The original signal can
then be recovered from the available measurements through
numerical reconstruction, whose computational complexity
exhibits a strong dependance onthe structure of the forward
model. Consequently, specialized acquisition approachesare
required for compressed sensing when dealing with large-
scale data such as images. For instance, we were able to
extend in [8] the central principles of [7] to image acquisition
and reconstruction. Our associated forward model generates
binary measurements that are based on random-convolution
principles [1]. Though demonstrating satisfactory reconstruc-
tion capability for image data, this method tends to create
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spatial redundancy in the associated measurements, which is
suboptimal from the perspective of information content.

In this paper, our first contribution is to propose a general
framework for the binary compressed sensing of images.
Based on [8], we devise an extended forward model that can
take several binary captures of a given grayscale image. Each
of these acquisitions corresponds to one distinct convolution
performed by an optical system. The flexibility of our ap-
proach allows us to improve the statistical properties of the
associated binary data, which ultimately increases the quality
of reconstructions.

Using a variational formulation to express our reconstruc-
tion problem, our second contribution is a fast reconstruction
algorithm that uses bound-optimization principles. The design
of this algorithm bears similarities withthe optimization
techniques [9], [10]. It yields an iteratively reweighted least-
squares (IRLS) procedure that is easily parameterized and that
converges in few iterations.

We introduce our forward model for image acquisition
in Section II. In Section III, we express our reconstruction
problem as the minimization of a compound cost functional.
Based on convex optimization, we derive the reconstruction
algorithm in Section IV. In Section V, we perform several
experiments on standard grayscale images. We extensively
discuss them and conclude our work in Section VI.

II. FORWARD MODEL

A. General Structure

In this section, we establish a convolutive physical model
that generatesL binary measurement sequencesγi from a
given two-dimensional (2D) continuously defined imagef
of unit square size. Following a design similar to the one
of [8], each of these sequences is obtained through optical
convolution of f with a distinct pseudo-random filterhi

followed by acquisition through binary sensors.
Specifically, each convolved imagef ∗ hi is sampled and

binarized by a uniform 2D CCD-like array ofM0 × M0

sensors, the specific form ofhi being defined in Section II-B.
The actual sampling process is regular but nonideal, meaning
that each sensing area of sideM−1

0 has some pre-integration
effect modeled by some spatial filterφ. Therefore, the global
convolutive effect of our model before sampling corresponds
to the spatial kernelsχ0

i = hi ∗ φ, yielding the pre-filtered
intermediate images

f0
i (x) = (f ∗ χ0

i )(x), (1)

where the vectorx ∈ R
2 denotes the 2D spatial coordinates.

Then, the sensor array samples each imagef0
i with a step

T = M−1
0 , which produces the sequences g0

i defined for each
indexk ∈ Z

2 as
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g0
i [k] = f0

i (x)|x=kT . (2)

Unlike [8], we allow for a finite-differentiation process to
take place before the final quantization step. Denoting the
corresponding discrete filters as∇i, the non-quantized mea-
surementsgi are obtained as

gi[k] = (g0
i ⋆∇i)[k], (3)

where⋆ denotes a discrete convolution. These operations can
be efficiently performed by the sensor array itself, for instance
using voltage comparators. As discussed in the experimental
section, finite differentiation brings improvements in terms
of reconstruction quality and simplifies the calibration ofthe
system. Note that no finite differentiation occurs when taking
∇i to be1 the discrete unit sampleδ[·].

Defining τ as a common threshold value, the quantized
measurement sequencesγi are obtained as

γi[k] =

{

+1, gi[k] ≥ τ

−1, otherwise.
(4)

The measurementsγi can be selectively stored according to
discrete spatial indicator functionsωi. Eachγi[k] is actually
kept and counted as a measurement if and only if the value
ωi[k] ∈ {0, 1} is unity for the samek. Note that, before
binarization, every measurementgi is a mere linear functional
of f .

The successive operations that are involved in our forward
model simplify to one single convolution in the continuous
domain without subsequent discrete filtering, as summarized in
Figure 1. The equivalent spatial impulse responseχi of the fil-
ter corresponds toχi(x) =

∑

k
∇i[k]χ0

i (x − Tk). To sum up,
our forward model yieldsM = ΛLM2

0 binary measurements
of the continuously defined imagef in the form ofL distinct
binary sequences, whereΛ is the storage ratio associated to the
functionsωi. These captured sequences are complementary, as
they are associated with distinct random convolutionsbefore
sampling, binarization, and masking through theωi. Since the
latter process allows to decreaseM , the resolutionM0 can
be kept constant. This avoids high-frequency losses due to
coarse-sensor integration.

Besides reducing data storage, the process of binary quan-
tization potentially consumes far less power than standard
analog-to-digital converters, and is less susceptible to the
nonlinear distortion of analog electronics [9]. Binary sensors
are also associated with very high sampling rates in general
[7]. In that regard, the selective subsampling that we specify
by ωi may also lead to further reductions of the acquisition
time if fewermeasurements are required; the acquisition of the
selected samples can indeed be performed efficiently through
randomly addressable image sensors2.

1The symbol· denotes a dummy variable. It can be used to create new
function definitions based on existing ones. For instance,f(·−k) corresponds
to the original imagef shifted spatiallyby k.

2Image sensors that are based on the complementary-metal-oxide-
semiconductor (CMOS) technology allow for parallel and random access, as
opposed to other architectures that can only perform sequential readout [11].
While the potential benefits of binary sensors further motivate our work, the
proper development of such elements for optics remains to beaddressed.
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Fig. 1. General framework. The unknown continuously definedimage f
is first convolved withL distinct kernelsχi, producing the intermediate
imagesfi = f ∗ χi. Each fi is then sampled with stepT to obtain the
sequencesgi. The last acquisition step consists in pointwise binarization with
thresholdτ , resulting in the binary measurementsγi. When retained, the
latter constitute the available information on the original data. Based on these
selected measurements, and assuming that the forward modelis known, our
reconstruction algorithm produces an estimatef̃ of the original image.

B. Pseudo-Random Optical Filters

As mentioned in Section II-A, theL filtershi are associated
to optical convolution operations. Accordingly, we make each
hi correspond to a distinct spatially invariant point-spread
function (PSF) that is generated by the same optical model.
In our setup shown in Figure 2, the imagef is associated
with light intensities defined on a plane. For each of theL
acquisitions, the intensities measured by the sensor arrayafter
optical propagation correspond to the convolutionf ∗hi up to
geometrical inversion.

The specific form ofhi depends on the profile of the
central plane of the system called theFourier plane [12].
In our model, this plane transmits light through a circular
area and is further equipped for each acquisition with one
distinct instance of a phase-shifting plate whose effect isto
multiply the transmitted-light amplitudes with pseudorandom
phase values. The resulting profileqi is modeled as a complex-
valued function expressed in normalizedspatial coordinates
[12].

Considering phase functionsµi composed of square zones,
each zone associated with either a0 or π phase shift, we obtain

µi(ξ) =
∑

k∈Z2

νi[k]rect(ξ − k), (5)

where the phase valuesνi are independent and uniformly
distributed random variables from the pair{0, π}, where rect
is the 2D rectangle function, and whereξ denotes normalized
spatial coordinates. The phase-shifting plates associated with
the µi are of finite extent since they only operate inside the
transmissive circular area of Figure 2. The latter is designed
such that the diameter of the circlecoversK phase zones in
the horizontal or vertical direction. It is thus specified bythe
function

circ(ξ) =

{

1, ‖ξ‖ ≤ K/2

0, otherwise.
(6)

The profile qi combines the phase shifts of (5) with the
transmissivities of (6). It is defined as
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Fig. 2. Optical setup. In our optical model, the imagef maps to light-
intensity values. Our optical device transforms this initial image wavefront
using elements that are spaced by the same distance F. Following the direction
z of light propagation, this system called 4F consists in the left plane where
the imagef lies, one first lens L1 of focal length F, the central plane, one
second lens L2 identical to L1, and the last plane containing the propagated
wavefront to be captured by the sensor array.

qi(ξ) = circ(ξ) exp(−jµi(ξ)). (7)

Due to the4F placement of the lenses, the propagation of
light implements a continuous Fourier transform [12]. The
light amplitudes are also modulated byqi in the Fourier plane.
Accordingly, the impulse responseof thesystem is defined up
to scale as

hi(x) = |F{qi} (x) |2, (8)

where F denotes the Fourier transform
F{qi}(x) =

∫

R2 qi(ξ) exp(−jxT ξ)dξ. The use of spatially
incoherent illumination3 and the fact that the measured
quantities are light intensities results in a squared modulus in
(8). Each filterhi is thus nonnegative, and depends upon the
correspondingµi defined in (5). The latter can be generated
electronically by a spatial light modulator [1].

C. Connection with Compressed Sensing

The use of phase masks in our forward model produces
random-like patterns in each of our binary-measurement se-
quences. This closely relates our method to the compressed-
sensing paradigm of [7] and requires us to express all our
unknowns in discrete form. To this end, we model the contin-
uously defined functionf as the expansion

f(x) =
∑

k∈Z2

c[k]βm(x − k), (9)

where the sequencec corresponds to(N0 × N0) real co-
efficients placed on a regular grid, and whereβm(x) =
βm(x1)β

m(x2) for x ∈ R
2 is the separable 2D B-spline

of degreem. Given their small support and polynomial-
reproduction properties, B-splines are especially adapted from
both approximation and computational viewpoints. They thus
constitute a suitable approach to represent continuous images
[13].

3Spatial incoherence means that the phases of the initial wavefront on the
left plane of Figure 2 vary with time in uncorrelated fashions. This implies
that the effective response of our optical system is linear in intensity rather
than in amplitude [12].

Moreover, since our continuous image is modeled as a linear
combination of B-spline basis functions, it is equivalently
described through the corresponding coefficients. Then, the
substitution of (9) into our physical forward model naturally
leads to a linear and discrete dependency between the image
coefficients and the measurements before quantization. Ac-
cordingly, the general relation between the unknown sequence
c and the sequencesgi can be summarized into themeasure-
ment matrixA ∈ R

M×N , whose structure is induced from our
continuous-domain formulation. In this paper, vectors refer
to lexicographically ordered versions of the corresponding
sequences. Using this convention, we obtain

g = Ac, (10)

where c containsN = N2
0 coefficients and whereg con-

tainsM measurements. Our measurement matrix generalizes
[8] and vertically concatenates several termsAi of similar
structure asA = (A1, . . . ,Ai, . . . ,AL). These terms are
associated with the sequencesgi. They depend from the
corresponding kernelsχi and from the rational sampling step
T . They are defined as

Ai = ΩiDNBiUM, (11)

whereDi andUj denote downsampling-by-i and upsampling-
by-j matrices. The integersM andN are such that the right-
hand side of the equalityM0/N0 = M/N is in reduced form.
Given periodic boundary conditions, the circulant matrixBi

is associated with the discrete impulse response

bi[k] =
N

NM2
0

(

χi

(

N ·

NM2
0

)

∗ βm
( ·

M

)

)

(x)|x=k. (12)

Finally, each matrixΩi is linked toωi. Specifically, it corre-
sponds to an identity matrix whose rows associated with the
discarded measurements are suppressed, if any.The overall
structure ofA will prove to be beneficial for the reconstruction
in terms of computational complexity. The measurements are
indeed related to the coefficients by mere discrete Fourier-
transform and resampling operations.

When the unknown vectorc is sufficientlysparsein some
adequate basis, which does not need to be known explicitly, the
theory of compressed sensing offers guarantees on the quality
of reconstruction in terms of robustness to measurement loss
or quantization [6], [7], provided that the measurement matrix
is appropriate. In the general case, a common and suitable
criterion for A is to be statistically incoherentwith any
fixed signal representation, which means that the bases of
the measurement and sparse-representation domains of the
signal are uncorrelated with overwhelming probability [2].
This propertyhas been shown theoretically to strictly holdfor
matrices consisting of independent and identically distributed
(iid) Gaussian random entries [3], [6], and alsoto nearly
hold for other random-matrix ensembles [1], [4], [5], [14],
[15]. In this work, we resort to an experimental validation of
our measurement matrix for binary compressed sensing. In
particular, we shall demonstrate in Section V that our model
is suitable for the reconstruction of images from few data, and
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that the quality of the solution is linked to relatively simple
criteria relying on the measurements themselves.

The appropriateness ofA in our generalized model istied
to the set of discrete filtersbi defined in (12) and associated
with the matrix termsAi. Indeed, they share similarities with
the Romberg’s random-convolution pulses proposed in [1] for
compressed sensing. Firstly, their discrete Fourier coefficients
also have phase values that are randomly distributed in[0, 2π),
given their relation with the profiles (5). Secondly, despite not
being strictly all-pass as in [1], our filters are alsospread-
out in the spatial domain.Due to these properties, the form
of bi has been shown to yield satisfactory reconstructions
in the binary case [8]. Besides being adequate individually,
these filters also produceL distinct sequencesgi from the
same imagef because they are associated withL distinct
pseudorandom phase-mask profiles in (7). In some sense, our
multi-acquisition framework is the reverse of multichannel
compressed-sensing architectures where one single output
sequence combines several source signals through distinct
modulation or filtering operations [16], [17]. As will be
discussed in Section V, the subsequent thresholding operation
(4) that is applied in our method yields binary measurements
that follow an equiprobable distribution, as in [8].The proper
specification ofthe additional acquisition parameters of our
system(including ωi andL) will allow us to maximize the
reconstruction performance while maintaining a high compu-
tational efficiency.

III. F ORMULATION OF THE RECONSTRUCTIONPROBLEM

For the general problem of binary compressed sensing,
the authors of [9] have recently proposed a reconstruction
technique that is based on binary iterative hard thresholding
(BIHT), using the non-convex constraint that the solution
signal lies on the unit sphere. This approach extends previous
works [7], [18], and achieves better performance. The work
of [10] uses a distinct strategy by formulating a convex
reconstruction problem solvable by linear programming. An
extension of this principle to the case of noisy measurements
is also considered by the same authors in [19].

In this paper, we propose to formulate our image-
reconstruction problem in a variational framework. Specifi-
cally, our solution is expressedas the minimum of a convex
functionalthat includes data-fidelity and regularity constraints.
Using bound-optimization principles, the convexity of this
functional is exploited in Section IV to derive an efficient
iterative-reconstruction algorithm. The latter can handle large-
scale problems because, from a computational perspective,it
involves the application of the forward model (whose form is
essentially convolutive in our case) and of its adjoint inside
each iteration as in other methods. Furthermore, besides qual-
ity considerations, the specific structure of our reconstruction
problem will allow us to maximizeiterative performance
through preconditioning and Nesterov’s acceleration [20].

The available data consist of the measurementsγi obtained
according to Section II. In addition, we suppose thatA is
known. Its components can be deduced physically from the
L impulse responseshi produced by the optical system, or,

more indirectly, from the phase-mask profilesµi. Based on that
information, our goal is to reconstruct an accurate continuously
defined estimatẽf of the original imagef according to some
sparsity priorR. Specifically, we demand our reconstructed
coefficientsc̃ to minimize

J (c̃) = D(c̃) + λR(c̃). (13)

The first scalar termD imposes the fidelity of the solution
to the known binary measurementsγi. Due to quantization,
fidelity alone is in general under-constrained and accurateonly
up to contrast and offset. Then, the regularization termR,
weighted byλ, encourages the sparsity of the reconstruction.

A. Data Term

The role of our data-fidelity constraint is to ensure that
the reintroduction of the reconstructed continuously defined
image f̃ into the forward model results in a set of discrete
values g̃i that are consistent with the known measurements
γi, once binarized. In the context of 1-bit compressed sens-
ing, the enforcement of sign consistency has been originally
proposed in [7], where a one-sided quadratic penalty function
was considered. Trivial solutions were avoided by requiring
that the signal lies on the unit sphere. Here, as in [8], we
introduce a variational consistency principle that preserves
the convexity of the problem without requiring additional
non-convex constraints. Note that, although convexity is not
required to ensure nontrivial solutions, it is exploited for the
development of our algorithm and to ensureits convergence,
as described in Section IV. Regarding the data-fidelity term,
our contribution is to propose a penalty functionψ that is also
suitable for bound optimization. We express our functionalas

D(c̃) =

L
∑

i=1

∑

k

ωi[k]ψ(g̃i[k]γi[k]), (14)

whereg̃i andc̃ are related in the same way asgi andc in (10).
The positive functionψ is defined as

ψ(t) =

{

M−1 − t, t < 0

M−1(M2t2 +Mt+ 1)−1, otherwise,
(15)

whereM is the total number of measurements. Besides penal-
izing sign inconsistencies, the rationale behind this definition
is to yield nontrival solutions while ensuring the convexity of
the data term. The latter property holds because, accordingto
(15), the Hessian ofD is well-defined and positive semidefinite
[21]. The functionψ is itself C2-continuous and convex, its
second derivative being always nonnegative. Moreover, this
specific piecewise-rational polynomial function is suitable to
the development of analytic upper bounds, as addressed in
Section IV.

Given (4), negative arguments ofψ correspond to sign
inconsistencies. As shown in Figure 3, our penalty function
is linear in that regime. In that regard, the authors of [9] have
shown that, in the binary compressed sensing framework, such
an ℓ1-type penalty for consistency yields reconstructions that
are of higher quality than with theℓ2 objective used in [7],
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Fig. 3. Shape of our penalty function. As discussed in Section IV and
further developed in Appendix A, the valuesψ(γt) (full line) can be bound
from above bythe quadratic functionψq(t|g̃(n), γ) aroundt = g̃(n) (dot
mark). Function values and derivatives must coincide at that point to satisfy
(23). Among all possible parabolas (dashed lines), the solution ψq is the upper
bound with infimum second derivative.

[18]. To some extent, these results confirm similar observations
mentioned in [8]. This type of penalty also relates to the so-
called hinge losswhich is considered a better measure than
the square loss for binary classification [9]. In our method,
the values of the solutioñc are defined up to a common
scale factor, and also up to an additive constant because
τ is not given. Non-constant solutions are favored by the
contribution of the small nonlinear penalty that remains when
the sign is correct. The transition between the linear and
nonlinear regimes ofψ is C2-continuous and takes place at the
origin. The applied penalty vanishes for increasingly positive
arguments.

B. Regularization Term

For inverse problems, it has been shown empirically
that frame-synthesisregularization, which acts on transform-
domain (e.g., wavelet) coefficients of the signal of interest, is
outperformed byframe-analysisregularization, which directly
operates on the signal itself [22], [23]. Accordingly, recon-
struction algorithms often involve the latter approach when
dealing with images; total-variation (TV) [24] is frequently
used as a sparsifying transform [1], [25], [26]. Although
suitable for regularization, the original form of TV is non-
differentiable when the image gradient vanishes. As in the
NESTA algorithm proposed in [27] forthe recoveryof sparse
images, we therefore opt for a smooth approximation of the
TV penalty based on a Huber potential function [28]. In
order to guarantee the well-posedness of the problem, we also
include an additional energy term in our expression, since the
nullspace ofA can indeed be nonempty depending on∇i.
Approximating the Huber integral, our regularizerR is then
defined as

R(c̃) =
∑

k

H(θ[k]) + λ′c̃[k]2, (16)

where eachθ[k] is the norm of the gradient of̃f evaluated
at positionx = k and whereλ′ is a small positive constant.
Based on a smoothing parameterǫ, the scaled Huber potential
H is defined as

H(t) =

{

ǫ−1t2, |t| ≤ ǫ

2|t| − ǫ, otherwise.
(17)

The gradient-norm sequenceθ is determined from the spatial
derivatives∂f̃

∂x1

and ∂f̃
∂x2

of the solution sampled in-between the
grid nodes defined by the sum in (16). This type of discretiza-
tion yields numerically stable solutions without oscillatory
modes. It bears similarities with the so-calledmarker-and-cell
methods used in fluid dynamics [29]. The expression ofθ as
a function of c̃ is

θ[k] =
√

(

c̃ ⋆ βm
x1

)

[k]2 +
(

c̃ ⋆ βm
x2

)

[k]2, (18)

where theβm
x1,2

are directional B-spline-derivativefilters de-
fined as

βm
x1

[k] = βm′(k1 + 1/2)βm(k2),

βm
x2

[k] = βm′(k2 + 1/2)βm(k1). (19)

The first derivativeβm′ of a B-spline has the symbolic
expression given in [13].

IV. RECONSTRUCTIONALGORITHM

A. General Approach

In this section, we derive an algorithm to efficiently solve
(13). Our main strategy is to recast theoriginal formulation
of the reconstructionproblem as the partial minimization of
successive quadratic costsJq that upper-boundJ locally
around the current solution estimatec̃(n). EachJq can then
be minimized using a specifically devised preconditioned
conjugate-gradient method.

While sharing a common structure, every new quadratic
cost is specified by the current solution. Its proper definition
involves the pointwise nonlinear estimation of scalar quan-
tities, which is a reweighting process akin to the one of
iteratively reweighted least squares (IRLS). In our bound-
optimization framework, each successive solution partially
minimizesJq(·|c̃(n)) with respect to its current value atc̃(n).
Finding this solution amounts to partially solving a linear
problem with a given initialization. We propose to precondition
each of these linear problems according to its particular
structure and find an approximate solution using the linear
conjugate-gradient (CG) method. This approach ensures the
global convergence of our method without having to specify
any step parameter.

According to Figure 4, the successive reweighting and
linear-resolution steps can be interpreted as alternate dequan-
tization and deconvolution operations, respectively.
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Fig. 4. Overall principle of our reconstruction algorithm.The solution coefficients are first initialized to zero and then updated by minimizing successive
quadratic-cost functionals. Using the current solutionc̃(n), Steps (1A) and (1B) determine the next local cost. Each of these two steps is related to a
deconvolution problem where the datadi to deconvolve correspond to dequantized versions of the available γi. An updated solution is found after minimization
in Step (2). It determines the coefficients of the next solution. The overall convergence of the process is guaranteed because each quadratic cost is determined
according to a bound-optimization approach and minimized using the current solutioñc(n) as initialization.

B. Upper Bound of the Data Term

In this part, we derive functionals of simpler form which
upper-bound and approximateD around some initial or
current estimate of the solution. Following amajorization-
minimization(MM) approach [30], we build the local quadratic
costD0

q(·|c̃
(n)) for the corresponding estimatẽc(n) such that

D0
q(c̃

(n)|c̃(n)) = D(c̃(n)),

D0
q(c̃|c̃

(n)) ≥ D(c̃). (20)

For convenience, we bound the cost by the penaltyψ. This
fixes the structure ofD0

q(·|c̃(n)) as

D0
q(c̃|c̃(n)) =

L
∑

i=1

∑

k

ωi[k]ψq(g̃i[k]|g̃
(n)
i [k], γi[k]), (21)

where g̃(n)
i is the current estimate of̃gi associated with the

solution estimatẽc(n), and whereψq is a quadratic and scalar
penalty function which takes the form

ψq(g̃i|g̃
(n)
i , γi) = a2(g̃

(n)
i , γi)g̃

2
i +a1(g̃

(n)
i , γi)g̃i+a0(g̃

(n)
i , γi),

(22)
where theaj(g̃

(n)
i , γi) are polynomial coefficients. The values

of g̃i andγi depend on the solution estimate and the available
binary measurements. Constraints (20) are then satisfied by
fulfilling the simpler scalar conditions∀γ ∈ {−1, 1} and∀t ∈
R,

ψq(g̃
(n)|g̃(n), γ) = ψ(γg̃(n)),

ψq(t|g̃
(n), γ) ≥ ψ(γt), (23)

where the subscripts have been dropped for convenience.
These relations constrain the value ofψq and its derivative
at g̃(n). As illustrated in Figure 3, further optimizingψq to
best approximateψ(γt) exhausts every remaining degree of
freedom. This solution corresponds to the smallest positive
a2 in (22) that allows (23) to be satisfied. The particular
definition that we have proposed for the penalty function
ψ allows for fast noniterative evaluation of the coefficients
aj . The actual expressions are derived in Appendix A. The
resulting coefficients then specify the quadratic costD0

q(·|c̃
(n))

as

D0
q(c̃|c̃(n)) =

L
∑

i=1

∑

k

ωi[k]w
(n)
i [k]

(

g̃i[k] − d
(n)
i [k]

)2

+ K,

(24)
where the scalarK is constant with respect tõc, and where
w

(n)
i andd(n)

i are sequences defined as

w
(n)
i [k] = a2(g̃

(n)
i [k], γi[k]),

d
(n)
i [k] = −

1

2
(a−1

2 a1)(g̃
(n)
i [k], γi[k]). (25)

Since the value of the constantK is irrelevant for mini-
mization, we define the costDq(·|c̃(n)) as D0

q(·|c̃(n)) minus
that constant. Dropping the subscriptn for convenience, its
explicit form in matrix notation as a function of the coefficients
reduces to

Dq(c̃|c̃
(n)) =

L
∑

i=1

∥

∥

∥
W

1

2

i (Aic̃ − di)
∥

∥

∥

2

ℓ2
, (26)

where Wi is a diagonal matrix with diagonal components
ωiw

(n)
i and wheredi is the vector associated withd(n)

i .
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C. Upper Bound of the Regularizer

The Huber convex functionalR can be bound from above
according to the same MM principles. The form ofRq(·|c̃(n))
can be deduced from the results of [31]. Its matrix expression
is

Rq(c̃|c̃
(n)) = λ′ ‖c̃‖2

ℓ2
+

∥

∥

∥
W

1

2

0 Rc̃

∥

∥

∥

2

ℓ2
, (27)

whereW0 is a diagonal matrix with diagonal components

w
(n)
0 [k] = max(ǫ, θ[k])−1, (28)

and whereR = (R1,R2) is the discretized-gradient matrix.
Each termRi is a circulant matrix associated withthe filters
βm

xi
defined in (19).

D. Quadratic-Cost Minimization

Combining the data and regularization terms (26) and (27),
we obtain the local quadratic cost

Jq(c̃|c̃
(n)) = Dq(c̃|c̃

(n)) + λRq(c̃|c̃
(n)). (29)

In order to decreaseJ , the new estimatẽc(n+1) must decrease
Jq(·|c̃(n)) itself. In other words, we have to satisfy

Jq(c̃|c̃
(n)) ≤ Jq(c̃

(n)|c̃(n)). (30)

Defining I′ = λλ′I, where I is the identity matrix, the
minimum ofJq(·|c̃(n)) is the solution of

Sc̃ = y, (31)

with the system matrix

S =

L
∑

i=1

AT
i WiAi + λ

2
∑

i=1

RT
i W0Ri + I′ (32)

and the right-hand-side vector

y =
L

∑

i=1

AT
i Widi. (33)

The huge matrix sizes entering into play require (31) to be
solved iteratively. The positivity ofw(n)

i and w(n)
0 in (25)

and (28) implies symmetry and positive-definiteness ofS,
which allows for the CG method to be used. Initializing the
latter at the current estimates, we guarantee the corresponding
approximate solutions to comply with (30).

E. Preconditioning

We also take advantage of preconditioning to obtain an
approximate solutioñc(n+1) that is close to the exact minimum
with fewer iterations. We impose our preconditionerP to be
a positive-definite circulant matrix, and define the two-sided
preconditioned system

S′ = P− 1

2 SP− 1

2 . (34)

It is associated with the modified linear problem

S′c̃′ = y′, (35)

wherey′ is predetermined asy′ = P− 1

2 y and where the actual
solutionc̃ of the original problem is recovered asc̃ = P− 1

2 c̃′.
As a solution satisfying the above requirements, we consider

P = F∗diag(FSF∗)F, (36)

whereF is the normalized DFT operator, whereF∗ denotes
its adjoint, and where diag(·) is a projector onto the diagonal-
matrix space. Definition (36) corresponds to the optimal cir-
culant approximation ofS with respect to the Frobenius norm
[32]. This solution is well-adapted to its convolutive nature as
compared to diagonal preconditioning.

F. Minimization Scheme

The successive quadratic bounds as well as the corre-
sponding preconditioned linear problems being defined, we
now describe the overall iterative minimization scheme that
yields the solutioñc, starting from an initializatioñc(0). Our
overall scheme is composed of two embedded iterative loops.
The weight specification of the successive quadratic costs
corresponds to external iterations with solutionsc̃(n).

Since our algorithm involves upper bounds that are partially
minimized and that satisfy MM conditions of the form (20),
it is part of the generalized MM (GMM) family [30]. In
that regard, the continuity of our functionalJq implies that
the MM sequence{J (c̃(0)),J (c̃(1)),J (c̃(2)), . . .} converges
monotonically to a stationary point ofJ . The convexity ofJ
also implies that the whole minimization process is compatible
with Nesterov’s acceleration technique [20], which we apply
to update our estimates. This requires the use of auxiliary
solutions that we mark with star subscripts, as well as the
definition of scalar valuesσ(n). The steps of our global scheme
yielding the solutioñc are described in Figure 5.

We useIext external iterations, each of which corresponds
to a refined quadratic approximationJq of the global convex
cost. For the partial resolution of each internal problem, we
apply CG on the modified system (35). Accordingly, the
corresponding intermediate valuẽc′ is first initialized to the
current solution estimate in the preconditioned domain, and
then updated usingIint CG iterations each time. In accordance
with (9), the final continuous-domain image is obtained from
the coefficients̃c as

f̃(x) =
∑

k∈Z2

c̃[k]βm(x − k). (37)

As demonstrated in Section V-A, the use ofNesterov’s tech-
nique and of preconditioning to solve the linear problems
ensure the fast convergence of our method.

V. EXPERIMENTS

We conduct experiments on grayscale images that are part
of a standard test set.First, we evaluate the computational
performance of our algorithm in Section V-Aand show
baseline results in SectionV-B. In Section V-C, we propose
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1) Initial c̃(0) taken as the zero vector

2) Initial values c̃
(0)
∗ = c̃(0), n = 0, σ

(0) = 1
while n < Iext do

a) Specification of S and y given c̃(n)

b) Computation of the preconditioner P linked to S′

c) External count n← n + 1
d) Computation of y′ = P−

1

2 y

e) Internal initialization c̃′ = P
1

2 c̃(n−1)

f) Update of c̃′ with Iint CG iterations on S′c̃′ = y′

g) Nesterov’s solution update c̃
(n)
∗ = P−

1

2 c̃′

h) Nesterov’s step update

σ
(n) = 1

2 +

√

1
4 +

(

σ(n−1)
)2

i) c̃∗ = c̃
(n)
∗ − c̃

(n−1)
∗

j) c̃(n) = c̃
(n)
∗ + σ

(n)−1
(σ(n−1)

− 1)c̃∗
end

3) Solution coefficients c̃ = c̃(n)

Fig. 5. Minimization approach described in matrix notation.

an estimate of the acquisition quality based on the spatial
redundancy of the available measurements. In Sections V-D
and V-E, we address cases wheredownsampling and finite
differentiation are used for data acquisition. In particular,
we determine to what extent these strategies impact on the
acquisition and reconstruction quality.We finally assess the
optimal rate-distortion performanceof our method for distinct
amounts of measurements in Section V-F.

The discretization(9) does not induce any loss because
we match the square grid ofN0 × N0 spline coefficients to
the resolutionof each digital test image, choosingm = 1.
Specifically, we determinec beforehand such thatf interpo-
lates the corresponding pixel values4. In order to maximize
the acquisition bandwidth, the sizeK × K of the phase
mask and the numberM0 × M0 of sensors are themselves
set toN0 × N0. The sampling prefilterφ is defined as a 2D
separable rectangular window. The thresholdτ is set to the
mean image intensity5 when no finite differentiation is used,
and to zero otherwise. The latter choice is a heuristic that
directly yields equidistributed binary measurementsγi from
our data as in [8], without requiring any optimization or further
refinement. For non-unitΛ, we consider identical spatial masks
ωi that correspond to horizontal and vertical subsampling,
which allows for the proper display and evaluation of our
measurements. Our reconstruction parameters areλ = 10−4,
λ′ = 10−5, ǫ = 5 · 10−4, Iext = 20, and Iint = 4.
The smoothing parameterǫ chosen for our regularizer aims
at approximating TV as in [27], while the small values of
the constants λ and λ′ ensure that the reconstructions are
consistent with the binary measurements with enough accuracy
(i.e., about99% or above).

We have found that the most-consistent solutions are also
the ones of highest quality, which corroborates the resultsof

4Given our forward model and the high values ofN0 involved in our
experiments, the choice ofm has no significant impact.

5This quantity corresponds to the mean component value of thevectorg.
It is assumed to be known for reconstruction.

[9]. Knowing that each instance of (35) can be solved partially,
the choice ofIint is meant to maximize computational perfor-
mance, while the value ofIext is used as a stop criterion.Note
that the values ofǫ andλ cannot be reducedfurther without
impactingnegatively on the speed of convergence.

In order to provide a quality assessment in terms of signal-
to-noise ratio (SNR), the mean and variance of the solution
coefficients are matched to the reference signal. We also define
a quantity called blockwise-corrected SNR (BSNR) where this
same matching is performed blockwise using8×8 blocks. As
discussed in Section V-D, the BSNR is consistent with visual
perception.

A. ComputationalPerformance

To evaluate the computational performance of our algo-
rithm, we perform a reconstruction experiment on a256×256
test imageusingM2

0 = 2562, L = 1, Λ = 1, and no finite
differentiation. The results are reported in Figure 6, includ-
ing a comparison with theBIHT algorithm6 introduced for
reconstruction from binary measurements in [9].These results
demonstrate thatNesterov’s acceleration method, as well as
the preconditioning used in our algorithm, play a central role
to obtain fast convergence.By contrast, we have observed
that 3,000 iterations are required to ensure convergence with
BIHT—which is used for the experiments of Section V-D—
as opposed to a total ofIextIint = 80 internal iterations
with our algorithm. This corresponds to an order-of-magnitude
improvement in time efficiency.

B. Baseline Results

Our framework can handle several measurement sequences
unlike in [8]. Accordingly, thegoal in this part is to reconstruct
the512×512 imagesLenaandBarbarafrom distinct numbers
L of acquisitions withΛ = 1 and no finite differentiation.Each
acquisition includesM2

0 = 5122 samples, the total number of
measurements being multiplied by the correspondingL.

The binary acquisitions and thecorresponding reconstruc-
tions with our algorithmare shown in the spatial domain
in Figure 7. In both examples, thereconstruction quality
substantially improveswith L, one single acquisitionbeing
already sufficientto preserve substantial grayscale and edge
information. The binary measurements of Figure 7 are not
interpretable visually because the image information has been
spread out through the filtershi. These measurements fol-
low a random distribution that originates from the pseudo-
random phasesνi of the masks, and that is heavily correlated
spatially as in [8]. As a matter of fact, random-convolution
measurements do not display strict statistical incoherence [1].
We investigate below how spatial correlation can be quantified
and reduced to improve reconstruction.

6We have adapted BIHT to our forward model, assuming sparsityin the
Haar-wavelet domain.Besides its simplicity, the latter choice was observed
to yield higher-quality results in our case than when using higher-order
Daubechies wavelets, despite the generated block artifacts. Each iteration
involves a gradient step scaled asM−1/2‖A‖−1

2 and renormalization [9].
A zero-meanA is used in the algorithm to handle the case whereτ is
nonzero. The sparsity-level parameter specifying the assumed amount of
nonzero wavelet coefficients is set as2,000. Both BIHT and the proposed
algorithms have been implemented in MATLAB.
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Fig. 6. Reconstruction SNR as a function of time forMontage(256×256).
For our reconstruction method, the sole use of preconditioning (dashed line) or
Nesterov’s acceleration (dotted line) already improves the convergence rates
as compared to standard CG (mixed line). When both techniques are enabled
(solid line), the performance of our algorithm improves substantially. For
comparison, the reconstruction performance of BIHT is alsoshown for the
same problem (bottom dots). In the latter case, each corresponding iteration
lasts about half a second. The times that are given correspond to an execution
of the algorithmson Mac OS X version 10.7.1 (MATLAB R2011b) with a
Quad-Core Xeon 2× 2.8 GHz and 4 GB of DDR2 memory.

C. Incoherence Estimation

The potentialquality of reconstruction depends on the ap-
propriateness ofA for binary compressed sensing. We assume
our matrix to be suitable for the specific data in hand when the
corresponding binarized measurements behave as independent
and identically distributed random variables. As a practical
solution, we propose to estimate the “randomness” of the
acquiredγi through their autocorrelation [33]. We specifically
infer a correlation distanceα based on the unnormalized auto-
correlationsρ⋆

i of our (possibly subsampled) binary sequences
γ⋆

i . This distance is used as a quality indicator, inasmuch as
it measures the degree of spatial redundancy arising in our
measurements. To determine this value, we first compute the
characteristic lengthαi of each autocorrelation peak, using
the standard deviation of|ρ⋆

i |
4 for the sake of robustness. The

autocorrelation being symmetric and centered at the origin, we
write that

αi =

(∑

k
|ρ⋆

i [k]|4‖k‖2

∑

k
|ρ⋆

i [k]|4

)1/2

. (38)

Averagingαi over i then yields the finalα. As shown in the
sequel, this value strongly depends on the parameters of the
forward model. In particular, it can be decreased compared to
the case of Section V-B by enabling downsampling (i.e., non-
unit Λ) or finite differentiation in our framework.Note that, as
in [8], our choice for the thresholdτ ensures the uniformity
of the binary distribution of the measurements.

D. Influence ofAcquisition Modality

In this section, we investigate the performance of finite
differentiationwhen usedin our framework. To this end, we

choose a fixed set of two perpendicular first-derivative filters
whoseZ-domain expressions are(z1 − z−1

1 ) for the hori-
zontal orientation and(z2 − z−1

2 ) for the vertical orientation,
respectively. Assuming an evenL, the former filter is applied
on acquisition sequences of even index, and the latter one is
applied on the remaining indices. The operation of each filter
∇i followed by zero thresholding is physically realizable by
means of binary comparators that are connected to the two
corresponding pixels. From a practical standpoint, such an
approach eliminates the need of threshold calibration.

In order to compare the acquisition modalities with and
without finite differentiation, we perform experiments on
several256 × 256 images. These experiments involveM =
131,072 measurements taken inL = 2 acquisitions, using
M2

0 = 2562 and Λ = 1. Besides our own algorithm, BIHT
is also considered for reconstruction in each case.The results
are reported in Table I, and shown in Figure 8 forHouse. The
best numerical values are emphasized in the tables using bold
notation.

Our qualitative and quantitative results demonstrate that
finite differentiation globally yields the best reconstructions.
These solutions consistently correspond to lowerα values as
well, which reflects itself visually in less-redundant binary
measurements. Finite differentiation decreases redundancy be-
cause it spatially decorrelates the image measurementsgi

before quantization. Because finite differentiation senses the
high-frequency content of the measurements, most visual fea-
tures such as edges are indeed better restored as compared to
the other acquisition modalities. In return, reconstructions tend
to display slightly higher low-frequency error. Because ofits
cumulative nature, the latter may then causesubstantialSNR
deteriorationin unfavorable scenarios. In such cases, however,
the amount of visual details is still higher, as illustratedin
Figure 8. For instance, fine details such as the house gutter
are better preserved. We observe that the BSNR measure is
consistent with visual impression, as it adapts to slow intensity
drifts in the solution. For both acquisition modalities, our
algorithm based on TV yields the best reconstructions.This
confirms the suitability of TV for our problem, in accordance
with the discussion of Section III-B. Note, however, that
proper adjustment of the sparsity level in BIHT is delicate.
For instance, images that are sparser than the assumed level
might lead to suboptimal reconstructions in Table I.

E. Respective Influence ofΛ andL

The following experiments address how reconstruction qual-
ity can be maximized given a fixed measurement budget, using
the same256 × 256 images as above. Considering the finite-
differentiation modality specified in Section V-D,our strategy
is to further decreasespatial redundancyby sharing the mea-
surements between more acquisitions.ChoosingM2

0 = 2562

andM = 32,768 as constraints, we thus adapt theratio Λ
to the number of acquisitions asΛ−1 = 2L. On the one
hand, minimizingL reduces to previous system configurations.
On the other hand, maximizing it is highly inefficient, as it
amounts to taking one single measurement per convolutive
acquisition. A tradeoff has to be found between these two
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Fig. 7. Results onLena and Barbara (512 × 512) for distinct numbersL of acquisitions usingM2
0 = 5122 and Λ = 1 without finite differentiation

(M = L ·5122 measurements in total). First row, from left to right: first acquisitionγ1 of Lenausing our model, and reconstruction from one (M = 262,144,
SNR: 17.49 dB, BSNR: 22.35 dB), two (M = 524,288, SNR: 22.42 dB, BSNR: 24.61 dB), and four (M = 1,048,576, SNR: 26.46 dB, BSNR: 27.13 dB)
acquisitions. Second row: first acquisitionγ1 of Barbara using our model, and reconstruction from one (M = 262,144, SNR: 13.96 dB, BSNR: 16.09 dB),
two (M = 524,288, SNR: 17.69 dB, BSNR: 17.74 dB), and four (M = 1,048,576, SNR: 20.3 dB, BSNR: 20.28 dB) acquisitions.

Modality Standard Approach Finite Differences
Reconstruction Proposed (TV) BIHT (Haar) Proposed (TV) BIHT (Haar)

SNR BSNR SNR BSNR α SNR BSNR SNR BSNR α

Bird 25.64 27.80 19.80 22.56 54.00 25.81 31.66 15.17 23.88 33.08
Cameraman 20.65 20.96 15.95 16.32 64.99 22.63 24.04 5.87 17.16 16.04
House 25.67 26.44 20.40 21.58 47.82 24.38 28.85 13.83 22.30 20.16
Peppers 20.16 21.79 14.71 15.43 40.30 18.21 24.95 7.15 15.61 19.87
Shepp-Logan 19.25 20.00 9.53 9.95 34.15 22.96 25.24 5.72 12.26 11.58

TABLE I
ACQUISITION MODALITIES COMPAREDON 256 × 256 IMAGES USINGM2

0 = 2562 , L = 2, AND Λ = 1 (M = 131,072).

limits to improve the quality of the reconstructions while
preserving the parallelism of our model.

Our numerical results are reported in Table II, the mea-
surements and reconstruction ofPeppersbeing shown for two
distinct settings in Figure 9. Thevaluesof Table II confirm
that the correlation lengthα consistently decreases withΛ.
Moreover, the SNR and BSNR improve by several decibels
when increasingL. This is further corroborated by the visual
results of Figure 9. In particular, grayscale information is
more-finely preserved in the solution displayed on the right.
Interestingly, the increase in quality starts saturating whenα
reaches near-optimal values, as shown in Table II. The com-
pression performance of our method is thus optimal or nearly
optimal with L ≥ 8 for a given amount of measurements.
Theseresultsconfirm the strong inversecorrelation between
measurement redundancyandreconstruction quality.

F. Rate-Distortion Performance

In this section, we confront our global acquisition and
reconstruction framework (GF) with the single-convolution

framework (SF) of [8].The following experiments allow us
to evaluate their respective image-reconstruction performance
in terms of the rate of distortion,definingthe number of bits
per pixel (bpp)asthe ratio betweenM and the raw bitsize of
the corresponding uncompressed 8-bit-grayscale image.

In order to decreaseα within a reasonable amount of
acquisitions, our forward model is parameterized withL = 8
and Λ = L−1x, depending on the chosen bitratex in bpp.
The number of measurements taken on anN0 × N0 test
image is thusM = xN2

0 sinceM0 = N0. Our method is
evaluated with (D) and without (S) finite differentiation.In the
SF case, the sensor resolution has to matchM strictly, because
one single convolution is performed without subsequent drop
of samples. The forward model is configured accordingly,
adapting the remaining parameters to the image size as in
our method. That particular framework requires equal rational
factors for resampling,which implies that certain bitrates
cannot beevaluated. The reconstruction parameters are set as
in the last experiment of [8].

Results on several test images are reported in Table III.
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Fig. 8. Acquisition modalities comparedon House(256 × 256) usingM2
0 = 2562, L = 2, and Λ = 1 (M = 131,072). First row, from left to right:

acquisitionsγi without finite differentiation, and reconstruction using BIHT (SNR: 20.40 dB, BSNR: 21.58 dB) and our algorithm (SNR: 25.67 dB, BSNR:
26.44 dB). Second row: acquisitionsγi with finite differentiation, and reconstruction using BIHT(SNR: 13.83 dB, BSNR: 22.3 dB) and our algorithm (SNR:
24.38 dB, BSNR: 28.85 dB).

Parameters L = 2, Λ = 1/4 L = 4, Λ = 1/8 L = 8, Λ = 1/16 L = 16, Λ = 1/32 L = 32, Λ = 1/64
SNR BSNR α SNR BSNR α SNR BSNR α SNR BSNR α SNR BSNR α

Bird 22.62 28.89 13.76 22.77 29.25 10.57 24.30 29.41 5.66 25.35 29.57 4.94 25.37 29.49 2.31
Cameraman 18.73 20.79 5.91 18.63 21.08 3.77 19.91 21.30 1.92 19.81 21.26 1.59 19.53 21.38 1.04
House 20.71 26.34 8.05 21.10 26.51 6.35 24.01 26.81 3.74 24.05 26.88 2.83 24.56 26.96 1.78
Peppers 15.09 21.29 8.01 15.68 21.98 6.14 18.95 22.28 2.99 19.01 22.42 2.63 19.19 22.47 1.49
Shepp-Logan 16.88 19.42 4.26 16.84 19.50 2.59 17.20 19.60 1.51 17.48 19.64 1.27 17.49 19.58 0.93

TABLE II
INFLUENCE OFΛ AND L EVALUATED ON 256× 256 IMAGES USINGM2

0 = 2562 AND FINITE DIFFERENTIATION. THE SAME NUMBER OF MEASUREMENTS
M = 32,768 IS SHAREDBETWEEN DISTINCT NUMBERS OF ACQUISITIONS(M/N = 1/2).

Fig. 9. Results onPeppers(256 × 256) when sharingM = 32,768 measurements between distinct numbers of acquisitionswith finite differentiation and
M2

0 = 2562. From left to right: acquisition and reconstruction forL = 2 and Λ = 1/4 with γ1 (SNR: 15.09 dB, BSNR: 21.29 dB), and forL = 32 and
Λ = 1/64 with γ1 to γ16 shown in concatenated form using a gray/white checkerboard-type display (SNR: 19.19 dB, BSNR: 22.47 dB).

They indicate that at least one version of our method always
exceeds SF in terms of reconstruction quality. This confirms
the relevance of sharing the acquired data between more
acquisitions as a means of decreasing spatial redundancy.
This strategy thus tends to compensate the non-ideal statistical
properties of binary measurements that are based on random
convolutions. In the case of SF, spatial redundancy cannot be

decreased similarly since only one convolutive acquisition is
used. As previously observed, the (D) modality of our method
can yield worse SNR values in certain configurations, while
displaying superior BSNR performance globally. Nevertheless,
these complementary results reveal an advantageous SNR
performance of (D) at higher bitrates.

The efficiency of our method at1/8 bpp, which corresponds
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to a compression factor of 64, is illustrated for both modalities
in Figure 10. Also shown is the plain JPEG version of the
image compressed at similar bitrate. In this example, the GF
framework with finite differentiation yields the best BSNR.
We observe that the corresponding reconstruction containsfine
details despite the low amount of measurements. It is also
visually more pleasant than the JPEG solution. This exper-
iment illustrates thehighestcompression ratio at which our
method reconstructs images with reasonable quality.From a
general standpoint, the results of this section demonstrate that,
although generally inferior, the rate-distortion performance of
binary compressed sensing can compete with JPEG at low
bitrates. This can be deduced by comparing the plain-JPEG
performance to the corresponding SNR values reported in
Table III and corroborates the analysis of [34] where com-
pressed sensing is compared to traditional image-compression
methods.

VI. CONCLUSIONS

We have proposed a binary compressed-sensing framework
which is suitable for images. In our experiments, we have
illustrated how measurement redundancy can be minimized by
properly configuring our acquisition model. We have consid-
ered the single-acquisition case as well as a multi-acquisition
strategy. In the two cases, our reconstruction algorithm has
demonstrated state-of-the-art reconstruction performance on
standard images. In particular, detailed features have been
successfully recovered from small amounts of binary data.
From a global perspective, our results confirm the 1-bit-
compressed-sensing paradigm to be promising for imaging
applications. In that regard, the specific interest of our method
is to involve binary measurements that are suitable to convex
optimization. We have proposed an iterative algorithm that
combines preconditioning and Nesterov’s approach to provide
very efficient reconstructions of our measurements. Synthetic
experiments demonstrate the potential of our method.
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APPENDIX A
COEFFICIENTS OF THEPENALTY BOUNDS

A. Formulation of the Optimization Task

The continuity ofψ(γt) and the upper-bound conditions on
ψq(t|g̃(n), γ) impose that the value and first derivative of these
two functions coincide att = g̃(n). This requires that

a0 = ψ(γg̃(n)) − g̃(n)(g̃(n)a2 + a1),

a1 = −2g̃(n)a2 + ψ′(γg̃(n)). (39)

The remaining degree of freedoma2 ∈ R+ \ {0} is optimized
so as to best approximateψ. The resulting optimala2 cor-
responds to the lowest positive value satisfying (23). In that
configuration, the parabolaψq(t|g̃(n), γ) touches one and only
one distinct point ofψ(γt) at t = g̃T . The convexity ofψ
ensures the existence and uniqueness of the solution.

B. Solution

According to (22), the abscissas of the intersections between
ψ andψq(·|g̃(n), γ) are solutions of

a2t
2 + a1t+ a0 = ψ(γt). (40)

These solutions correspond to the set union

S = {t ≤ 0 : P1(t) = 0} ∪ {t > 0 : P2(t) = 0}, (41)

where P1,2(t) = 0 gives the intersections between
ψq(·|g̃(n), γ) and the linear and nonlinear parts ofψ. This
corresponds to the separate formulas of (15) without the
argument condition. Accordingly, the polynomialsP1,2 are
expressed as

P1(t) = a2t
2 + (a1 + γ)t+ (a0 −M−1),

P2(t) = (M2t2 +Mγt+ 1)(a2t
2 + a1t+ a0) −M−1.

(42)

The optimal ψq(t|g̃(n), γ) is tangent toψ(γt) at t =
g̃(n), g̃T ∈ S, and intersects no other point. This causes the
two double roots̃g(n) and g̃T to appear in one of the two
polynomials, be it jointly or not. Either of these two roots
cancels the discriminantD of the associated polynomial. For
the sake of conciseness, we defineu = Mγg̃(n) and consider
two distinct cases.

1) The point̃g(n) is in the nonlinear part ofψ: In this case,
whereu ≥ 0, the coefficientsa0 anda1 are expressed as

a0 = M−1
(

(u2 + u+ 1)−1 −M−1u2a2 − γua1

)

,

a1 = −γ
(

2M−1ua2 + (2u+ 1)(u2 + u+ 1)−2
)

. (43)

Then, the optimal parabola can be tangent at a distinct point
of ψ either in the same nonlinear part, or in the linear part.
If g̃T lies in the linear part, the corresponding polynomial
P1 contains one double root̃gT for an optimala2. This first
subcase corresponds to the solution

a′2 = {a2 ∈ R
∗
+ : D(P1(·)) = 0}

=
1

4
M
u(u2 + 2u+ 3)2

(u2 + u+ 1)3
. (44)

If g̃T lies in the nonlinear part ofψ, the correspondingP2

contains two double roots. Its discriminant is thus always zero
regardless ofa2. Nevertheless, this same quantity divided by
(t − g̃(n))2 is a viable indicator, as it only vanishes in the
optimal case. This yields the solution for this second subcase
as
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Bitrate 1/16 bpp 1/8 bpp 1/4 bpp 1/2 bpp 1 bpp 2 bpp 4 bpp
Sampling Ratio Λ∗ 1/128 1/64 1/32 1/16 1/8 1/4 1/2
Image Method SNR / BSNR
Bird SF 18.35 / 21.85 - 21.27 / 24.44 - 22.95 / 26.05 - 23.78 / 27.14
(256 × 256) GF (S) 19.44 / 21.94 21.65 / 23.40 23.74 / 25.04 25.58 / 26.41 27.13 / 27.76 28.36 / 28.96 28.58 / 29.57

GF (D) 16.84 /23.56 19.79 /25.65 22.30 /27.65 24.30 /29.41 27.34/ 31.19 30.67/ 33.07 33.17/ 34.54
Cameraman SF 13.86 / 14.79 - 16.34 / 17.02 - 18.14 / 18.94 - 19.33 / 20.34
(256 × 256) GF (S) 14.63 / 15.03 16.06 / 16.03 17.26 / 17.22 18.54 / 18.42 19.78 / 19.68 21.27 / 21.22 22.67 / 22.73

GF (D) 11.33 /16.11 15.00 /17.84 17.20 /19.57 19.91/ 21.30 21.96/ 23.01 23.73/ 24.63 25.72/ 26.09
House SF 17.36 / 20.39 - 20.74 / 23.08 - 23.21 / 25.10 - 24.60 / 26.31
(256 × 256) GF (S) 18.39 / 20.40 20.62 / 21.87 22.67 / 23.32 24.47 / 24.73 25.74 / 25.85 27.11 / 27.11 27.78 / 27.87

GF (D) 15.48 /21.25 18.56 /23.47 20.94 /25.15 24.01 /26.81 26.62/ 28.23 28.78/ 29.80 30.39/ 31.10
Peppers SF 12.43 / 14.63 - 15.09 / 16.94 - 17.35 / 19.85 - 18.58 / 21.49
(256 × 256) GF (S) 14.31 / 15.38 15.99 / 16.66 17.44 / 17.80 19.02 / 19.38 20.91 / 21.36 23.06 / 23.51 24.67 / 25.02

GF (D) 10.84 /15.70 13.40 /17.80 16.11 /19.97 18.95 /22.28 21.20/ 24.57 23.87/ 26.58 26.73/ 28.26
Shepp-Logan SF 7.28 / 8.73 - 12.57 / 13.88 - 17.33 / 18.24 - 22.33 / 22.89
(256 × 256) GF (S) 8.52 / 10.21 10.95 / 12.12 13.34 / 14.18 15.53 / 16.17 17.78 / 18.30 19.52 / 20.13 21.37 / 22.25

GF (D) 7.98 / 11.74 10.91 /14.49 14.14/ 17.09 17.20/ 19.60 20.16/ 22.22 22.94/ 24.84 25.57/ 27.6
Barbara SF 11.27 / 14.11 - 12.71 / 14.82 - 13.97 / 15.98 - 13.39 / 16.00
(512 × 512) GF (S) 14.56 / 14.61 15.71/ 15.10 16.54 / 15.58 17.23 / 16.17 18.06 / 17.10 19.06 / 18.44 20.94 / 20.95

GF (D) 8.51 / 14.45 10.38 /15.49 12.50 /16.80 15.79 /18.69 18.64/ 21.22 21.95/ 23.87 24.85/ 26.43
Boat SF 14.13 / 16.16 - 16.17 / 18.04 - 17.84 / 19.91 - 17.53 / 20.13
(512 × 512) GF (S) 16.28 / 17.09 17.70 / 18.19 19.21 / 19.53 20.83 / 21.02 22.54 / 22.69 24.28 / 24.35 25.99 / 26.00

GF (D) 12.72 /17.82 14.85 /19.44 16.42 /21.33 19.16 /23.26 22.39 /25.16 25.07/ 27.10 27.37/ 28.86
Hill SF 12.89 / 16.50 - 15.10 / 17.68 - 16.39 / 18.93 - 15.63 / 18.96
(512 × 512) GF (S) 16.28 / 17.34 17.74 / 18.34 18.96 / 19.26 20.33 / 20.50 21.62 / 21.72 23.27 / 23.29 24.51 / 24.51

GF (D) 8.51 / 17.90 10.15 /19.34 12.45 /20.99 16.33 /22.89 19.85 /24.75 23.88/ 26.79 26.71/ 28.64
Lena SF 13.82 / 18.78 - 16.56 / 20.52 - 18.02 / 22.27 - 18.18 / 22.56
(512 × 512) GF (S) 18.03 / 19.55 19.63 / 20.69 21.32 / 22.11 23.00 / 23.56 24.75 / 25.14 26.45 / 26.69 27.92 / 28.10

GF (D) 11.36 /20.25 13.04 /21.99 15.49 /23.95 18.38 /25.89 21.35 /27.94 25.40 /29.88 28.10/ 31.73
Man SF 13.03 / 16.33 - 15.47 / 17.98 - 16.96 / 19.61 - 16.50 / 19.83
(512 × 512) GF (S) 15.95 / 16.97 17.41 / 18.01 18.78 / 19.20 20.27 / 20.48 21.76 / 21.92 23.46 / 23.57 24.97 / 25.08

GF (D) 11.33 /17.42 13.97 /19.03 16.56 /20.89 18.80 /22.89 21.94/ 25.03 24.83/ 27.11 27.65/ 29.09

* This parameter is used for GF with the constant number of acquisitionsL = 8.

TABLE III
RATE-DISTORTION PERFORMANCE OFGF WITH (D) AND WITHOUT (S) FINITE DIFFERENTIATION COMPARED TOSF [8].

Fig. 10. Reconstruction ofBird (256 × 256) at 1/8 bpp (M = 8,192) using three distinct methods. From left to right: GFusingM2
0 = 2562, L = 8, and

Λ = 1/64 without (SNR: 21.65 dB, BSNR: 23.4 dB) and with finite differentiation (SNR: 19.79 dB, BSNR: 25.65 dB), and JPEG (SNR: 19.68 dB, BSNR:
22.66 dB). The plain-JPEG compression is performed at its lowest quality settings, which approximately yields the samebitrate (the corresponding file size
is 10,280 bits, including header data).

a′′2 =
{

a2 ∈ R
∗
+ : D((· − g̃(n))−2P2(·)) = 0

}

=
1

3
M

(2u+ 1)2

(u2 + u+ 1)2
. (45)

Given its definition, the functionψ corresponds to the max-
imum between its linear and nonlinear constituents. This
determines our overall first-case solution as

a2 = max(a′2, a
′′
2)

=







M (2u+1)2

3(u2+u+1)2 , 0 ≤ u ≤ 1

M u(u2+2u+3)2

4(u2+u+1)3 , u > 1.
(46)

In this first case, the three coefficients are thus determinedby
combining (43) and (46) givenu.

2) The pointg̃(n) is in the linear part ofψ(γt): In this
case, whereu < 0, the coefficientsa0 and a1 are expressed
as
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a0 = M−1(M−1u2a2 + 1),

a1 = −γ(2M−1ua2 + 1), (47)

the optimal parabola being always tangent at some distinct
point in the nonlinear part ofψ. Since the corresponding
polynomialP2 contains one single double root in that con-
figuration, the corresponding solution is

a2 =
{

a2 ∈ R
∗
+ : D (P2(·)) = 0

}

. (48)

The scalar valuea2 corresponds to the positive and real root
of the cubic polynomial

P3(t) = 12(u2 + u+ 1)3t3

+ (3u5 + 68u4 + 214u3 − 24u2 − 89u+ 8)Mt2

+ (14u3 + 168u2 − 66u− 4)M2t

+ 27M3u, (49)

for which the analytical expression can be found [35]. The
behavior of P3 as a function ofu < 0 guarantees the
uniqueness of the solution. The coefficients are obtained in
this case by solving (49) and then using (47).
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