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ABSTRACT

We propose a fast algorithm for the detection of cells in flu-
orescence images. The algorithm, which estimates the number
of cells and their respective centers and radii, relies on the fast
computation of intensity-based correlations between the cells
and a near-isotropic Mexican-hat-like detector. The attractive
features of our algorithm are its speed and accuracy. The for-
mer attribute is derived from the fact that we can compute
correlations between a cell and detectors of various sizes us-
ing O(1) operations; whereas, it is our ability to continuously
control the center and the radius of the detector that results
in a precise estimate of the position and size of the cell. We
provide experimental results on both simulated and real data
to demonstrate the speed and accuracy of the algorithm.

Index Terms— Fluorescence microscopy; cell detection;
box spline; Mexican-hat; LoG; scalable detector.

1. INTRODUCTION

THE segmentation of cells is often crucial for the quantitative
analysis of microscopic images. Operations such as the

counting of cells, study of their spatial organization, and the
distribution of fluorescence signals on the cell nuclei require a
precise delineation of the cell boundaries.

In fluorescence imaging, the cells (or the cell nuclei) ap-
pear as bright blobs on a dark background. The difficulty,
however, is that the images are often corrupted with large
amounts of noise owing to the limited laser excitation used
to avoid excess photobleaching [1]. Added to this, there is typ-
ically the problem of uneven illumination, where the intensi-
ties within the cell are significantly varying, making it difficult
to segment the cell using a single global threshold. Adaptive
thresholding methods, often combined with region growing,
have commonly been used to circumvent this problem [2, 3].
More recently, accurate and sophisticated segmentation algo-
rithms based on level-sets and graph-cuts have been proposed
for this task [4, 5]. The present limitations of such methods
are (i) the difficulty to automate them, and (ii) their slow-
to-moderate speed of computation. For certain applications,
especially those related to high-throughput screening, it is ab-
solutely necessary to adopt techniques that are fast and fully
automated. Simple but efficient detection methods have been
proposed to suit these requirements [6, 7].

In this paper, we propose a simple and fast linear filtering
based algorithm for the detection of round cells in fluores-
cence images. The core of our detection paradigm, the fast
computation of correlations between the cell and the scal-
able Mexican-hat detector, is based on an algorithm proposed
in [8] for space-variant smoothing of images using certain
Gaussian-like box splines, the radially-uniform box splines. In
the present context, we are interested in the quasi-isotropic
variant of the radially-uniform box splines which resemble the
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isotropic Gaussians. Akin to the popular means of approxi-
mating the Mexican-hat using the difference of Gaussians, we
realize Mexican-hat-like detectors using the difference of two
such near-isotropic box splines. These are then used as tem-
plates for detecting round cells/nuclei in fluorescence images,
and for estimating their positions and radii.

2. SCALABLE MEXICAN-HAT DETECTOR

To introduce the notations, we recall the construction of the
isotropic variants of the radially-uniform box splines intro-
duced in [8]. The detector construction is discussed next.

2.1. Gaussian-like box spline

The particular quasi-isotropic box splines that we are in-
terested in are realized through the convolution of four
“uniformly-rotated” box functions of identical width. More
specifically, let Boxr(x) = 1/r for |x| ≤ r/2, and equals 0 oth-
erwise, be the (normalized) one-dimensional box function of
width r, and let uθ = (cos θ, sin θ) and uθ⊥ = (− sin θ, cos θ)
be the unit vectors along direction θ and perpendicular to it.
Then the bivariate box spline βr(x) under consideration is
specified by

βr(x) = (ϕr,0 ∗ ϕr,π/4 ∗ ϕr,π/2 ∗ ϕr,3π/4)(x),

where ϕr,θ(x) = Boxr(u
T
θ x)δ(uTθ⊥x) is obtained by rotating

the tensor Boxr(x1)δ(x2) through an angle θ. This, in fact,
can be seen as an improvement over the standard separable
construction

φr(x) = (ϕr,0 ∗ ϕr,0 ∗ ϕr,π/2 ∗ ϕr,π/2)(x)

which uses box functions solely along the horizontal and the
vertical directions. Although βr(x) and φr(x) have the same
order (i.e., a total of four box functions in each case), the
“rounding-effect” of the box functions placed along the diago-
nals tends to make the former more isotropic. Indeed, judging
by the shape of the support and the distribution of the inten-
sity of βr(x) and φr(x), as shown in figure 1, βr(x) clearly
looks more Gaussian-like than φr(x). A quantitative justifica-
tion of this fact can be obtained through the computation of
the following isotropy index

% =
1

2π||f ||2

Z 2π

0

〈Rθf, f〉 dθ,

which measures the rotational symmetry of a non-negative
function f(x) by correlating it with its rotated versions (Rθ is
the rotation operator). The isotropy index of φr(x) was found
to be 98.8%, while a higher index of 99.7% was recorded for
βr(x).
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Fig. 1. Intensity distributions of (a) βr(x) and (b) φr(x); (c)
and (d): Respective scan profiles along π/8.

2.2. Detector specification and characteristics

The Laplacian-of-a-Gaussian (LoG), also known as the Mexican-
hat, is widely used for detecting radial singularities in images.
In practice, the LoG is often approximated by the Difference-
of-Gaussians (DoG), which is easier to implement. In our case,
we approximate the Mexican-hat detector as the difference of
a narrow and a wide box spline:

ψr(x) = βr(x)− β√2r(x), (1)

where r > 0 is a real-valued parameter that controls the scale
(or radius) of the detector. Figure 2 shows the intensity dis-
tribution of ψr(x) and the profile along a scan-line passing
through the origin.

We note that the total mass of βr(x) is independent of r,
so that

R
ψr(x)dx = 0. In particular, while the detector tends

to suppress uniform-intensity regions, a large response is gen-
erated by singularities along the radial direction. To make this
precise, we consider the ideal blob function

bR(x;xc) =


1 for 0 ≤ ‖x− xc‖ ≤ R,
0 otherwise, (2)

with centre xc and radius R. The radial singularity (jump) in
this case is along the circle ‖x− xc‖ = R. The corresponding
detector response

Mr(xc) =

Z
bR(x;xc)ψr(x− xc)dx

turns out to be a smooth unimodal function with a peak at
r = γR, where γ = 1.33 is a calibration factor. The unimodal
nature is due to the cancellation that takes place between the
constituent box splines when r ≤ γR; the cancellation keeps
increasing as r goes from γR to zero resulting in the progres-
sive drop in the response. On the other hand, the decay of
Mr(xc) for r > γR, when no cancellation occurs, comes as a
consequence of the 1/r4 normalization of the box spline.

Though (2) is a rather idealized model for representing the
cell/nucleus in real images, the responses obtained turn out
to be very similar. For instance, figure 3 shows the response
obtained for one of the cells in the fluorescence image shown
in figure 5.
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Fig. 2. (a) Intensity distribution of the Mexican-hat-like detec-
tor ψr(x); (b) Scan profile along π/8.

2.3. Computational aspects

Before presenting the algorithm, we elaborate on the compu-
tation of the quantity

Mr(x) =

Z
f(y)ψr(y − x)dy (3)

for a given discrete image f(x) =
P

n∈Z2 f [n]δ(x−n). A fast
and efficient evaluation of (3) will turn out to be the workhorse
of our cell detection algorithm, which requires the rapid evalu-
ation of Mr(x) at several image positions and at different radii
per position.

From (1), it is clear that Mr(x) can be expressed as the
difference of two box-spline averages, namely as

Mr(x) = Ar(x)−A√2r(x)

where
Ar(x) =

Z
f(y)βr(y − x)dy.

It was shown in [8] that, by taking advantage of the quasi-
separable structure of βr(x), one could exactly determine
Ar(x) using the following fast algorithm.

(1) (Pre-integration) We pre-integrate the discrete image
f [n] = f [n1, n2] along the four cardinal directions using
running-sums, which is efficiently implemented using the fol-
lowing recursion:

(i) Horizontal, R0[n1, n2] =
P∞
k=0 f [n1 − k, n2].

(ii) First-diagonal, Rπ/4[n1, n2] =
√

2
P∞
k=0R0[n1−k, n2−k].

(iii) Vertical, Rπ/2[n1, n2] =
P∞
k=0Rπ/4[n1, n2 − k].

(iv) Second-diagonal, F [n1, n2] =
√

2
P∞
k=0Rπ/2[n1 + k, n2 −

k].

(2) (Finite-difference) For a given position x and radius r, we
compute Ar(x) by taking a finite-difference of a continuous
form of the pre-integrated image. In particular, we use the
formula

Ar(x) =

15X
i=0

wiFint

`
x+ τ − xi

´
where the notations are as follows: wi = (−1)q1 · · · (−1)q4(1/r4)
and xi = r(q1u0 +q2uπ/2 +q3u3π/4 +q4uπ/4) are the weights
and positions of the FD mesh, the tuple (q4, q3, q2, q1), running
from (0, 0, 0, 0) to (1, 1, 1, 1), is the binary representation of
the indices 0 ≤ i ≤ 15; τ = (τ1, τ2) where τ1 = (r − 1)/2 and
τ2 = (

√
2r + r − 3)/2; and

Fint(x) =
X

F [n]βZP(x− n)
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Fig. 3. A typical detector characteristic for one of the cells in
Fig. 5. The solid curve shows the variation of the detector re-
sponse Mr(xc) with radius r, where xc is the exact cell center.
The dots on this curve correspond to the successive estimates of
the optimal point γR? obtained from the golden section search.

is the interpolation of F [n] using the box spline βZP(x). The
box spline 2βZP(x) is popularly known as the Zwart-Powell
(ZP) element in box spline literature [9]. The samples Fint(x+
τ −xi) are rapidly evaluated using a method that takes advan-
tage of the finite support and the piecewise-quadratic structure
of βZP(x).

Once the pre-integration is over, Mr(x) can thus be com-
puted using a single FD mesh obtained by combining the two
FD meshes of radii r and

√
2r in step 2. The crucial aspect

of the above computation is that number of operations (mod-
ulo the mild interpolations) required in step 2 is independent
of r, so that the cost of computing Mr(x) does not vary with
the scale of the detector. This O(1) complexity is clearly a sig-
nificant improvement over a naive implementation of (3) in-
volving the discretization of the Mexican-hat and the integral,
which would require O(r2) computations.

3. FAST DETECTION OF CELLS

We model the image f(x) as the superposition of circular blobs
bRi(x;xi) of unknown intensities αi, along with background
noise n(x):

f(x) =

NX
i=1

αibRi(x;xi) + n(x). (4)

We consider a more realistic model of the blobs bRi(x;xi) than
the one in (2), whereby we do assume each cell to be localized
within a disk of radius Ri, but we do not assume the blobs to
have the same height or uniform intensity distributions.

The proposed algorithm estimates (without a priori knowl-
edge) the number of cells (N), the centre (xi) and the radius
(Ri) of each cell. The only assumption used is that the radii of
the cells are bounded, that is, Rmin ≤ Ri ≤ Rmax, where Rmin

and Rmax are provided as user-inputs. Our approach involves
the joint-estimation of the centers and the radii, whereby we
first sample the values of Mr(x) at discrete image positions
and radii to obtain a coarse-to-fine estimate of the center xi,
and then proceed to derive a fine estimate of R by the optimiz-
ing |Mr(xi)|. The main steps of the algorithm are as follows:

(1) Coarse estimation of the centers, rejection of back-
ground points: To obtain a coarse estimate of the centers by
restricting the potential cell centers, aka the candidate points,
to a lattice of resolution d1.8Rmine × d1.8Rmine. Let us denote
these candidate points by x̂1, . . . , x̂P ; in general, P >> N
but is small compared to the size of the image. The particu-
lar choice of resolution ensures that at least one lattice point
intersects every cell, the smallest cells of interest in particular.

Fig. 4. Detection result on simulated data. Row 1: Blobs of dif-
ferent size; Row 2: Blobs of different intensities; Row 3: Iden-
tical blobs corrupted with different levels of additive Gaussian
noise; Row 4: Identical blobs corrupted with different levels
of speckle noise; and Row 5: Cluster of identical blobs with
varying margin of separation.

At every x̂i, we compute Mr(x̂i) at rk = Rmin + k(Rmax−
Rmin)/4, for k = 1, 2, and 3, and set Mi = maxk |Mrk (x̂i)|.
We then remove those x̂i (typically the background pix-
els) from the list of candidates where Mi is smaller than
a specific threshold ε, and sort the remaining points as
x̂1, . . . , x̂K (K << P ) using the criterion that x̂j comes
before x̂k if and only if Mj ≥ Mk. Those x̂i that are close
to the actual centers xi tend to generate larger responses
than those that are further off; the above ordering places such
points in the foremost part of the candidate list.

(2) Fine estimation of the center and the radius: We setN =
0 and i = 1. We visit the foremost candidate point x̂1, place
an appropriate window W around it (at original resolution),
and similar to the coarse estimation phase, we compute the
maximum response M(ξ) = maxk |Mrk (ξ)| at every ξ ∈ W .
We use the result of this fine search to select the centre xi as
the point corresponding to the local maxima, that is,

xi = arg max
ξ∈W

M(ξ).

Having estimated the centre, we use the unimodal characteris-
tics of the detector (see Fig. 3) and the hypothesis that Rmin ≤
Ri ≤ Rmax to estimate the radius as

Ri = γ−1 arg max
n
|Mr(xi)| : γRmin < r < γRmax

o
.

We perform this optimization using the golden section search,
which is an efficient algorithm for finding the extremum of a
unimodal function where one localizes the extremum by suc-
cessively shrinking the size of the interval within which this is
known to exist.

This gives us the i-th cell with centre xi and radius Ri,
and we increment N to N + 1. We then proceed to remove the
candidate points x̂k belonging to the region of the detected
cell, that is, the region {x : ‖x− xi‖ ≤ Ri}. We then set
K = K′, where K′ is the number of retained candidate points,
and form the new candidate list x̂1, . . . , x̂K . We increment i to
i+1 and keep repeat the above process, namely the estimation
of the centre and radius of the (i + 1)-th cell, and the crucial
speed-up step involving the truncation of the candidate list.



(3) Convergence: The iteration is terminated when either (i)
the list of candidate points is exhausted, or (ii) the maximum
projection goes below ε. The latter typically occurs when all
the bright cells have been detected, leaving behind the weak-
intensity cells and the background pixels.

4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm, we
simulated a single 800 × 400 image (cf. Fig. 4) using dif-
ferent variations of the cell model in (4). The idea was to
study the effect of the following on the performance of the
algorithm: (i) the size and intensity of the blobs (rows 1
and 2), (ii) the presence of ambient noise (rows 3 and 4),
and (iii) the separation between the cells (row 5). The SNRs
(dB) of the images in row 3 (Gaussian noise) and row 4
(speckle noise) were ∞, 37.5, 31.5, 27.8, 25.4, 23.4, 21.8, 20.6,
and +∞, 40.1, 37.2, 35.8, 34.6, 33.7, 33.3, 32.5, respectively.

The algorithm was implemented in JAVA on a Macintosh
2.8 GHz Intel dual-core system. We set Rmin = 3, Rmax = 20,
and W = 3Rmin. The execution time was about 0.5 seconds,
and the detected blobs are shown in Fig. 4 using red circles.
A near-exact estimate of the positions and radii was obtained
for the blobs in the first four rows; the error in localization was
within 1 pixel, and that for the radius was within 1%. There
were however two false detections in presence of noise, the
algorithm failed to detect the smallest blob in row 1and the
overlapping blobs in row 5; the rest of the contiguous blobs in
this row 5 were detected as a single object.

Figure 5 shows the results of our detection algorithm ap-
plied to real fluorescence images. The top figure shows a
NIH3T3 cell line (mammalian cells for circadian cycle anal-
ysis) of size 512 × 512, which stably expressed the nuclear
fluorescent protein under circadian Reverba promoter regula-
tion. The second fluorescence image (cropped to 512 × 312
pixels) was obtained from an experiment on the migration and
proliferation of stem cells. We used Rmin = 3, Rmax = 32
and W = 3Rmin in either case. Most of the bright blobs were
detected in both the images, including the slightly elongated
cells in the second image. The very faint nuclei in the first im-
age and the tiny blobs in the second image were not detected.
The average execution time for the NIH3T3 and the stem cell
image was 0.7 and 0.4 seconds respectively.

5. CONCLUSION

We presented an algorithm for the detection of round cells in
fluorescence images using a Mexican-hat-like detector, which
offers a nice trade-off between the quality of approximation
and the cost of computation. The attractive features of our al-
gorithm are (i) the use of real-valued scale r to continuously
control the size of the detector, which allowed us to obtain
a very precise estimate of the position and the size; and (ii)
the fast computation of the response using O(1) operations.
Higher computational costs would be involved to achieve sim-
ilar results using pre-computed filters.
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I. Vallcorba, J.M. Garćıa-Sagredo, and F. del Pozo, “Apply-
ing watershed algorithms to the segmentation of clustered
nuclei,” Cytometry, vol. 28(4), pp. 289–297, 1997.

Fig. 5. Top: Snapshot of moving cell nuclei (shown using white
circles) detected from an image sequence (Courtesy of C. Dib-
ner, University of Geneva); Bottom: Bright stem cells (shown
using white bounding boxes with a cross) detected from a flu-
orescence image using our algorithm (Courtesy of N. Garin,
ISREC, EPFL).

[4] C. Ortiz-de Solorzano, R. Malladi, S.A. Lelievre, and S.J.
Lockett, “Segmentation of nuclei and cells using mem-
brane related protein markers,” Journal of Microscopy, vol.
201(3), pp. 404–415, 2001.

[5] J. Deng and H.T. Tsui, “A fast level set method for segmen-
tation of low contrast noisy biomedical images,” Pattern
Recognition Letters, vol. 23, pp. 161–169, 2002.

[6] J. Byun, M. R. Verardo, B. Sumengen, G. P. Lewis, B. S.
Manjunath, and S. K. Fisher, “Automated tool for the de-
tection of cell nuclei in digital microscopic images: Appli-
cation to retinal images,” Molecular Vision, vol. 12, pp.
949–960, 2006.

[7] X. Zhou and Wong S. T. C., “High content cellular imaging
for drug development,” IEEE Signal Processing Mag., vol.
23(2), pp. 170–174, 2006.
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