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Abstract

The efficient realization of linear space-variant (non-convolution) filters is
a challenging computational problem in image processing. In this paper, we
demonstrate that it is possible to filter an image with a Gaussian-like elliptic
window of varying size, elongation and orientation using a fixed number of
computations per pixel. The associated algorithm, which is based on a family of
smooth compactly supported piecewise polynomials, the radially-uniform box
splines, is realized using pre-integration and local finite-differences.

The radially-uniform box splines are constructed through the repeated convo-
lution of a fixed number of box distributions, which have been suitably scaled and
distributed radially in an uniform fashion. The attractive features of these box
splines are their asymptotic behavior, their simple covariance structure, and their
quasi-separability. They converge to Gaussians with the increase of their order,
and are used to approximate anisotropic Gaussians of varying covariance simply
by controlling the scales of the constituent box distributions. Based on the second
feature, we develop a technique for continuously controlling the size, elongation
and orientation of these Gaussian-like functions. Finally, the quasi-separable
structure, along with a certain scaling property of box distributions, is used to
efficiently realize the associated space-variant elliptical filtering, which requires
O(1) computations per pixel irrespective of the shape and size of the filter.

Index – Space-variant filter, Finite-differences, Running-sums, Anisotropic Gaus-
sian, Box spline, Zwart-Powell (ZP) element.

1 INTRODUCTION

THE most widely used smoothing operator in image processing is the Gaussian filter.
As far as isotropic Gaussians are concerned, a fast implementation is achievable

simply by decomposing the filter into two orthogonal 1-D Gaussians operating along
the image axes. The 1-D filters are in turn implemented using efficient recursive
algorithms, e.g., the ones proposed by Deriche [5] and Young et al. [20]. We refer the
readers to this survey article [16] for an exhaustive account of such recursive schemes.

A fundamental limitation of isotropic filtering is that it does not take into account
the anisotropic nature of image features, which results in blurring of oriented patterns
and textures. The development of fast anisotropic filtering in general, and anisotropic
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Gaussian filtering in particular, have therefore gained momentum over the past decade.
Worth mentioning in this regard is the work of Geusebroek et al. [7], who developed
an efficient recursive technique based on the factorization of the 2D-anisotropic
Gaussian into two 1-D Gaussians, one along the image axes and the other along a
generally off-grid direction. A drawback of this technique is that one has to interpolate
the image along the off-grid direction to implement the corresponding 1-D filter.
To avoid interpolation and, in effect, to improve the spatial homogeneity and the
Gaussian-like structure of the filters in [7], Lam et al. came up with the alternative
“triple-axis” solution. Instead of using two directions, they chose to decompose the
anisotropic Gaussian into three 1-D Gaussians operating along one ofthe four cardinal
directions: the horizontal, the vertical, and the two diagonals [10]. The focus of
these papers has largely been on space-invariant filtering, where the entire image is
convolved with a single anisotropic Gaussian. On the other hand, a variety of space-
variant filtering strategies have also been developed, including image statistics driven
filtering [11], non-linear diffusion filtering [14, 19] and gradient inverse-weighted
filtering [18], to name a few.

1.1 Linear space-variant filtering
In this paper, we focus on the paradigm of linear space-variant filtering using Gaussian-
like kernels of different shapes and sizes. From a purely discrete1 perspective, this calls
for the design of a family of Gaussian filters {gλ[n]}λ, so that, given an input image
f [n], one can evaluate the filtered samples f̄ [n] through the averaging

f̄ [n] =
∑

k

f [k]gλ(n)[n− k]. (1)

The parameter λ(n), which specifies the covariance of the filter applied at location
n, allows one to continuously adjust the scale, orientation and elongation of the
filter in keeping with the anisotropy of the local image features. There are however
certain practical problems involved in an efficient realization of (1). It is obvious that
(1) cannot be written as a convolution, and hence cannot be realized using the FFT
algorithm. In fact, the available options are either (i) to compute the filters gλ[n]
by sampling the continuous Gaussian on-the-fly, or (ii) to discretize λ a priori, and
to store the pre-compute filters in a look-up table. The problem with the former
is that it proves to be extremely slow for wide kernels, while the latter restricts the
control on the anisotropy of the filters. By appropriately modifying the recursive
filtering strategies in [5, 20], Tan et al. developed an algorithm for realizing (1) for the
particular case where {gλ[n]}λ are isotropic [16].

Spline kernels can also yield efficient algorithms for space-variant filtering, par-
ticularly when the space-variance is in terms of the scale (or size) of the kernel. For
instance, Heckbert proposed an algorithm for adaptive image blurring using tensor-
products of polynomial splines, where the image is filtered with kernels of various
scales using repeated integrations and finite-differences [8]. Based on similar principles,

1We associate the term “discrete” with functions defined on the Cartesian lattice Zd , where d is the
dimensionality of the function.
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namely, the scaling properties of B-splines, Muñoz-Barrutia et al. have developed an
algorithm for fast computation of the continuous wavelet transform of 1-D signals
[13]. Recently, the method was extended to perform space-variant filtering using
Gaussian-like functions of arbitrary size, which can be elongated along the image
axes [12]. To achieve this, the authors choose to approximate the Gaussian using
separable B-splines. We propose to take this approach one step further. In particular,
we overcome the limited steerability and ellipticity of the separable B-splines by con-
sidering certain quasi-separable analogues of B-splines, the so-called box splines [2]. As
was demonstrated for the separable filters in [12], we show that these quasi-separable
box splines can also be used to approximate the Gaussian, and that the associated
space-variant filter can be decomposed into recursive pre-filters and scale-dependent
finite difference filters. These together allow us to achieve a fast space-variant filtering
of images using elliptical Gaussian-like filters.

To date, there have only been few applications of such multivariate splines in
the fields of image processing and computer graphics. Noteworthy among them
are the works of Richter [15] and Asahi et al. [1], concerning the development of
image approximation and reconstruction algorithms, and that of Condat et al. [4]
and Entezari et al. [6], concerning the development of interpolation formulas for
hexagonal and BCC lattices.

1.2 Summary of the results
In this contribution, we propose a fast space-variant filtering algorithm using a family
of Gaussian-like box splines whose size, elongation and orientation can be continu-
ously controlled. The attractive feature of our approach is that we use a continuous-
discrete formalism which avoids the necessity of sampling a continuously-defined filter
on-the-fly, or of storing a discrete set of pre-computed kernels. The developments in
the paper are centered around two main ideas, which are as follows:

(1) The use of quasi-separable box splines. The construction of bivariate box splines,
conceived as the “shadow” of N -dimensional (N ≥ 2) polytopes in 2-dimensions,
often turns out to be rather intricate (see [2] for instance). In this paper, we consider
an alternative straightforward recipe for constructing box splines, namely, through
repeated convolutions of dilated and rotated box distributions (see Fig. 3). In particular,
we realize the so-called radially-uniform box spline βN

a (x) through the convolution of
N rotated box distributions, where a= (a1, . . . ,aN ) is a scale-vector with ak being the
scale of the box distribution positioned along the direction (k − 1)π/N (see §2.2 for a
precise definition).

The reason why the radially-uniform box splines are of interest in the current
context is twofold. The first of these is that we can make them arbitrarily close to a
Gaussian by increasing N (see §2.2.3). The second reason, which has a more practical
significance, is that we can continuously control their size, elongation, and orientation
simply by acting on the scales.

(2) An efficient strategy for space-variant averaging. To convey this idea, we exam-
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Figure 1: Computation of the space-variant average f̄ [n]: The signal f (x) is first
localized (hatched zone) using the shifted box function βa(n)(n− x), and then the area
is computed. The central idea of our algorithm is to determine this area by taking the
finite-difference of the primitive of f (x).

ine the following formula

f̄ [n] =
1

2W (n)+ 1

W (n)
∑

k=−W (n)

f [n− k] (2)

for computing the space-variant averages of a discrete 1-dimensional signal f [n]. We
interpret the factor W (n), which controls the amount of smoothing, as the size of
the “discrete box filter” applied at location n. The disadvantage of using (2) is that
its computational cost scales linearly with W (n), which even gets worse in higher
dimensions. This can be circumvented (with a mild interpolation cost) by considering
instead the space-variant averaging

f̄ [n] =
1

a(n)

∫ n+a(n)/2

n−a(n)/2
f (y)d y =

∫

f (y)βa(n)(n− y)d y, (3)

where we have replaced the discrete signal f [n] by its interpolated version f (x), and
the discrete box filter by the box function

βa(x) =

(

1/a for −a/2< x ≤ a/2,
0 otherwise.

The main advantage of this formulation is that we can realize (3) using O(1) computa-
tions per position, independent of the size of a(n). This is based on the observation
that (3) can computed by first evaluating the primitive

F (x) =
∫ x

−∞
f (y)d y,

and then using the formula

f̄ [n] =
1

a(n)

�

F (n+ a(n)/2)− F
�

n− a(n)/2)
�

, (4)
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which requires one addition and multiplication per position. This idea is illustrated in
figure 1. The other advantage is that, as opposed to the integer-valued window W (n)
in (2), this gives access to the real-valued scale a(n) for continuously controlling the
smoothing. Indeed, if f (x) is integrable (at least locally), then it can be shown that the
use of small scales results in less smoothing, namely that f̄ [n]−→ f [n] as a(n)−→ 0,
whereas f̄ [n] can be made negligibly small by making a(n) sufficiently large.

The contribution of this paper is the generalization of the filtering strategy in (3)
to the bivariate setting using the radially-uniform box splines. In particular, given a
discrete image f [n], we consider the space-variant filtering

f̄ [n] =
∫

f (y)βN
a(n)(n− y)d y (5)

where f (x) represents a suitable interpolation of f [n]. The significance of the quasi-
separable characterization of βN

a (x) in terms of the box distributions is that it allows
us to relate (5) to the 1-D problem in (3). Indeed, we demonstrate in §2.2 that (5)
can be implemented using an appropriate bivariate extension of pre-integrations
and finite-differences, together with few evaluations of a fixed piecewise polynomial
function (the coefficients of which are pre-computed). Although the derivation of the
algorithm is rather involved, the final solution turns out to be remarkably simple (see
§3, Algorithm 1), and easy to implement.

1.3 Notations
We use f̂ (ω) to denote the Fourier transform of a function f (x) on Rd , specified by
f̂ (ω) =

∫

Rd f (x)exp (− jωT x)d x . We use f (· − s) to denote the function obtained
by translating f (x) by s. The convolution of two functions f (x) and g (x) is given
by ( f ∗ g )(x) =

∫

Rd f (s)g (x − s)d s. The notation þN
k=1

fk (x) is used to denote the
convolution of a collection of functions f1(x), . . . , fN (x); the order of the convolutions
is immaterial. We suppress the domain of an integral (or summation) if this is obvious
from the context. For a bivariate function f (x) = f (x1, x2), the partial derivative
along xi is denoted by ∂i f (x). Given operators T1 and T2 on a domain D, we use
T1 ◦T2 (often simply T1T2) to denote their composition: (T1 ◦T2)( f ) = T1(T2( f )) for
every f in D. We use Mn to denote the (n− 1)-fold matrix multiplication of M with
itself. The integral

∫

M(x) f (x)d x , corresponding to a real-valued function f (x) and a
matrix-valued function M(x) on R2, denotes a matrix of the same dimension as M(x),
whose (i , j )-th component is given by

∫

Mi , j (x) f (x)d x . If P and Q are constant
matrices, we then have

∫

PM(x)Q f (x)d x = P(
∫

M(x) f (x)d x)Q. The notation
f (x) = O(g (x)), x −→ 0, signifies that there exists a constant C (independent of
x) such that | f (x)| ≤ C g (x) for sufficiently small x. The space of bivariate finite-
energy signals is denoted by L2(R2), or simply as L2; it is equipped with the norm
‖ f ‖L2= [

∫

| f (x)|2d x]1/2. The Dirac distribution is denoted by δ(x).

IEEE Trans. Image Processing 5
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Figure 2: Box function rescaling through “addition and subtraction” of the unit box
function: The step function is first reproduced from the unit box using the running-
sum, and then the appropriate finite-difference is applied to recover the rescaled box
function.

2 SPACE-VARIANT AVERAGING
We now derive (4) using an operator-based formalism. This helps set up the framework
needed for the subsequent generalization of the idea to higher dimensions and multiple
orders in §2.2.2.

2.1 Realization of (3)
We consider the finite-difference (FD) and the running-sum (RS) of a function f (x),
which are respectively defined by

∆a f (x) =
1

a

�

f (x)− f (x − a)
�

, (6)

and

∆−1
b

f (x) = b
∞
∑

k=0

f (x − b k). (7)

The positive real numbers a and b are the scales of the operators2. We note that the
operators∆a and∆−1

b
, which takes f (x) into∆a f (x) and∆−1

b
f (x) respectively, are

linear and translation-invariant, and that when b is an integer,∆−1
b

can also be applied
to a sequence f [n] through the well-defined operation∆−1

b
f [n] = b

∑∞
k=0 f [n−b k].

In particular, g[n] = ∆−1
1 f [n] can be implemented efficiently using the simple

recursion g[n] = g[n− 1]+ f [n], under appropriate boundary conditions [13].
The significance of these operators is that we can relate the variable-size box

functions in (3) to the unit-width box function using the transformation

βa(x) =∆a∆
−1
1 β1(x +τ) (8)

where τ = (a−1)/2. In particular, this means that box functions of variable widths can
be derived from a fixed box function through the successive applications of running-
sums and finite-differences (see Fig. 2). To derive (8), we note that ∆−1

1 β1(x) =

2The notation∆−1
b

is justified by the fact that∆a∆
−1
b

acts as the identity operator when a = b .

IEEE Trans. Image Processing 6



∑∞
k=0β1(x − k) = u(x + 1/2), where the step function u(x) equals 1 for x > 0 and

zero otherwise. The desired result follows immediately:

∆a∆
−1
1 β1(x +τ) =

1

a

�

u(x + a/2)− u(x − a/2)
�

=βa(x).

We use (8) to derive the algorithm for computing (3) as follows: Fix an arbitrary
position n and the corresponding a(n) in (3), and consider the function

s(x) =
∫

f (y)β1(x − y)d y.

We claim that f̄ [n] =∆a(n)∆
−1
1 s (n+τ). Indeed, following the linearity and translation-

invariance of∆a(n)∆
−1
b

, and using (8), we can write

∆a(n)∆
−1
1 s(x +τ) =

∫

f (y)[∆a(n)∆
−1
1 β1(x +τ− y)]d y

=
∫

f (y)βa(n)(x − y)d y,

which establishes our claim.
Now if the input signal is discrete, of the form f (x) =

∑

n∈Z f [n]δ(x − n), then
s(x) can simply be written as s(x) =

∑

f [n]β1(x − n). A simple manipulation then
shows that ∆−1

1 s(x) =
∑

g[n]β1(x − n), where g[n] is the running-sum of f [n].
Thus, denoting the piecewise-constant interpolation of g[n] by F (x), we obtain

f̄ [n] =∆a(n)F (n+τ).

This leads us to the following two-step algorithm for realizing (3):

(1) (Space-invariant step) Compute g[n] = ∆−1
1 f [n] using the recursion g[n] =

g[n− 1]+ f [n];

(2) (Space-variant step) For every position n, set f̄ [n] = ∆a(n)F (n + τ), where
τ = (a(n)− 1)/2.

The steps of the algorithm can be visualized for the particular case when the input
is an impulse and when a(n) = a for every n using Fig. 2. The second and third plots
in this figure then correspond to steps (1) and (2) of the algorithm, respectively.

The remarkable fact about the algorithm is that the space-variant aspect of the
transformation f [n] 7→ f̄ [n] gets transferred to the scale-dependent operator ∆a ,
which in turn is implemented at a fixed computational cost per pixel, namely, one
addition and multiplication per position. We would also like to note that (8) can more
generally be expressed as

βa(x) =∆a∆
−1
b
βb (x +τ) (τ = (a− b )/2). (9)

The significance of this relation is that, if the lattice spacing b is different from unity,
one can still realize the running-sum (without interpolation) by replacing the operator
∆−1

1 by∆−1
b

. We will use this in the sequel.

IEEE Trans. Image Processing 7
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Figure 3: Construction of the radially-uniform box spline through the convolution
of four directional box distributions. (A) The four box distributions, distributed
uniformly over [0,π), were assigned equal scales in this example; (B) Scan profile
along θ=π/8.

2.2 Bivariate extension
2.2.1 Radially-uniform box splines

We now extend the space-variant filtering strategy discussed in the previous section
to the bivariate setting, where the additional notion of directionality is appropriately
addressed. As a first step, we devise an appropriate directional extension of the box
function. In particular, corresponding to a real-valued scale a and direction θ, we
define the directional box distribution ϕa,θ(x) as the tensor product of the box function
βa(x) and the Dirac distribution δ(x) operating along orthogonal directions,

ϕa,θ(x) =βa

�

uT
θ

x
�

δ
�

uT
θ⊥

x
�

.

Here the orthogonal directions are specified by the unit vectors uθ = (cosθ, sinθ), and
uθ⊥ = (− sinθ, cosθ). The scale a controls the amount of smoothing applied along
the orientation of the box distribution, whereas no smoothing is applied along the
transverse direction. The idea then is to construct the box spline by convolving an
arbitrary number of such directional box distributions (cf. Fig 3). Thus, corresponding
to an integer N > 1, a set of real-valued scales a1, . . . ,aN , and uniform rotation-angles
θk = (k − 1)π/N , k = 1, . . . ,N , we specify the radially-uniform box spline through the
convolution

βN
a (x) = (ϕa1,θ1

∗ · · · ∗ϕaN ,θN
)(x). (10)

We shall refer to N and the tuple a = (a1, . . . ,aN ) as the directional-order and the
scale-vector of the box spline, respectively.

IEEE Trans. Image Processing 8



Following definition (10), it can be verified that βN
a (x) is a piecewise polynomial

of degree ≤ N − 2, where the partitions are specified by lines running along the
directions θ1, . . . ,θN . Moreover, βN

a (x) is symmetric with respect to the origin, and
is compactly supported on a convex N -sided polygon consisting of the points

n
N
∑

k=1

tk ak uθk
: −1/2≤ tk ≤ 1/2

o

.

The radially-uniform box splines are non-separable for N > 2. However, in keeping
with the spirit of the underlying tensor construction, the term quasi-separable would
be more appropriate. The scale-vector a plays a vital role in determining the size and
shape of the box spline. It is clear that the box spline can be arbitrarily elongated
along the principal directions θk (1≤ k ≤N ) simply by rescaling the box distribution
ϕak ,θk

, that is by making ak large compared to the other scales. Moreover, we will
demonstrate in the sequel that one can elongate the box spline along any arbitrary
direction by appropriately acting on the scale-vector. The role of the directional-order
is more subtle; it determines the degrees of freedom available for controlling the
geometry of the box spline and also its regularity (smoothness). We will discuss these
aspects in detail for the particular four-directional box spline (N = 4) in §2.2.3.

2.2.2 Realization of (5)

We now formulate the algorithm for realizing (5) by appropriately extending the
domain of definition of the FD and the RS operator to bivariate functions. The main
idea is to derive a relation similar to (8) for the radially-uniform box splines. Thus,
corresponding to positive real-valued scales a and b , and direction 0 ≤ θ < π, we
consider the directional finite-difference

∆a,θ f (x) =
1

a

�

f (x)− f (x − auθ)
�

, (11)

and the directional running-sum

∆−1
b ,θ

f (x) = b
∞
∑

k=0

f (x − k b uθ). (12)

In keeping with the definition of the box spline, the radially-uniform FD and RS
operators, ∆N

a and ∆−N
b

, are then specified by the combined action of (11) and (12)
along the directions θk = (k − 1)π/N . In particular, we set

∆N
a =∆a1,θ1

◦ · · · ◦∆aN ,θN
, (13)

and
∆−N

b
=∆−1

b1,θ1
◦ · · · ◦∆−1

bN ,θN
, (14)

where the scale-vectors a = (a1, . . . ,aN ) and b = (b1, . . . , bN ) specify the scale along
each direction. The operators∆N

a and∆−N
b

are closely related to the radially-uniform
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box splines. Indeed, it can readily be verifed that

∆N
a ∆

−N
b
=∆a1,θ1

∆−1
b1,θ1
◦ · · · ◦∆aN ,θN

∆−1
bN ,θN

,

and that using (9) we can write

∆a,θ∆
−1
b ,θ
ϕb ,θ(x +τuθ) = ϕa,θ(x).

Thus, if we let τ =
∑

τk uθk
, where τk = (ak − bk )/2, then following definitions (10),

(13), and (14), we see that

∆N
a ∆

−N
b
βN

b (x +τ)

=∆a1,θ1
∆−1

b1,θ1
◦ · · · ◦∆aN ,θN

∆−1
bN ,θN

h

þN
k=1 ϕbk ,θk

(x +τk uθk
)
i

=þN
k=1∆ak ,θk

∆−1
bk ,θk

ϕbk ,θk
(x +τk uθk

)

=þN
k=1ϕak ,θk

(x).

This provides the following crucial connection between the box splines and the 2-D
operators.

Proposition 2.1 The box spline βN
a (x) can be expressed as

βN
a (x) =∆

N
a ∆

−N
b
βN

b (x +τ). (15)

Before discussing the filtering algorithm, we briefly elaborate on the implementation
of∆N

a and∆−N
b

. We can show that (13) can be written as

∆N
a f (x) =

2N−1
∑

i=0

wi f (x − xi ), (16)

where wi = (−1)q1+···+qN (a1 · · ·aN )
−1 and xi =

∑N
k=1 qk ak uθk

, and the index i taking
values between 0 and (2N − 1) is the decimal counterpart of the binary number
(qN , qN−1, . . . , q1), which takes values from (0, . . . , 0) to (1, . . . , 1). We identify the
points xi with the vertices of an affine mesh, and wi with the corresponding mesh
taps (cf. Fig. 5).

As far as the application of ∆−N
b

to a discrete sequence f [n] is concerned, the
unfortunate difficulty is that the vectors bk uθ must necessarily lie on the lattice for
(12) to be well-defined. In fact, it is easily seen that one cannot associate a digital filter
with the RS operators in general. However, the good news is that, when N equals 2
and 4, the transformation f [n] 7→∆−N

b
f [n] can be exactly realized without the need

for interpolation by appropriately setting the scales bk of the directional running-sums.
We will discuss the latter case in detail in §3.

The algorithm for realizing (5) corresponding to a specified scale-vector map
a(n) is based on relation (15). In particular, by considering the function f (x) =

IEEE Trans. Image Processing 10



∑

n f [n]δ(x − n), and by proceeding exactly along lines of the 1-D derivation, we
express the filtered samples in (5) as

f̄ [n] =
2N−1
∑

i=0

wi F (n+τ− xi ), (17)

where F (x) =
∑

gb[n]β
N
b
(x−n) denotes the interpolated version of the pre-integrated

signal gb[n] = ∆
−N
b

f [n]; τ = 0.5(
∑

(ak (n)− bk )cosθk ,
∑

(ak (n)− bk ) sinθk ); and
the pairs (xi , wi ) are the vertices and taps of the affine FD mesh in (16). Note that
τ, wi and xi are defined pointwise in (17); we dropped the index n to simplify the
notation. We will discuss the implementation aspects of the algorithm, particularly
the computation of gb[n] and its interpolated form F (x) for the case N = 4 in §3.

2.2.3 Characterization of the radially-uniform box splines

The motivation behind introducing the radially-uniform box splines was to develop
elliptical Gaussian-like filters, whose shape (size, elongation and orientation) can be
continuously controlled, and a fast space-variant algorithm using such filters. Indeed,
it turns out that the radially-uniform box splines (and its iterated versions) form close
approximates of the Gaussian. To substantiate our claim we present the following
result (proof in Appendix §6.1) that can well be seen as a “radial” version of the central
limit theorem.

Theorem 2.2 Consider the sequence of box splines β2
a(2)(x),β

3
a(3)(x), . . . corresponding

to the scale-vectors a(2),a(3), . . ., where ak (N ) = σ
p
(24/N ) for 1 ≤ k ≤ N. Then the

following holds

lim
N−→∞

βN
a(N )(x) =

1

2πσ2
exp
�

−
‖x‖2

2σ2

�

. (18)

In fact, the radially-uniform box splines constructed using uniform scale-vectors
are supported on a N -sided uniform polygon, and it can be shown that they have
continuous derivatives of order (N − 3). The above result is then consistent with the
fact that the isotropy and smoothness of such box splines progressively improves with
the increase in the directional-order. Moreover, it is also possible to mimic certain
anisotropic Gaussians by using a sequence of non-uniform scale-vectors. Indeed, as a
direct extension of Theorem 2.2, one can construct sequences of box splines which
converge to anisotropic Gaussians as N increases.

Yet another useful form of anisotropic convergence is achievable based on the serial
convolutions of a radially-uniform box spline, of a fixed directional-order, with itself.
In particular, corresponding to fixed integers N and m (m ≥ 1), and a scale-vector
a= (a1, . . . ,aN ), we consider the iterated radially-uniform box spline

βN ,m
a (x) = (βN

a ∗ · · · ∗β
N
a )(x) (19)

obtained through the (m − 1)-fold convolution of βN
a (x) with itself. Then, for

the particular sequence of box splines {βN ,m
a(m)(x)} corresponding to the scale-vectors

IEEE Trans. Image Processing 11
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Figure 4: Intensity distribution of (a) the radially-uniform box spline, and (b) the
separable B-spline, of order four. The respective scan profiles along π/8 are shown in
(c) and (d).

a(m) = (a1/
p

m, . . . ,aN/
p

m), we have the result

lim
m−→∞

βN ,m
a(m)(x) =

1

2π |det(C)|1/2
exp
�

−
1

2
xT C−1x

�

, (20)

where

C=
1

12









∑

a2
k

cos2θk
1
2

∑

a2
k

sin2θk

1
2

∑

a2
k

sin2θk
∑

a2
k

sin2θk









. (21)

Indeed, this follows directly from a certain version of the central limit theorem, which
tells us that the each of the components

þm
j=1 ϕak/

p
m,θk
(x) (1≤ k ≤N )

converge to a “directional” Gaussian distribution as m −→ ∞. The covariance
C is then given by the limiting sum of the covariances Ck of the constituent box
distributions. The utility of such iterated box splines will be discussed in §3.3.

Having characterized the asymptotic behavior of the box splines, we now focus on
the problem of approximating an anisotropic Gaussian using a box spline of a fixed
directional-order. Since a centered Gaussian is uniquely specified by its covariance, we
propose a finite-order box spline approximation of the same based on its covariance.
This, in fact, amounts to a moment-based approximation of the Gaussian, that is,
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the box spline resembles the Gaussian up to its second-order moments. Moreover,
since the level-sets of Gaussians are ellipses, this equivalently amounts to constructing
elliptical filters of different size, elongation, and orientation.

The covariance of the radially-uniform box spline, namely,

CN
a =

∫

x xTβN
a (x)d x ,

can be expressed as the sum of the covariances of the box distributions (cf. Appendix
§6.2 for details) as follows:

CN
a =

1

12









∑

a2
k

cos2θk
1
2

∑

a2
k

sin2θk

1
2

∑

a2
k

sin2θk
∑

a2
k

sin2θk









. (22)

This provides the explicit dependence of CN
a on the scale-vector. In particular, based

on the eigen decomposition of CN
a , we propose the following characterization of the

elliptical parameters of the box spline: Let λmax and λmin denote the largest and smallest
eigenvalues of CN

a , and (v1, v2) the eigenvector corresponding to the eigenvalue λmax.
The size sN

a , elongation %N
a , and orientation θN

a of the radially-uniform box spline
βN

a (x) are then defined as

sN
a = λmax+λmin =

1

12

∑

a2
k ,

%N
a =

λmax

λmin
=

∑

a2
k
+
p

D
∑

a2
k −
p

D
,

θN
a = tan−1

�

v2

v1

�

= tan−1







−
∑

a2
k

cos(2θk )+
p

D
∑

a2
k sin(2θk )






, (23)

where D =
�

∑

a2
k

cos2θk

�2
+
�

∑

a2
k

sin2θk

�2
.

Since CN
a is strictly positive (see Appendix §6.2), all the above parameters are

indeed well-defined. Note that the covariance matrix in (22) and the triple in (23)
provide equivalent descriptions of the box spline geometry. The motivation behind
introducing the latter is its convenient rotation-invariant nature: while CN

a changes
with the rotations of a given box spline, sN

a and %N
a remains fixed. It is for this reason

that we use the latter description for studying the dependence of the elliptical geometry
on the scale-vector in the next section.

3 FOUR-DIRECTIONAL BOX SPLINES
We now study the particular four-directional box spline

β4
a(x) = (ϕa1,0 ∗ϕa2,π/4 ∗ϕa3,π/2 ∗ϕa4,3π/4)(x),
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Figure 5: The distribution of the taps of the FD mesh. The pairs (u, v) denote the
positions (u) and the corresponding weights (v) of the taps of the FD mesh.

and the corresponding implementation aspects. This particular box spline is composed
of patches of quadratic polynomials (degree ≤ 2), is continuously differentiable, and is
compactly supported on a convex octagon (cf. Fig. 3).

We note that in [12] the authors have used separable B-splines to approximate
the Gaussian. Although these functions are built from the same constituent box
distributions, the advantage of the four-directional box spline over the separable ones
is that they are more isotropic. As seen in Fig. 4, the basic four-directional box
spline, besides having a smaller support, exhibits a more Gaussian-like profile than the
separable counterpart of identical order. In addition, the anisotropic four-directional
box spline can be rotated to arbitrary orientations, while the separable ones are
constrained to the image axes.

3.1 Fast space-variant elliptical filtering
The four-directional box spline is of particular interest in the context of the space-
variant filtering following the fact that∆−4

b
can be implemented without interpolation

when b = (1,
p

2,1,
p

2). The corresponding interpolating function, β4
b
(x), turns

out to be well-known in the box spline community, and is popularly referred to as
the Zwart-Powell (ZP) element [2, 21]. The steps for realizing (5) using the four-
directional box spline are as follows:

(1) (Pre-integration) The crucial point is the choice of the scale-vector b= (1,
p

2,1,
p

2)
corresponding to which the RS operator

∆−4
b
=∆−1

1,0 ◦∆
−1p

2,π/4
◦∆−1

1,π/2 ◦∆
−1p

2,3π/4

IEEE Trans. Image Processing 14



can be directly applied to f [n]. In particular, the running-sum gb[n] =∆
−4
b

f [n] can
be computed using the following four steps.

(RS1) Horizontal running-sum:

g0[n1, n2] =∆
−1
1,0 f [n1, n2] =

∞
∑

k=0

f [n1− k , n2].

(RS2) First-diagonal running-sum:

gπ/4[n1, n2] =∆
−1p

2,π/4
g0[n1, n2] =

p
2
∞
∑

k=0

g0[n1− k , n2− k].

(RS3) Vertical running-sum:

gπ/2[n1, n2] =∆
−1
1,π/2 gπ/4[n1, n2] =

∞
∑

k=0

gπ/4[n1, n2− k].

(RS4) Second-diagonal running-sum:

gb[n1, n2] =∆
−1p

2,3π/4
gπ/2[n1, n2] =

p
2
∞
∑

k=0

gπ/2[n1+ k , n2− k].

(2) (Finite-difference) At each position n, the FD mesh is computed using the scale-
vector a(n). The weights wi and the vertices xi are listed in Table 1 with the convention
that a′k = ak/

p
2 for k = 2,4. The mesh has a total of 4× 4= 16 vertices; in particular,

there are 4 clusters corresponding to the four boxes with 4 vertices per cluster, as
shown in Fig. 5. The shift τ = (τ1,τ2) is given by τ1 = (

p
2a1+ a2− a4−

p
2)/2
p

2
and τ2 = (a2+

p
2a3+ a4− 3

p
2)/2
p

2. The filtered sample is then computed using
the formula

f̄ [n] =
15
∑

i=0

wi F (n+τ− xi ). (24)

The interpolation samples F (x) =
∑

gb[n]β
4
b
(x −n) in (24) are computed efficiently

by taking advantage of the piecewise polynomial structure of the compactly supported
ZP element (see Appendix 6.6).

As in the 1-D setting, the running-sums are efficiently evaluated using recursions
as summarized in Algorithm 1. The decisive computational advantage, especially
for wider kernels, is derived from the fact that the number of vertices of the FD
mesh is completely independent of the scale-vector. As a result, the algorithm has
a fixed computational cost per pixel, modulo the cost of the running-sum and the
interpolations (see Table 2).
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Table 1: Specification of the taps of the FD mesh associated with the operator ∆4
a.

The weight w is given by (a1a2a3a4)
−1, where a= (a1,a2,a3,a4) is the corresponding

scale-vector.

i xi wi i xi wi
0 (0,0) +w 8 (−a′4,a′4) −w
1 (a1, 0) −w 9 (a1− a′4,a′4) +w
2 (a′2,a′2) −w 10 (a′2− a′4,a′2+ a′4) +w
3 (a1+ a′2,a′2) +w 11 (a1+ a′2− a′4,a′2+ a′4) −w
4 (0,a3) −w 12 (−a′4,a3+ a′4) +w
5 (a1,a3) +w 13 (a1− a′4,a3+ a′4) −w
6 (a′2,a3+ a′2) +w 14 (a′2− a′4,a3+ a′2+ a′4) −w
7 (a1+ a′2,a3+ a′2) −w 15 (a1+ a′2− a′4,a3+ a′2+ a′4) +w

3.2 Size, elongation and orientation of the box splines
As was mentioned earlier, the size and shape of the radially-uniform box spline can be
controlled by appropriately adjusting the scales of the constituent box distributions.
In this regard, we now discuss the following: (i) the forward problem of controlling the
anisotropy of the four directional box spline by acting on the scale-vector, and (ii) the
inverse problem of uniquely specifying the scale-vector of the box spline corresponding
to a given covariance (geometry). For notational ease, we shall henceforth drop the
superscript N = 4 when referring to the four-directional box spline and its related
parameters.

3.2.1 Control on the anisotropy

The elliptical geometry of this box spline is specified using parameters defined in (23),
namely,

sa =
1

12

∑

a2
k , θa = tan−1







a2
3 − a2

1 +
p

D

a2
2 − a2

4






, and %a =

∑

a2
k
+
p

D
∑

a2
k −
p

D
,

where D = (a2
3 − a2

1)
2 + (a2

2 − a2
4)

2. It turns out that the size and orientation can
be arbitrarily controlled by adjusting the scale-vector. Indeed, the size can be easily
manipulated by multiplying the scale-vector a with a constant factor, since this leaves
both the orientation and elongation unchanged. The elongation can be arbitrarily
controlled in the neighborhood of the four principal directions. However, there exists
a finite upper bound on the elongation along other directions (cf. Appendix §6.3).

Proposition 3.1 For every φ in [0,π), there exists a scale-vector a such that θa = φ.
There is however a finite bound on the elongation, and is given by

sup %a <U (φ) =
1+ |νφ|+

q

1+ ν2
φ

1+ |νφ| −
q

1+ ν2
φ

, (25)
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Algorithm 1 Space-variant elliptical filtering
1. Input: f [n] and a(n)
2. Perform recursions:

g0[n1, n2]← f [n1, n2]+ g0[n1− 1, n2]

gπ/4[n1, n2]←
p

2g0[n1, n2]+ gπ/4[n1− 1, n2− 1]

gπ/2[n1, n2]← gπ/4[n1, n2]+ gπ/2[n1, n2− 1]

gb[n1, n2]←
p

2gπ/2[n1, n2]+ gb[n1+ 1, n2− 1]

3. Local FD operation:
for each position n do

compute wi , xi and τ using a(n)
evaluate F (n+τ− xi ) using ZP interpolation
f̄ [n]←

∑

i wi F (n+τ− xi )
end for
4. Return f̄ [n]

where νφ =
1
2 (tanφ− cotφ)sign

�π
2 −φ

�

. The supremum is over the set of a for which
θa =φ.

Fig. 6 illustrates the variation of 1/U (φ) as a function of the orientation; the rationale
behind showing the inverse plot is to avoid the blowups U (φ)−→+∞ as φ−→ θk .
In particular, a bound of 3+ 2

p
2≈ 5.8 is attained along the orientations φ= (2k −

1)π/8,1 ≤ k ≤ 4, exactly mid-way between two adjacent primal directions. This is
perfectly reasonable since the control on the geometry of the box spline is minimal
along these directions.

In order to specify the elliptical geometry of the box spline, we use either of the
following equivalent descriptors as per convenience:

(D1) Size, elongation and orientation (s ,%,θ).

(D2) Length of the major and minor axes, and the orientation (
p
λmax,

p
λmin,θ).

(D3) Covariance matrix C.

Descriptor (D1) stipulates the lengths of the major and minor axes as λmax =
s%/(1+%) and λmin = s/(1+%), respectively, whereas, (D2) gives the corresponding
covariance as

C=

 

λmax cos2θ+λmin sin2θ 1
2 (λmax−λmin) sin2θ

1
2 (λmax−λmin) sin2θ λmin cos2θ+λmax sin2θ

!

.
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Figure 6: Polar plot of the symmetric variation of 1/U (φ) as a function of the filter
orientation φ, where U (φ) is the bound on the elongation. The bound reaches its
minimum when the orientation of the filter is exactly midway between two principal
axes, whereas arbitrary elongation is achievable in the neighborhood of the four
principal directions φ= 0,π/4,π/2 and 3π/4.

3.2.2 Optimal scale-vector for a given anisotropy

Since the covariance matrix of the four-directional box spline (cf. Eqn. (22)) is given
by

Ca =
1

24

�

2a2
1 + a2

2 + a2
4 a2

2 − a2
4

a2
2 − a2

4 2a2
3 + a2

2 + a2
4

�

, (26)

the inverse problem is that of specifying a scale-vector a such that Ca = C. By
introducing the positive vector p= (a2

1 ,a2
2 ,a2

3 ,a2
4 ), the problem can be reformulated as:

find p> 0, such that Mp= c, where

M=







2 1 0 1
0 1 0 −1
0 1 2 1






, and c= 24

�

C(1,1), C(1,2), C(2,2)
�

.

The scale-vector solution is then given by a = pp. As far as existence of solutions
is concerned, proposition 3.1 ensures that the linear system Mp = c,p > 0, corre-
sponding to a given geometry (λmin,λmax,θ), is always solvable provided that the
elongation %<U (θ). Moreover, as it turns out, the linear system is under-determined
and has infinitely many solutions. The idea then would be to use a scale-vector that
is “optimal” in some sense. But first, we try to characterize the solution space of the
system Mp= c,p≥ ε1. For reasons that will soon be obvious, we propose to modify
the positivity constraint as p≥ ε1, where ε is some arbitrarily small positive number.
We observe that M is full-rank, and hence the null-space is of dimension 4− 3 = 1.
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(a) θ = 0 (b) θ = π/9 (c) θ = 3π/4 (d) θ = 7π/18

(e) θ = π/2 (h) θ = 8π/9(g) θ = 3π/4(f) θ = 23π/36

Figure 7: Intensity distributions of the four-directional box splines of identical size
(s = 1) and elongation (% = 2.5), but with different orientations. The ellipse in
each figure represents a level-set of the Gaussian having the same covariance as the
corresponding box spline.

In particular, this signifies that the solutions of Mp = c lie on the affine subspace
{p̄+ te : t ∈ R}, where p̄ is a particular solution (Mp̄= c) and e is in the null-space
(Me = 0). Moreover, one can easily verify that in order to adhere to the positivity
constraint, p̄+ te = ( p̄1 + t , p̄2 − t , p̄3 + t , p̄4 − t ) ≥ ε1, it is both necessary and
sufficient that t lies in the closed interval [t`, tr ], where t` =max(− p̄1+ ε,− p̄3+ ε)
and tr =min( p̄2− ε, p̄4− ε). In particular, we set e = (1,−1,1,−1) which is in the
null-space of M. Note that one can easily compute p̄ by pivoting one of its components
and solving for the remaining three; since M is of full-rank, the reduced system is
always solvable. We now use the available degree of freedom to select a solution that
maximizes a certain measure of Gaussianity.

A classical measure of the Gaussianity of a 1-D function is its kurtosis (the fourth-
order cumulant). For a centered function f (x), this is defined as κ=µ4− 3µ2

2, where
µ4 and µ2 are the fourth-order and second-order moments of f (x), respectively. The
central property of this measure is that κ = 0 for a true Gaussian function, and as
a result, the absolute value of the kurtosis provides a measure of Gaussianity of the
function. In particular, smaller absolute values correspond to more Gaussian-like
functions.

As for a bivariate function f (x), we shall use the following matrix-valued extension

K= L− tr(C)C− 2C2, (27)

where C=
∫

(x xT ) f (x)d x and L=
∫

(x xT )2 f (x)d x are the second-order and fourth-
order moment matrices of f (x), respectively [17]. This constitutes a valid extension

IEEE Trans. Image Processing 19



of the 1-D kurtosis since (27) reduces to κ=µ4− 3µ2
2 when d = 1. Moreover, we also

have the following desirable properties:

(i) If f (x) is a multivariate Gaussian, then K= 0 (cf. [17] for a proof).
(ii) The Frobenius norm of K, namely,

‖K‖=
�
∑

i , j

|K(i , j )|2
�1/2

is rotation-invariant, i.e., the kurtosis matrices of the rotations of f (x) have the same
Frobenius norm (proof in §6.4).

Following the above arguments, we propose to solve the optimization problem

p0 = argminp ‖Kp‖
2, Mp= c, p≥ ε1. (28)

This yields the optimal scale-vector a0 =
pp0 corresponding to the most Gaussian-like

box spline. The rotation-invariance property ensures that the box splines of identical
size and elongation but different orientation, obtained via the solutions of the above
optimization problem, are as homogenous as possible.

The norm of the kurtosis matrix of βa(x) turns out to be ‖Kp‖2 =
∑

k p4
k
+(p2

1 +
p2

3 )(p
2
2 + p2

4 ) (see Appendix §6.5). Substituting pk = p̄k + t ek into this expression, we
arrive at the quartic polynomial

ζ (t ) =
∑

k

( p̄k + ek t )4+
¦

( p̄1+ t )2+( p̄3+ t )2
©¦

( p̄2− t )2+( p̄4− t )2
©

,

which, together with the parameterization p= p̄+ te, simplifies the problem to one
of finding

t0 = arg mint ζ (t ), t ∈ [t`, tr ]. (29)

The optimal solution is then given by a0 =
p

p̄+ t0e. This problem however is easily
solved, since the minimum is attained either at one of the interior points (t`, tr ) where
ζ ′(t ) = 0, or at one of the boundary points. In particular, we have the following
simple algorithm for designing optimized Gaussian-like box splines of a specified
covariance:

(i) Set p4 = 1, and compute p̄ by solving the sytem Mp̄= c.
(ii) Use p̄ to compute t`, tr and the coefficients of ζ ′(t ).
(iii) Find the real roots of ζ ′(t ) = 0 over the interval (t`, tr ); denote the set of real
roots by R. Then a0 = (p̄+ t0e)

1/2, where3 t0 = argmint ζ (t ), t ∈ R∪{t`, tr }.

In particular, the coefficients of the cubic equation ζ ′(t ) = ζ1 t 3+ζ2 t 2+ζ3 t+ζ4 = 0
in (iii) are given by ζ1 = 32,ζ2 = 24( p̄1− p̄2+ p̄3− p̄4),ζ3 = 16

∑

p̄2
k
− 8( p̄1+ p̄3)( p̄2+

p̄4),ζ4 = 4( p̄3
1 − p̄3

2 + p̄3
3 − p̄3

4 )+ 2( p̄1+ p̄3)( p̄
2
2 + p̄2

4 )− 2( p̄2+ p̄4)( p̄
2
1 + p̄2

3 ).

3The tie is randomly broken if ζ (t ) has multiple minimizers over [t`, tr ] (this was rarely reported in
practice).
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Figure 8: Normalized correlation between the optimal four-directional box spline
and the target Gaussian at different elongations and orientations. For a fixed elonga-
tion, the correlation is minimum at the critical orientation θ= 22.5◦, and improves
symmetrically as θ approaches the principal orientations (cf. Fig. 6).

The box splines obtained using the above optimization at various orientations are
shown in Fig. 7. The quality of the Gaussian approximation under different practical
settings of the orientation and the elongation is quantified in Fig. 8.

The correspondences (1,%,θ)↔ (a1,a2,a3,a4) for 0< θ < π and 1≤ % < U (θ)
can be pre-computed and stored in a look-up table. Note that for a given %, the set
of correspondences (1,%,θ)↔ (a1,a2,a3,a4) have an inherent four-fold symmetry in
θ owing to the presence of the four principal directions. Hence, it suffices to store
the scale-vector correspondences for 0<θ <π/4 which reduces the size of the LUT
by a factor of four. Indeed, for any arbitrary size s > 1, orientations 0< θ <π, and
elongation 1≤ %<U (θ), the corresponding scale-vector is then obtained through the
following operations:
(O1) Rotation:

φ=















θ for 0<θ <π/4
θ−π/4 for π/4<θ <π/2
θ−π/2 for π/2<θ < 3π/4
θ− 3π/4 for 3π/4<θ <π.

(O2) Find (a1,a2,a3,a4) corresponding to (1,%,φ) using the LUT. The desired scale-
vector is then given by the following permutation and rescaling:

(a1,a2,a3,a4) 7→















p
s(a1,a2,a3,a4) for 0<θ <π/4
p

s(a2,a3,a4,a1) for π/4<θ <π/2
p

s(a3,a4,a1,a2) for π/2<θ < 3π/4
p

s(a4,a1,a2,a3) for 3π/4<θ <π.
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(b) Anisotropic forms (s = 1, � = 3, θ = π/8)

(a) Isotropic forms (s = 1, � = 1)

Figure 9: Higher-order box splines through iterative convolutions. Left: The refer-
ence four-directional box spline; Center: Iterated box spline obtained by convolving
the (rescaled) four-directional box spline with itself; Right: Target Gaussian having
identical covariance.

3.3 Higher-order box splines
As suggested by the convergence result (18), the Gaussian-like nature of the four-
directional box splines can be improved by using more directions. Implementing
the corresponding space-variant filtering using the algorithm in §2.2.2 however turns
out to be challenging and not very practical—the principal axes of these box splines
are generally along off-grid directions, and one needs to interpolate the image for
implementing the associated running-sums.

The iterated four-directional box splines β4,m
a (x) introduced in §2.2.3 provide a

practical alternative. These box splines rapidly converge to a Gaussian with the increase
in m. Also, note that the four-directional box spline and its iterates have identical
covariances. This implies that the algorithm in §3.2.2 can be used for optimizing the
iterated box splines as well. The first two iterates of the four-directional box spline
along with the target Gaussian are shown in Fig. 9. It is seen thatβ4,2

a (x) resembles the
target Gaussian very closely. In fact, the minimum correlation coefficient rises from
95% to 99% for m = 2 (cf. Fig. 8). In practice, we can thus implement a higher-order
Gaussian-like filtering by simple iterations of the algorithm in §3.1. It suffices to set
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the scale-vector in the algorithm as a/
p

m, where m is the number of iterations.

4 EXPERIMENTAL RESULTS

4.1 Computation time
The space-variant filtering using the four-directional box spline was implemented in
Java on a 2.66 GHz Intel system. The typical execution times required for convolving
a 512× 512 image with kernels of various sizes are shown in Table 2. It is clear that
the run time is independent of the size of the kernel.

Table 2: Average computation time for box splines of different sizes.
Size (s ) 1 2 4 8 16

Time (millisec.) 101 100 103 101 100

4.2 Application: Feature-preserving smoothing
We now present an application to demonstrate the space-variant algorithm described
in §3.1. Filtering of noisy images using isotropic Gaussian filters often results in
excessive blurring of the anisotropic image features. Diffusion filters are known to
perform better in such cases [19]. As an alternative, we propose to filter the corrupted
image using our anisotropic Gaussian-like filters, where we adapt the size, elongation
and orientation of the filter to the local image features. The main idea is to locally
average the image using elliptical windows that have been elongated along the image
feature (orthogonal to the local gradient). This induces more smoothing along the
direction of minimal intensity variation resulting in the suppression of the ambient
noise, while preserving the sharpness of the image features.

To derive an estimate of the local image anisotropy, we use the paradigm of structure
tensors [9], where the local orientation θ(x) is estimated through the minimization of
a certain weighted norm of the directional derivative. In particular, if we denote the
directional derivative of f (x) along along uθ = (cosθ, sinθ) by Dθ f (x), then θ(x) is
given by the minimizer of

∫

Ω
w(s) |(Dθ f )(x − s)|2 d s, (30)

where Ω is the support of the isotropic averaging window w(x). The solubility of the
above optimization problem follows from the observation that this can be recast as an
eigenvalue problem. In particular, by expressing the directional derivative in terms of
the gradient g(x), namely as Dθ f (x) = uT

θ
g(x), one can rewrite (30) as

uT
θ

J(x)uθ, (31)

where the structure tensor J(x) is the 2× 2 positive-definite matrix
∫

Ω
w(s)

�

ggT �(x − s)d s.
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Figure 10: Results on a test image. (A) Barbara corrupted with additive Gaussian noise,
PSNR= 18.0 dB; (B) Isotropic smoothing, PSNR= 23.10 dB; (C) Diffusion filtering,
PSNR= 23.25 dB; (D) Our algorithm, PSNR= 23.58 dB.

The local orientation θ?(x) is then given by the minimizer of (31) associated with the
minimum eigenvalue of J(x).

In view of the definitions in (23) and the fact that the eigenvalues of J(x) are always
non-negative, we propose to estimate the elongation as follows: We set %? = λmax/λmin
if both eigenvalues are non-zero, equal to 1 if both are zero (locally isotropic intensity),
and equal to max(1,λ) if only one of the eigenvalues λ is non-zero. Finally, we
estimate the size of the box spline as s? = λmax+λmin. The triple (s?,%?,θ?) is then
used to compute the optimal scale-vector using the algorithm described in §3.2. The
components of J can be efficiently computed using simple convolution and pointwise
operations; we refer the reader to [9, Chapter 13] for implementation details. The
main steps of the proposed smoothing algorithm are:

• Computation of the structure-tensor.

• Pre-integration of the corrupted image using the running-sum filters.
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Figure 11: Results on a real image. (A) Noise-free immunofluorescence image of
actin fibres (Courtesy of C. Aemisegger, CMIA, University of Zürich); (B) Image
corrupted with additive Gaussian noise, PSNR= 12.20 dB; (C) Isotropic smoothing,
PSNR = 15.38 dB; (D) Diffusion filtering, PSNR = 15.50 dB; (E) Our algorithm,
PSNR= 15.80 dB.
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• Computation of the triple (s?,%?,θ?) at every feature location using the struc-
ture tensor. This is used to compute the scale-vector a(n) of the optimal Gaussian-
like box spline using the algorithm in §3.2. Isotropic box splines are used in the
uniform-intensity regions; we set a(n) = (σ ,σ ,σ ,σ), where σ is proportional
to the noise variance.

• Computation of the FD mesh using a(n), and its application to the pre-integrated
image.

To demonstrate the effectiveness of our strategy in preserving oriented patterns in
noisy images, we compare the results obtained from our algorithm with those obtained
using the (fixed-scale) isotropic Gaussian filter and the Perona-Malik diffusion filter
[14]. We use the standard test image of Barbara and corrupt it with additive Gaussian
noise. The variance of the noise is used to set the size of the Gaussian for the isotropic
smoothing. The parameters used for the Perona-Malik filter were typical: time step
of 0.1, conductance in the range of 10 ∼ 30, and a total of 15 ∼ 30 iterations. The
parameters were manually tuned to optimize the PSNR, and also to avoid blocking
artifacts. Fig. 10 shows the results obtained from the different filters. As far as the
quantitative evaluation of the filters is concerned, our algorithm clearly outperforms
both isotropic and diffusion filters in terms of the Peak-Signal-to-Noise-Ratio (PSNR).
Moreover, as shown in the zoomed-in sections of the respective images, the oriented
stripes on the clothes are quite faithfully restored by our algorithm. A significant
amount of blurring of the stripes is seen in the results obtained using isotropic and
diffusion filtering. The non-linear diffusion filter, however, tends to perform better at
low PSNRs in the range of 5-10 dB (cf. Table 3).

Next, we compare the results on a real biological image and at a much lower PSNR
of around 12 dB. We consider the fluorescence image shown in Fig. 11, which exhibits
numerous elongated fiber-like structures. The parameters of the isotropic filter and
the diffusion filter are set as in the previous case, except that the iteration count for
the latter is increased to 15. As before, the improvement of the PSNR obtained using
our filter is higher. Importantly, as seen from the zooms, our algorithm results in
significantly less merging of the close fibers and blurring of the finer ones. The average
execution time of our algorithm is 0.6 seconds for a 512× 512 image, which includes
the computation of the structure-tensor, the running-sums, the optimal scale-vector,
the interpolated samples and the finite-differences.

The four-directional box splines can also be used to derive fast space-variant detec-
tors based on Gaussian forms, e.g., the Laplacian-of-the-Gaussian (LoG) or the so-called
Mexican-hat detector. We refer the interested reader to [3], where the isotropic forms
of the four-directional box spline were used to realize a fast and scalable Mexican-hat-
like detector. In particular, a modified version of the space-variant algorithm described
in §3.1 is used to design an efficient coarse-to-fine strategy for the detection of centers
and radii of cells/nuclei in fluorescence images.
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Table 3: Comparison of the filters at different noise levels using the test image of
Barbara. The table shows the PSNR of the outputs.

Input PSNR (dB) 10.0 12.0 14.0 16.0 18.0 20.0
Isotropic filter 15.38 18.20 20.20 21.65 23.10 24.30
Diffusion filter 15.48 18.31 20.30 21.70 23.25 24.35

Our filter 15.45 18.38 20.57 21.94 23.58 24.56

5 CONCLUSION
In this paper, we presented a framework for elliptical filtering using the radially-
uniform box splines. The associated space-variant filtering was efficiently realized using
running-sums and local finite-differences. The attractive features of our algorithm are:

• the O(1) computational complexity per pixel, and

• the use of real-valued parameters for continuously controlling the shape and
size of the filter.

Our filtering paradigm offers a nice trade-off between the quality of approximation of
Gaussians and the computational complexity of linear space-variant filtering.

We also presented a closed form solution for the problem of constructing four-
directional box splines with given covariances. The scope of our algorithm was
demonstrated through the realization of a smoothing filter that can adapt to the local
image characteristics.

6 APPENDIX

6.1 Proof of theorem 2.2
We first establish that the Fourier sequence bβ2

a(2)(ω),
bβ3

a(3)(ω), . . . convergences point-
wise to a Gaussian:

lim
N−→∞

bβN
a(N )(ω) = exp

�

−
σ2

2
‖ω‖2

�

. (32)

We then show that the above convergence is also in the L2(R2) norm. This will
establish the theorem, since it is well-known that the Fourier transform of a Gaussian
is a Gaussian, and that fn −→ g in L2 if f̂n −→ ĝ in L2.

To derive (32), we note that bϕa,θ(ω) = bβa(u
T
θ
ω) = sinc

�

auT
θ
ω/2

�

, where sinc(x) =
sin(x)/x for x 6= 0, and equals 1 at the origin. Then, the convolution-multiplication
rule gives

bβN
a(N )(ω) =

N
∏

k=1

bϕak (N ),θk
(ω) =

N
∏

k=1

sinc

�

ak (N )

2
uT
θk
ω

�

. (33)
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Using the estimate sinc(x) = 1− x2/6+O(x4) for |x|< 1, and substituting ak (N ) =
σ
p
(24/N ) into (33), we have

bβN
a(N )(ω) =

N
∏

k=1

�

1−
σ2

N
(uT
θk
ω)2+O

�

N−2
�

�

(‖ω‖< cN ) (34)

where c is some positive constant. By developing the quadratic factor (uT
θk
ω)2 and the

product in (34), we arrive at the estimate

bβN
a(N )(ω) =

N
∏

k=1

¨

1−
σ2

2N
‖ω‖2+

σ2

2N
(ω2

1 −ω
2
2)cos2θk +

σ2

N
ω1ω2 sin2θk +O

�

N−2
�

«

=
�

1−
σ2

2N
‖ω‖2

�N
+
σ2

2N
(ω2

1 −ω
2
2)
�

1−
σ2

2N
‖ω‖2

�N−1 N
∑

k=1

cos2θk

+
σ2

N
ω1ω2

�

1−
σ2

2N
‖ω‖2

�N−1 N
∑

k=1

sin2θk +O
�

N−2
�

=
�

1−
σ2

2N
‖ω‖2

�N
+O

�

N−2
�

(‖ω‖< cN ). (35)

This is exactly where the fact that θk are uniformly distributed over [0,π) is invoked:
the cancellation of the linear factors in the second step is based on the identities
∑N

k=1 cos2θk = 0, and
∑N

k=1 sin2θk = 0, where θk = (k − 1)π/N . Since (1− x/m)m

converges to exp(−x) as m −→∞, it can now be readily seen that (32) follows as the
limiting case of (35) .

To demonstrate that (32) holds in the L2 norm sense, it suffices to show the
sequence of error functions EN (ω) = bβ

N
a(N )(ω)−exp(−σ2 ‖ω‖2 /2) converge to zero in

the above norm, i.e., ‖EN‖L2 −→ 0 as N −→∞. Since we have already demonstrated
that EN (ω)−→ 0 pointwise, all we need to show in order to invoke the dominated
convergence theorem is that the sequence |E2(ω)| , |E3(ω)| , . . . is uniformly bounded
by a L2 function. Moreover, since

|EN (ω)| ≤ | bβ
N
a(N )(ω)|+ exp(−σ2 ‖ω‖2 /2),

it, in fact, suffices to show that each | bβN
a(N )(ω)| admits such a bound.

The main idea behind establishing such a bound is that the above mentioned
sequence can be covered by a Gaussian in a neighborhood of the origin and by a
function with sufficient decay at the tails, both of which are independent of N . Indeed,
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using the estimate sinc(u)≤ 1− u2/π2 for |u| ≤π, one can verify that

�

�

�

bβN
a(N )(ω)

�

�

�=
N
∏

k=1

�

�

�sinc
�

p
6σ
p

N
uT
θk
ω
��

�

�

≤
N
∏

k=1

�

1−
6σ2

�

�

�uT
θk
ω
�

�

�

2

π2N

�

≤ exp
�

−C1 ‖ω‖
2 � (‖ω‖<δ)

As far as the tail is concerned, the Cauchy-Schwarz inequality, |uT
θk
ω| ≤ ‖uθk

‖ · ‖ω‖=
‖ω‖, gives

�

�
bβN

a(N )(ω)
�

�=
N
∏

k=1

�

�

�sinc
�

p
6σ
p

N
uT
θk
ω
��

�

�≤
C2

‖ω‖2
(‖ω‖ ≥ δ).

Here C1,C2 and δ are appropriate positive constants that are independent of N .
Combining the above estimates, we see that

�

�
bβN

a(N )(ω)
�

�≤ exp
�

−C1 ‖ω‖
2 �+

C2

‖ω‖2

�

1− rect

�

‖ω‖
δ

��

for all ω. Since the function on the right is indeed in L2(R2), this establishes the
desired bound, and consequently, the norm convergence.

6.2 Covariance matrix
We begin with the observation that if f (x) and g (x) are symmetric (about the origin)
and have a total mass of unity, then C f ∗g =C f +Cg , where C f denotes the covariance

matrix of f (x). Indeed, by noting that f̂ (0) = ĝ (0) = 1 (unit mass) and ∂i f̂ (0) =
∂i ĝ (0) = 0 (by symmetry), and by recalling the multiplication-differentiation rule
∫

xi x j f (x)d x =−∂i∂ j f̂ (0), we have

C f ∗g (i , j ) =
∫

xi x j ( f ∗ g )(x)d x

=− ĝ (0)∂i∂ j f̂ (0)− f̂ (0)∂i∂ j ĝ (0)− ∂i f̂ (0)∂ j ĝ (0)− ∂i ĝ (0)∂ j f̂ (0)

=−∂i∂ j f̂ (0)− ∂i∂ j ĝ (0)

=C f (i , j )+Cg (i , j ).

Since the directional box distributions ϕak ,θk
(x) satisfy these criteria, we have that

CN
a =

∑

k Ck , where Ck is the covariance matrix of ϕak ,θk
(x). We explicitly compute

the component C(1,2); the remaining components can be similarly derived. Using
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the multiplication-differentiation rule again, we have

Ck (1,2) =
∫

x1x2ϕak ,θk
(x)d x

=−∂1∂2β̂ak
(uT
θk
ω)
�

�

�

ω=0

=
a2

k

24
sin2θk .

Therefore, CN
a (1,2) =

∑

k Ck (1,2) =
∑

k a2
k

sin2θk/24.
As far as the positive-definite nature of CN

a is concerned, it will suffice to show
that its eigenvalues

λmax =
1

2

�
∑

a2
k +
p

D
�

and λmin =
1

2

�
∑

a2
k −
p

D
�

where D = (
∑

a2
k

cos(2θk ))
2+(

∑

a2
k

sin(2θk ))
2, are strictly positive. This is obviously

the case for λmax. Moreover, the inequality
�
∑

k

a2
k

�2
−D =

�
∑

k

a2
k

�2
−
�
∑

k

a2
k cos(2θk )

�2
−
�
∑

k

a2
k sin(2θk )

�2

= 2
∑

k 6=`
a2

k a2
`

�

1− cos(2θk − 2θ`)
�

> 0

tells us that
∑

a2
k
>
p

D . Hence, λmin is strictly positive as well.

6.3 Proof of proposition 3.1
Following definition (23), the dependence of orientation of the box spline β4

a(x) on
the scale-vector can be expressed as

tanθa = ν + sign(a2− a4)
p

1+ ν2 (0<θ <π) (36)

where ν = (a2
3 − a2

1)/(a
2
2 − a2

4).
We note the following: it is both necessary and sufficient that a2 > a4 (resp. a2 < a4)

for the box spline to be oriented between 0< θa <π/2 (resp. π/2< θa <π), and it
is the map (a1,a2,a3,a4) 7→ (ν , sign(a2− a4)) that uniquely determines the orientation
of the box spline. Indeed, the uniqueness aspect is based on the argument that, for
0< θ <π/2, (36) reduces to tanθa = ν +

p

1+ ν2 as a consequence of the necessary
condition a2 > a4. This implicitly represents a one-to-one between θa and ν over
the domains (0,π/2) and (−∞,∞), since the map θa 7→ tanθa from (0,π/2) into
(0,∞), and the map ν 7→ ν +

p

1+ ν2 from (−∞,∞) into (0,∞) are both strictly
monotonic. In a similar vein, a one-to-one between θa and ν over the domains (π/2,π)
and (−∞,∞) can be established. In particular, we have

ν =
1

2
(tanθa− cotθa)sign

�π

2
−θa

�

. (37)
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That is, given any orientation θa =φ, the corresponding νφ is uniquely specified by
(37). This establishes the first part of the proposition, since there trivially exists some
positive vector (a1, . . . ,a4) such that (a2

3 − a2
1)/(a

2
2 − a2

4) = νφ.
As far as the bound is concerned, we observe that the elongation can be expressed

as %a = 1+ 2/(γ − 1), where γ =
∑

a2
k
/
p

Da ≥ 1. For a given orientation θa =φ, the
components of the feasible scale-vectors bear the relation (a2

1 − a2
3 ) = νφ(a

2
4 − a2

2 ), and
thus we have that

γ =

∑

a2
k

Æ

(a2
3 − a2

1)
2+(a2

2 − a2
4)

2

=
a2

1 + a2
3

Æ

(a2
3 − a2

1)
2+(a2

2 − a2
4)

2
+

a2
2 + a2

4
Æ

(a2
3 − a2

1)
2+(a2

2 − a2
4)

2

=
1

q

1+ ν2
φ

a2
1 + a2

3

|a2
1 − a2

3 |
+

|νφ|
q

1+ ν2
φ

a2
2 + a2

4

|a2
2 − a2

4 |
>

1+ |νφ|
q

1+ ν2
φ

following the trivial inequalities a2
1 + a2

3 > |a
2
1 − a2

3 |, and a2
2 + a2

4 > |a
2
2 − a2

4 |. Conse-
quently,

%a = 1+
2

γ − 1
<

1+ |νφ|+
q

1+ ν2
φ

1+ |νφ| −
q

1+ ν2
φ

. (38)

The above bound is tight since it can be approached arbitrary closely by making the
scales a` and ak (θ` <φ< θk ) arbitrarily large.

6.4 Rotation-invariance
Let K and Kθ denote the kurtosis matrices of f (x) and its rotation f (RT

θ
x), respec-

tively, where Rθ is the rotation matrix. Observe that the matrices Lθ and L are related
as

Lθ =
∫

(x xT )2 f (RT
θ

x)d x =
∫

Rθ(yyT )2RT
θ

f (y)d y (y =RT
θ

x)

=Rθ

�∫

(yyT )2 f (y)d y
�

RT
θ

=RθLRT
θ

.

Similarly, we have Cθ = RθCRT
θ

. This also gives us the equivalence tr(Cθ) =
tr(RθCRT

θ
) = tr(CRT

θ
Rθ) = tr(C) following the identities tr(AB) = tr(BA) and

RT
θ

Rθ = I. We can then write

Kθ = Lθ− tr(Cθ)Cθ− 2C2
θ
RθLRT

θ
− tr(C)RθCRT

θ
− 2RθC

2RT
θ

=Rθ(L− tr(C)C− 2C2)RT
θ
=RθKRT

θ
.
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Our claim follows immediately, since ‖Kθ‖
2 = tr(KT

θ
Kθ) = tr(RθK

T KRT
θ
) = tr(KT K) =

‖K‖2.

6.5 Kurtosis measure
In order to compute the kurtosis matrix, we only need to evaluate the fourth-order
moments; the second-order moments are already known. In particular, using Fourier
identities similar to the ones used in §6.2, one can derive the following expressions:
∫

x4
1βa(x)d x =

1

4
µ4

�

4a4
1 + a4

2 + a4
4

�

+
1

2
µ2

2

�

6a2
1a2

2 + 6a2
1a2

4 + 3a2
2a2

4

�

,
∫

x3
1 x2βa(x)d x =

1

4
µ4

�

a4
2 − a4

4

�

+
3

2
µ2

2a2
1

�

a2
2 − a2

4

�

,
∫

x2
1 x2

2βa(x)d x =
1

4
µ4

�

a4
2 + a4

4

�

+
1

2
µ2

2

�

a2
1a2

2 + a2
1a2

4 + a2
2a2

3 + a3
3a2

4 − a2
2a2

4 + 2a2
1a2

3

�

,
∫

x1x3
2βa(x)d x =

1

4
µ4

�

a4
2 − a4

4

�

+
3

2
µ2

2a2
3

�

a2
2 − a2

4

�

,
∫

x4
2βa(x)d x =

1

4
µ4

�

4a4
3 + a4

2 + a4
4

�

+
1

2
µ2

2

�

6a2
2a2

3 + 6a2
3a2

4 + 3a2
2a2

4

�

,

where µ4 = 1/80 and µ2 = 1/12 denote the fourth and second-order moments of
β1(x), respectively. These provide the components of the matrix La, which in turn
leads to the following simple expression for the kurtosis matrix

Ka = La− tr(Ca)Ca− 2C2
a = (µ4− 3µ2

2)

 

a4
1 +

1
2 (a

4
2 + a4

4)
1
2 (a

4
2 − a4

4)
1
2 (a

4
2 − a4

4) a4
3 +

1
2 (a

4
2 + a4

4)

!

. (39)

Finally, from (39), we get ‖Ka‖
2 =
∑4

k=1 a8
k
+(a4

1 + a4
3 )(a

4
2 + a4

4).
We note that the negative factor (µ4− 3µ2

2) in (39) is in fact the kurtosis of rect(x),
the sub-Gaussian constituent of the box spline. The fact that Ka is negative-definite is
thus consistent with the sub-Gaussian nature of the resulting box spline.

6.6 Fast ZP interpolation
Given a discrete function c[n] and a point x on R2, we outline a technique for the fast
evaluation of the sum

∑

n∈Z2

c[n]β4
b(n− x)

where b = (1,
p

2,1,
p

2). A sketch of the partitions of the piecewise polynomial
β4

b
(x) is provided in Fig. 12. The exact functional forms of the ZP box spline 2β4

b
(x)

corresponding to these partitions can be found in [21]. Since β4
b
(x) has a compact

support, this is in fact a finite sum, and requires at most seven evaluations of the
function β4

b
(· − x) for any arbitrary translation x . This is illustrated in Fig. 12, where

the red dots x0, . . . , x6 denote the lattice points that intersect the support of β4
b
(· − x).
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Figure 12: The figure shows the translated ZP box spline β4
b
(·+ x),b= (1,

p
2,1,
p

2).
The red dots x1, . . . , x7 correspond to the points on the Cartesian lattice, and the trian-
gular regions P1, . . . , P4 are different partitions of the ZP, which together constitute a
unit cell of the lattice.

Thus, one needs to evaluate the translated ZP at the points x0, . . . , x6 in order to
compute the sum. The drawback here is that naive evaluation of the spline at every x j
requires a decision-making to figure out the associated partition before computing the
corresponding polynomial.

The redundancy that we exploit is as follows: Consider the triangular regions
P0, . . . , P3 marked with blue dashed lines in Fig. 12 corresponding to the four different
partitions of the ZP. These together constitute a unit cell of the lattice, and hence only
one lattice point intersects them. The figure shows a particular instance where this
point, denoted by x0, lies in P0. This clearly fixes the partitions of the remaining lattice
points x1, . . . , x6. Thus, if we denote the polynomials corresponding to these partitions
by ρ0,0(x), . . . ,ρ0,6(x), then the sum in (12) is simply given by

∑6
j=0 c[x j ]ρ0, j (x j ).

More generally, if x0 intersects the partition Pi (0 ≤ i ≤ 3), and if we denote the
corresponding polynomials by ρi , j (x), then the sum is given by

∑6
j=0 c[x j ]ρi , j

�

x j
�

.
Thus, we have the computational advantage that at most two binary decisions are
required to simultaneously determine the ZP partitions corresponding to the points
x j , where the coefficients of the polynomials ρi , j (x) can be pre-computed.
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