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Abstract

A wavelet is a localized function having a prescribed number of vanishing moments. In this

correspondence, we provide precise arguments as to why the Hilbert transform of a wavelet is

again a wavelet. In particular, we provide sharp estimates of the localization, vanishing moments,

and smoothness of the transformed wavelet. We work in the general setting of non-compactly

supported wavelets. Our main result is that, in the presence of some minimal smoothness and

decay, the Hilbert transform of a wavelet is again as smooth and oscillating as the original wavelet,

whereas its localization is controlled by the number of vanishing moments of the original wavelet.

We motivate our results using concrete examples.
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On the Hilbert Transform of Wavelets

I. INTRODUCTION

It is known that the poor translation-invariance of standard wavelet bases can be improved by

considering a pair of wavelet bases, whose mother wavelets are related through the Hilbert transform

[1], [2], [3], [4]. The advantages of using Hilbert wavelet pairs for signal analysis had also been

recognized by other authors [5]. More recently, it was shown in [6] how a Gabor-like wavelet

transform could be realized using such Hilbert pairs.

The fundamental reasons why the Hilbert transform can be seamlessly integrated into the

multiresolution framework of wavelets are its scale and translation invariances, and its energy-

preserving (unitary) nature [6]. These properties are at once obvious from the Fourier-domain

definition of the transform. We recall that the Hilbert transformH f (x) of a sufficiently well-behaved

function f (x) is specified by

ÔH f (ω) =























− j f̂ (ω) for ω> 0

+ j f̂ (ω) for ω< 0

0 at ω = 0.

(1)

On one hand, the unitary nature ensures that the Hilbert transform of a (wavelet) basis of L2(R) is

again a basis of L2(R). On the other hand, the invariances of scale and translation together provides

coherence—the Hilbert transform of a wavelet basis generated from the mother wavelet ψ(x) is

simply the wavelet basis generated from the mother wavelet H ψ(x).

The flip side, however, is that the transform is incompatible with scaling functions (low-pass

functions in general), the building blocks of multiresolution analyses. As shown in Figure 1, the

transform “breaks-up” scaling functions, resulting in the loss of their crucial approximation property.

Moreover, the transformed function exhibits a slow decay. Starting from a given multiresolution

with associated wavelet basis (ψn)n∈Z, this presents conceptual difficulties in realizing a dual

multiresolution with basis (H ψn)n∈Z. It was shown in [6] that this pathology can, however, be

overcome by a careful design of the dual multiresolution in which the Hilbert transform is applied

only on the wavelet, and never explicitly on the scaling function.

The above-mentioned pathologies can be explained by considering the space-domain definition of

the transform, which is slightly more involved mathematically (see, e.g., [7], [8]):

H f (x) =
1

π
lim
ε→0

∫

|t |>ε
f (x − t )

d t

t
. (2)
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Fig. 1. Scaling functions and their Hilbert transforms: (a) The discontinuous Haar scaling function (BLUE) and its

transform (RED), (b ) The smooth cubic B-spline (BLUE) and its transform (RED). In either case, the transformed

function is “broken-up” and, as a consequence, loses its approximation property. In particular, the transform no longer

exhibits the partition-of-unity property, which is characteristic of scaling functions. Also, note the slow decay of the

transform, particular for the smooth spline function. In fact, both the transforms decay as 1/|x|—the smoothness of the

original function has no effect on the decay of the transform.

Disregarding the technicalities involving the use of truncations and limits, H f (x) is thus essentially

given by the convolution of f (x) with the kernel 1/πx (cf. Figure 2). It is now readily seen that the

above-mentioned observations follow as a consequence of the “oscillating” form of the kernel and

its slow decay at the tails. We will conveniently switch between definitions (1) and (2) in the sequel.

Our main observation is that the Hilbert transform goes well with oscillatory patterns, and

wavelets in particular. The archetypal relation in this regard is its action on pure sinusoids,

H [cos(ω0x)] = sin(ω0x).

Thus, the transform tends to preserve oscillations. The nature of the interaction with localized

oscillations is suggested by the relation

H [ϕ(x)cos(ω0x)] = ϕ(x) sin(ω0x) (3)

which holds if the localization window ϕ(x) is bandlimited to (−ω0,ω0) [9]. This is an immediate

consequence of definition (1). The crucial observation, however, is that the transformed signal

is again smooth (in fact, infinitely differentiable) and oscillatory, and importantly, has the same

localization as the input signal. It is known that a particular family of spline wavelets, namely, the

B-spline wavelets [10], converge to a function of the form ϕ(x)cos(ω0x +φ) with the increase in

the order of the spline. In particular, it was shown in [6] that the Hilbert transform has comparable
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localization, smoothness, and vanishing moments for sufficiently large orders (cf. Figure 3). It

was also shown that the transformed wavelet in fact approaches ϕ(x) sin(ω0x +φ) as the order

increases, which is consistent with (3). Since, more generally, wavelets with sufficient smoothness

and vanishing moments can be made to closely approximate the form in (3), we could in fact arrive

at a similar conclusion for a larger class of wavelets.

Using these instances as guidelines, we attempt to answer the following basic questions in the

sequel:

• When is the Hilbert transform of a wavelet well-defined? In particular, how much smoothness

and decay is required?

• Why does the Hilbert transform of a wavelet exhibit better decay than the corresponding

scaling function? How does one really get past the 1/|x| decay?

• How good is the localization of the transformed wavelet, how smooth is it, and how many

vanishing moments does it have?

II. NOTATIONS

The Fourier transform of f (x) is defined by f̂ (ω) =
∫∞
−∞ f (x)exp (− jωx) d x. We omit the

domain of integration when this is obvious from the context. We define ‖ f ‖1 =
∫∞
−∞ | f (x)| d x,

and ‖ f ‖∞ = sup{| f (x)| : x ∈R}. The notation Tx f (t ) denotes the function Tx f (t ) = f (x − t ). We

write f (x) =O(g (x)), x ∈A, to signify that | f (x)| ≤C g (x) for all x ∈A, where C is an absolute

constant. We denote the first derivative of f (x) by f ′(x); in general, we denote the k-th derivative

by f (k)(x). We say that f (x) is n-times continuously differentiable if all its derivatives up to order

n exists and are continuous.

III. MAIN RESULTS

The kernel 1/πx fails to be absolutely integrable owing to its slow decay and, more importantly,

its singularity at the origin. The limiting argument in (2) avoids the singularity by truncating the

kernel around the origin in a systematic fashion. The slow decay of the kernel, on the other hand,

can be dealt with by simply restricting the domain of (2) to functions with sufficient decay.

As noted in the introduction, the Hilbert transform goes well only with smooth functions. This

can be readily appreciated by looking at the transform of the discontinuous Haar wavelet in Figure

3. In this case, the transform “blows-up” in the vicinity of the discontinuities, and is, in fact, not

even well-defined at the points of discontinuity. The following result, which relies on some classical

methods of harmonic analysis, explains how this problem can be fixed.

For convenience, we introduce the mixed norm ‖ f ‖1,∞ = ‖ f ‖1+‖ f ′‖∞ which measures both the

local smoothness and the global size of f (x).
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Fig. 2. The convolution kernel of the Hillbert transform, 1/πx. It has a singularity at the origin and its tails decay

slowly. The former pathology can be overcome provided that the signal on which the transform is applied is sufficiently

smooth, while the slow decay can be overcome if the signal is of compact support, or at least, of sufficient decay.

Theorem III.1 (The classical result). Let f (x) be a differentiable function such that both ‖ f ‖1,∞ and

‖x f (·)‖1,∞ are finite. Then H f (x) is well-defined, and

|H f (x)| ≤
C

1+ |x|
�

‖ f ‖1,∞+ ‖x f (·)‖1,∞

�

=O(|x|−1). (4)

In particular, this holds true if f (x) is continuously differentiable and is of compact support.

Proof: Consider the basic quantity

W ( f ) =
1

π
lim
ε→0

∫

|t |>ε
f (t )

d t

t
. (5)

Note thatH f (x) =W (Tx f ). To begin with, we at least need to guarantee that W ( f ) is well-defined.

Note that the integrand in (5) is the product of the bounded function 1/t (on |t | > ε) and the

integrable function f (t ). Therefore, the integral is absolutely convergent for all ε > 0. All we need

to show is that the integral remains convergent as ε−→ 0. To this end, we split the integral in (5),

and use the anti-symmetry of 1/t to write

W ( f ) =
1

π
lim
ε→0

∫

ε<|t |<1
f (t )

d t

t
+

1

π

∫

|t |≥1
f (t )

d t

t

=
1

π
lim
ε→0

∫

K(ε, t )
f (t )− f (0)

t
d t +

1

π

∫

|t |≥1
f (t )

d t

t
.

where K(ε, t ) = 1 when ε < |t |< 1 and zero otherwise. Clearly, the second integral is convergent. As

for the first, note that since f ′(x) is bounded, by the mean-value theorem, K(ε, t )|( f (t )− f (0)/t | ≤
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‖ f ′‖∞ for t and for all ε > 0. Therefore, by the dominated convergence theorem,

lim
ε→0

∫

K(ε, t )
�

�

�

f (t )− f (0)

t

�

�

� d t ≤ 2‖ f ′‖∞.

In particular, we conclude that W ( f ) is well-defined, and

|W ( f )| ≤
1

π

�

2‖ f ′‖∞+‖ f ‖1
�

. (6)

Since Tx f (t ) has the same decay and smoothness as f (t ), it is now immediate that H f (x) is

well-defined (pointwise), and that

|H f (x)| ≤
1

π
‖Tx f ‖1,∞ =

1

π

�

2‖ f ′‖∞+‖ f ‖1
�

. (7)

Next, we note that

xH f (x) =
1

π
lim
ε→0

∫

|t |>ε
(x − t ) f (x − t )

d t

t
+

1

π

∫

f (t ) d t

=H g (x)+
1

π

∫

f (t ) d t

where g (x) = x f (x). Since ‖g‖1,∞ is finite, H g (x) is well-defined, and

|H g (x)| ≤
1

π

�

2‖g ′‖∞+‖g‖1
�

.

Therefore,

|xH f (x)| ≤
1

π

�

2‖g ′‖∞+‖g‖1+‖ f ‖1
�

. (8)

Combining (7) and (8), we obtain (4).

We note that the main conclusions of the theorem are well-known results in harmonic analysis;

e.g., see [7], [8]. Moreover, the assumptions under which we reproduce these results in Theorem

III.1 are on the conservative side. In fact, as can already be seen from our derivation, the transform

remains well-defined if we replace the constraint ‖ f ′‖∞<∞ by the weaker hypothesis of Lipschitz

continuity, that is, if | f (x)− f (y)| ≤C |x − y| for some absolute constant C . Our goal here was to

introduce some mathematical tools which we eventually use to prove our main result.

A. Vanishing moments and decay

The derivation of the Theorem III.1 exposes the unfortunate fact that the poor 1/|x| decay cannot

be improved even if f (x) is required to be more smooth (cf. transform of the cubic spline in Figure

1), or have a better decay. However, it does suggest the following: If H g (x) goes to zero as |x|

goes to infinity (which is the case if g (x) is sufficiently nice), then

lim
|x|−→∞

xH f (x) =
1

π

∫

f (x) d x.

In particular, if f (x) has zero mean, then xH f (x) goes to zero at infinity. Therefore, the decay of

H f (x) must be better than 1/|x| in this case. This alludes to the connection between the zero-mean



IEEE TRANSACTIONS ON SIGNAL PROCESSING 6

condition and the improvement in decay. To make this more precise, we consider the example of

the Haar wavelet

ψ(x) =







+1 for − 1≤ x < 0

−1 for 0≤ x < 1.

Let |x|> 2. Since ψ(x) has zero mean, we can write

H ψ(x) =
1

π
lim
ε→0

∫

|t−x|>ε

ψ(t )

x − t
d t

=
1

π
lim
ε→0

∫

|t−x|>ε
ψ(t )

� 1

x − t
−

1

x

�

d t

=
1

π
lim
ε→0

∫

|t−x|>ε

tψ(t )

x(x − t )
d t .

Now |x − t | ≥ |x|/2 for |x|> 2, and t ∈ [−1,1]. Hence,

|H ψ(x)| ≤
2

π |x|2

∫ 1

−1
|tψ(t )| d t ≤

1

π |x|2
.

Thus, while the Hilbert transform of the Haar scaling function decays only as 1/ |x|, the transform

of the Haar wavelet has a better decay of 1/ |x|2. This is clearly seen by comparing the plots in

Figures 1 and 3.

We can now generalize the above observation by requiring that, for some n ≥ 1,
∫

xkψ(x) d x = 0 (0≤ k < n).

This vanishing moment property is in fact characteristic of wavelets, which are often parametrized

by the number n [11]. The following result explains how higher vanishing moments can contribute

to the increase in the decay of the Hilbert transform. The main idea is that the kernel of the

Hilbert transform effectively behaves as 1/πxn+1 in the presence of n vanishing moments.

We use the augmented decay to compute the number of vanishing moments of the transformed

wavelet.

Theorem III.2 (Decay and vanishing moments). Let ψ(x) be a differentiable wavelet having n

vanishing moments. Also, assume that ‖ψ‖1,∞,‖xn+1ψ(·)‖1,∞, and ‖xnψ(·)‖1 are finite. Then H ψ(x)

is well-defined, and

|H ψ(x)| ≤
C

1+ |x|n+1

�

‖ψ‖1,∞+ ‖x
n+1ψ(·)‖1,∞+ ‖x

nψ(·)‖1

�

=O(|x|−n−1). (9)

Moreover, H ψ(x) has n vanishing moments.

Before proceeding to the proof, we make some comments. Note that, under the assumptions on

the vanishing moments, (9) holds true for compactly supported wavelets provided it is continuously

differentiable. This in fact is the case for the cubic spline wavelet shown in Figure 3. More generally,
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Fig. 3. B-spline wavelets (shown in BLUE) and their Hilbert transforms (shown in RED). The wavelets are ordered (left

to right) by increasing smoothness and vanishing moments; both are compactly supported. Notice how the decay of the

Hilbert transform increases with the increase in vanishing moments—the transform of the cubic spline wavelet appears to

have an almost identical localization. Moreover, it is as smooth as the original wavelet. It is shown in the text that, in the

presence of some minimal smoothness, the Hilbert transform is as smooth and oscillating as the spline wavelet.

(9) holds if ψ(x) is continuously differentiable, has n vanishing moments, and satisfies the mild

decay conditions

ψ(x) =O(1/ |x|n+3+ε), ψ′(x) =O(1/ |x|n+2+ε′) (|x| −→∞)

where ε and ε′ are arbitrarily small positive numbers. The significance of the above result is that

by requiring ψ(x) to have a large number of vanishing moments, we can effectively make H ψ(x)

as localized as ψ(x). This had been observed qualitatively early on in connection with the wavelet

localization of the Radon transform [12].

Now, we show that (9) is sharp, by considering the special case of B-spline wavelets. It is known

that if ψ(x) is a B-spline wavelet of degree n − 1, then H ψ(x) is again a (fractional) B-spline

wavelet of the same degree, and hence has the same decay of 1/|x|n+1 [6], [13]. This exactly what

is predicted by (9), since ψ(x) is known to have n vanishing moments.

Proof of Theorem III.2: It follows from Theorem III.1 that H ψ(x) is well-defined, and that

|H ψ(x)| ≤
1

π

�

2‖ψ′‖∞+‖ψ‖1
�

. (10)

As for the decay, fix any x away from zero, and let

P (t ) =
1

x
+

t

x2
+ · · ·+

t n−1

xn .
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It is clear that
∫

P (t )ψ(t ) d t = 0.

Using this, we can write

H ψ(x) =
1

π
lim
ε→0

∫

|t−x|>ε

ψ(t )

x − t
d t

=
1

π
lim
ε→0

∫

|t−x|>ε
ψ(t )

� 1

x − t
− P (t )

�

d t .

A simple computation shows that

1

x − t
− P (t ) =

1

xn+1

�

t n +
t n+1

x − t

�

,

so that

H ψ(x) =
1

πxn+1





∫

t nψ(t ) d t + lim
ε→0

∫

|t |−x>ε

t n+1ψ(t )

x − t
d t





=
1

xn+1

� 1

π

∫

t nψ(t ) d t +H g (x)
�

where g (x) = xn+1ψ(x). Form Theorem III.1 and the assumptions on ψ(x), it follows that

|xn+1H ψ(x)| ≤
1

π

�

‖xnψ(·)‖1+ 2‖g ′‖∞+ ‖g‖1

�

.

Combining this with (10), we obtain (9).

As for the vanishing moments of H ψ(x), note that, since ψ(x) has n vanishing moments,
∫

|xkψ(x)| d x <∞ (0≤ k < n).

One can then verify, e.g., using the dominated convergence theorem, that ψ̂(ω) is n-times differen-

tiable, and that

ψ̂(k)(0) = (− j )n
∫

xnψ(x) d x (0≤ k < n). (11)

Therefore, ψ̂(k)(0) = 0 for 0≤ k < n.

Now, since ψ(x) is square-integrable1, (1) holds. It can then be verified that ÕH ψ(ω) is n-times

differentiable, and that ÕH ψ
(k)
(0) = 0 for 0≤ k < n. To arrive at the desired conclusion, we note

that |H ψ(x)| ≤C/(1+ |x|n+1), whereby
∫

|xkH ψ(x)| d x <∞ (0≤ k < n).

This is sufficient to ensure that (11) holds for H ψ(x), thus completing the proof.

1This follows from the fact that f (x) is both integrable and bounded. The boundedness of f (x) is a consequence of

its uniform continuity, which in turn follows from the boundedness of f ′(x). Indeed, uniform continuity along with

integrability implies that f (x)−→ 0 as x −→∞, and this along with continuity implies boundedness.
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Note that the specialized form of this result is well-know for the particular case of n = 1, that

is, when the function is of zero mean. For example, along with the classical Caldéron-Zygmund

decomposition (a wavelet-like decomposition), this is used to derive certain boundedness properties

of the transform on the class of integrable functions [8]. To the best of our knowledge, there is no

explicit higher-order generalization of this result in the form of Theorem III.2 in the harmonic

analysis or signal processing literature.

B. Smoothness

We now investigate the smoothness of H ψ(x). The route we take capitalizes on the Fourier-

domain specification of the transform, and the fact that the smoothness of a function is related to

the decay of its Fourier transform. In general, the better the decay of the Fourier transform, the

smoother is the function, and vice versa. We recall that a finite-energy signal f (x) is said to belong

to the Sobolev space W2,γ (R),γ ≥ 0, if
∫

(1+ |ω|2)γ | f̂ (ω)|2dω<∞

The Sobolev embedding theorem asserts that every f (x) belonging to W2,γ (R) can be identified

(almost everywhere) with a function which is n-times continuously differentiable provided that

γ > n+1/2; e.g., see [11]. Since (1) holds true for all finite-energy signals, we immediately conclude

that

Proposition III.3 (Comparable smoothness). If ψ(x) belongs to W2,γ (R), then H ψ(x) belongs

W2,γ (R). In particular, if γ > n+1/2, then both ψ(x) andH ψ(x) are n-times continuously differentiable

(almost everywhere).

For example, the cubic spline wavelet belongs to W2,γ (R) for all γ < 3+ 1/2 [13]. This explains

the comparable smoothness of the wavelet and its transform shown in Figure 3, which are both

twice continuously differentiable.

IV. CONCLUSION

It has been known for quite some time that the Hilbert transform of a wavelet is again a wavelet.

In this correspondence, we were concerned with the precise understanding of the sense in which

this holds true. In particular, we formulated certain basic theorems concerning the localization,

smoothness, and the number of vanishing moments of the Hilbert transform of a wavelet. Our

main objective was to provide self-contained and straightforward proofs of these results along with

some concrete examples.
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