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Abstract—We study continuous-domain linear inverse prob-
lems with generalized Total-Variation (gTV) regularization, ex-
pressed in terms of a regularization operator L. It has recently
been proved that such inverse problems have sparse spline
solutions, with fewer jumps than the number of measurements.
Moreover, the type of spline solely depends on L (L-splines),
and is independent of the measurements. The continuous-domain
inverse problem can be recast in an exact way as a finite-
dimensional problem by restricting the search space to splines
with knots on a uniform finite grid. However, expressing the L-
spline coefficients in the dictionary basis of the Green’s function
of L is ill-suited for practical problems due to its infinite support.
Instead, we propose to formulate the problem in the B-spline
dictionary basis, which leads to better-conditioned problems. As
we make the grid finer, we show that a solution of the continuous-
domain problem can be approached arbitrarily closely with
functions of this search space. This result motivates our proposed
multiresolution algorithm, which computes sparse solutions of
our inverse problem. We demonstrate that this algorithm is
computationally feasible for 1D signals when L is an ordinary
differential operator.

Index Terms—inverse problems, total variation, sparsity, com-
pressed sensing, B-splines

I. INTRODUCTION

The task in an inverse problem is to recover an unknown
signal s from its (usually noise-corrupted) measurements y,
which are acquired following a forward model y ≈ ν(s), e.g.,
Fourier samples in the case of MRI data. In many cases, such
problems are ill-posed in the sense that many different signals
yield identical measurements. The ill-posedness of inverse
problems can be circumvented by using a regularization term,
the choice of which is guided by our prior knowledge of the
underlying signal.

In recent years, `1 regularization has become increasingly
popular with the surge of compressed sensing [1]–[3] for the
reconstruction of discrete signals. Its benefits have been ex-
tensively documented, including its sparsity-promoting effect
[4], [5], its perfect recovery properties under certain conditions
[1], [6], [7], the availability of efficient solvers [8], [9] or its
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apparent superiority over Tikhonov `2 regularization to recover
many real-world signals [10].

Since many real-world signals are continuously defined,
some recent papers are directed towards solving continuous-
domain inverse problems, including [11]–[14]. However, for
obvious considerations of computational feasibility, the vast
majority of research efforts in the field of compressed sensing
focus on discrete inverse problems. The standard approach is
to express a continuous-domain signal s in a certain finite basis
{φn}1≤n≤N (typically a pixel basis), i.e., s =

∑N
n=1 cnφn.

Given M measurements y ∈ RM , the inverse problem is then
formulated in terms of the coefficients c = (c1, . . . , cN ) in a
penalized form as

min
c∈RN

‖Hc− y‖22 + λ‖Lc‖1 (1)

where H : RN → RM is the system matrix (discrete forward
model), L : RN → RN is the regularization matrix and
λ is a regularization parameter. The choice of L allows us
to promote the sparsity of c in a chosen transform domain,
e.g., a finite difference matrix (discrete TV regularization) or
wavelets. However, there are several downsides to this discrete
approach: the choice of the basis functions φn is guided by
computational considerations, and is not necessarily matched
to the characteristics of the underlying continuous-domain
signal. Moreover, the discrete forward model H is often an
approximation of its continuous counterpart (e.g., the discrete
Fourier transform for the continuous Fourier transform), which
introduces discretization errors.

A. Continuous-Domain Framework

To address these limitations, we focus directly on 1D
continuous-domain (i.e., s : R → R) inverse problems with
gTV regularization using the framework of [15]:

min
s
‖ν(s)− y‖22 + λ‖L{s}‖M (2)

where ν is a linear measurement operator (continuous forward
model) and y ∈ RM are the noise-corrupted measurements.
The regularization is defined in terms of a suitable operator L
with Green’s function ρL; the ‖·‖M norm is a generalization of
the L1 norm, and is the continuous counterpart of the `1 norm.
The prototypical example is the derivative operator L = D,
leading to TV regularization. This paper relies on the main
result of [15], a representer theorem (Theorem 1) which stems
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from the pioneer work of Fisher and Jerome [16]. This theorem
states that Problem (2) has L-spline solutions of the form

s(x) =

K∑
k=1

akρL(x− xk) +
N0∑
n=1

bnpn(x), (3)

where K ≤ M − N0, ak, xk ∈ R and {pn}N0
n=1 form a

basis of the null space of L. This result resonates with the
sparsity-promoting effect of the `1 norm for discrete problems,
since these spline solutions are sparse in the Green’s function
dictionary basis {ρL(· − τ)}τ∈R. For example, for L = D,
a Green’s function is the Heaviside step function ρL = 1+,
which implies that s is a sparse piecewise-constant signal.

B. Green’s Function Discretization
The form of the solutions (3) provides a natural basis to

discretize Problem (2). As demonstrated in [17], by using
basis functions {pn}N0

n=1 and {ρL(·−xn)}Nn=1 where the knot
xn lie on a uniform finite grid, we get the following discrete
optimization problem:

min
(a,b)∈RN+N0

‖HρLa+Hpb− y‖22 + λ‖a‖1 (4)

with system matrices HρL : RN → RM and Hp : RN0 →
RM . This problem is of the form (1), and can thus be solved
using off-the-shelf convex optimization algorithms. The major
asset of this approach is that the discrete problem is exactly
equivalent to the underlying continuous problem restricted to
the search space spanned by the basis functions. By making
the grid finer, this search space includes functions arbitrarily
close to solutions (3) of the full continuous-domain problem.
However, the Green’s function usually has infinite support (e.g.
ρD = 1+), which makes the Green’s function basis ill-suited
for practical problems. In particular, Problem (4) is severely
ill-conditioned, making the convergence of solvers slow and
potentially numerically unstable.

C. Our Approach: B-Spline Discretization
We therefore propose to improve this discretization method

by using an equivalent dictionary basis consisting of shifted
B-splines, i.e., {βL(· − xn)}N0

n=1 where βL is the B-spline of
L, and the knots xn lie on a uniform finite grid. B-splines
are popular signal processing tools [18]–[20], notably due to
their finite support (e.g., βD = 1[0,1]). This basis leads to the
following discrete optimization problem:

min
c∈RN

‖HβL
c− y‖22 + λ‖Lc‖1 (5)

where L is a finite difference-like regularization matrix. This
problem is of the same form as standard discrete compressed
sensing-type problems (1), with the advantage that the chosen
basis is matched to the form of the continuous-domain solution
(3). Moreover, Problem (5) shares the exact discretization
property of the Green’s function basis, since (setting aside
boundary issues) both bases are equivalent. However, the
finite support of the B-splines makes this basis better suited
for practical applications, and it induces well-conditioned
problems. This leads to a rapid convergence of solvers for
Problem (5), a prediction which will be confirmed by our
experimental results.

D. Related Works

The key feature of our approach is that contrary to standard
formulations, our discretization is exact in the continuous
domain. Other approaches stemming from [21] have been
undertaken in the litterature to solve continuous-domain in-
verse problems involving the TV norm (or related norms,
e.g., atomic norms in [22]). For instance, Adcock and Hansen
have introduced the theory of infinite dimensional compressed
sensing [13], [23]. Most of the research effort in this domain
has been dedicated to formulating inverse problems in spaces
of measures (typically to recover sums of Dirac impulses) and
devising grid-free numerical algorithms to solve them, e.g.,
[11], [12], [14], [24]–[30]. These grid-free approaches aim to
recover the exact locations xk of the jumps at super-resolution,
using sophisticated algorithms based on duality. Although
this is a sensible objective when the reconstructed signals
consists of Dirac impulses, in our spline-based framework,
finding the exact locations of the jumps is less critical since
the reconstructed signals are smoother. We therefore take the
stance of using a grid and B-splines which leads to a simple
and effective algorithm, at the expense of (arbitrarily small)
localization errors on the jumps.

E. Outline and Contributions

In this paper, we focus on the widely-used class of or-
dinary differential regularization operators L, which lead to
exponential B-splines [31]. To set the scene, we present some
background information on the continuous-domain inverse
problem framework of [15] (Section II) and exponential B-
splines (Section III). In terms of contribution, this paper
extends [17] and parts of our experimental pipeline are adapted
from this work. However, the use of B-splines is a critical
improvement which leads to the following contributions:
• In Section IV, we define the search space consisting of

L-splines with knots on a uniform grid and show that it
has an equivalent formulation in the B-spline basis;

• In Section V, we show that the continuous inverse prob-
lem can be recast as a finite-dimensional problem of
the form (1) in an exact way. We also demonstrate that
the algorithm introduced in [17] can be adapted to our
framework, and that it yields sparse solutions (with lower
sparsity than in [17]);

• In Section VI, we prove that the optimal cost of the
discrete problem converges to that of the continuous
problem when the grid size goes to zero. We then use
this result to devise a multiresolution algorithm which
refines the grid until the desired level of accuracy is met
(termination criterion);

• In Section VII, we demonstrate experimentally the ef-
fectiveness of our algorithm using different measurement
types (ideal sampling in the spatial and Fourier domains).
We also show that it compares favorably with standard
purely discrete methods.

II. CONTINUOUS-DOMAIN INVERSE PROBLEM

In this section, we present a class of continuous-domain
inverse problems with gTV regularization. The solution sets
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of such problems are described by a representer theorem
introduced in [15], which is the backbone of this paper.
We provide our reader the minimum knowledge required to
understand the framework of [15]. For more information, we
refer to the original article.

To introduce notations, we summarize the aim of our inverse
problem, which is to recover a certain continuous-domain sig-
nal s : R→ R given M noisy measurements y = ν(s) +n ∈
RM . The noiseless measurements ν(s) are acquired through
M linear measurement functionals ν = (ν1, . . . , νM ), i.e.,
ν(s) = (〈ν1, s〉, . . . , 〈νM , s〉) (〈νm, s〉 stands for the duality
product, which is given by

∫
R νm(x)s(x)dx when νm and

s are ordinary functions). The νm functionals constitute the
(known) forward model. The measurements are assumed to
be corrupted by some additive noise n.

A. Definitions

Let S ′(R) be the space of tempered distributions, defined
as the dual of the Schwartz space S(R) of smooth and rapidly
decaying functions on R. A typical example of a tempered
distribution is the Dirac distribution δ, which is defined in
terms of its dual product with a test function φ ∈ S(R) by
〈δ, φ〉 = φ(0).

The key element of our formulation is the regularization
operator L. Throughout this paper, we will focus on continuous
linear shift-invariant (LSI) operators L : S ′(R)→ S ′(R). Such
an operator is equivalent to a convolution and is conveniently
represented by its frequency response L̂(ω). In fact, a full
characterization in terms of frequency response is given by
Schwarz in [32, Chapter 7, §5]. In short, for any f ∈ S ′(R),
we can write F{L{f}}(ω) = L̂(ω)f̂(ω) where ω 7→ L̂(ω)
and its successive derivatives are smooth functions of slow
growth (i.e., bounded by a polynomial). Here, F denotes the
generalized Fourier transform and f̂ = F{f}.

In order to be acceptable in our framework, L also needs
to be spline-admissible in the following sense.

Definition 1 (Spline-admissible operator). A continuous LSI
operator L : S ′(R)→ S ′(R) is spline-admissible if it verifies
the following properties
• there exists a locally integrable function of slow growth
ρL : R → R (the Green’s function of L) which satisfies
L{ρL} = δ;

• its null space NL = {f ∈ S ′(R) : L{f} = 0} has finite
dimension N0.

Note that Definition 1 is less general than that of [15] and
Chapter 5 in [33], which include for example fractional op-
erators or multi-dimensional operators such as the Laplacian.
The present restriction is justifiable by the fact that the latter
category of operators leads to B-splines with non-compact
support, which are less convenient for our purpose.

The prototypical example of a spline-admissible operator is
the derivative L = D, whose frequency response is L̂(ω) = jω
and whose causal Green’s function is ρL = 1+. However, the
Green’s function is non unique, since adding any element of
the null space NL (constant functions in this case) to a Green’s
function yields other valid Green’s functions.

Definition 2 (Non-uniform L-spline). Let L be a spline-
admissible operator in the sense of Definition 1. A non-uniform
L-spline is a function s : R 7→ R verifying

L{s}(x) =
∑
k∈Z

a[k]δ(x− xk) (6)

where a[k] ∈ R is the amplitude of the k-th jump, and the xk ∈
R are the pairwise distinct knot locations. The distribution
w =

∑
k∈Z a[k]δ(· − xk) is known as the innovation of the

spline.

It follows from Definition 2 that a non-uniform spline can
equivalently be defined as

s(x) = p(x) +
∑
k∈Z

a[k]ρL(x− xk) (7)

where p ∈ NL. The ground truth signal in Figure 1 is an
example of a non-uniform spline for L = D (piecewise-
constant functions). The locations of the jumps correspond
to the xk, and their amplitudes are the a[k] coefficients.

Next, let M(R) ⊂ S ′(R) be the space of finite Radon
measures, which is known by the Riesz-Markov theorem [34,
Chapter 6] to be the continuous dual of C0(R). The latter is the
space of continuous functions vanishing at infinity, which is a
Banach space when equipped with the supremum norm ‖·‖∞.
Its dual space M(R) is therefore a Banach space equipped
with the corresponding dual norm ‖ ·‖M, which is defined for
w ∈M(R) as

‖w‖M = sup
φ∈C0(R),‖φ‖∞=1

〈w, φ〉. (8)

The ‖ · ‖M norm can be seen as a generalization of the L1

norm: for any f ∈ L1(R), we have ‖f‖L1
= ‖f‖M. Another

crucial property for our application is the inclusion of shifted
Dirac impulses in M(R), with ‖δ(· − x0)‖M = 1.

Since the M norm is used for regularization purposes in
combination with L in our setting, we only consider functions
f such that ‖L{f}‖M is well defined. In all that follows, we
will therefore consider the following native space of L

ML(R) =
{
f ∈ S ′(R) : L{f} ∈ M(R)

}
, (9)

which can be endowed with a Banach direct-sum topology
[15, Theorem 5].

A crucial observation is that non-uniform L-splines as in (7)
are included in ML(R) when a ∈ `1(Z), since ‖L{s}‖M =
‖
∑
k∈Z a[k]δ(· − xk)‖M = ‖a‖1.

B. Representer Theorem

Now that all the relevant concepts have been introduced,
we can state the representer theorem of [15] in an equivalent
form formulated in [17] and in the case of a quadratic data
fidelity cost function:

Theorem 1 (Continuous-Domain Representer Theorem). Let
L be a spline-admissible operator in the sense of Definition
1, and let ν = (ν1, . . . , νM ) : ML(R) → RM be a weak∗-
continuous linear measurement operator composed of M ≥
N0 linear functionals νm : f 7→ νm(f) ∈ R. Assume that the
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intersection of the null spaces of L and ν is restricted to {0},
i.e., Nν ∩ NL = {0} (well-posedness assumption). Then the
linear inverse problem

S = argmin
f∈ML(R)

‖ν(f)− y‖22 + λ‖L{f}‖M︸ ︷︷ ︸
J (f)

(10)

has a non-empty weak∗-compact convex solution set S whose
extreme points are non-uniform L-splines (in the sense of
Definition 2) of the form

s(x) =

K∑
k=1

akρL(x− xk) +
N0∑
n=1

bnpn(x) (11)

where {pn}n=1,...,N0
form a basis of NL, ak, xk ∈ R, and the

sparsity index K verifies K ≤M −N0.

The remarkable outcome of this theorem is that solutions of
a continuous-domain problem with infinitely many degrees of
freedom can be expressed with a small number K+N0 ≤M
of coefficients. Moreover, the underlying infinite-dimensional
dictionary basis {ρL(· − τ)}τ∈R is fully determined by L and
is thus independent of the measurements. This result confirms
the sparsity-promoting effect of the L1 norm (as a particular
case of the ‖ · ‖M norm), which is well-known in discrete
problems, but much less so in continuous ones. It also confirms
the usefulness of splines as bridges between the continuous
and discrete worlds.

The parametric form of the solutions given by Theorem 1
makes it tempting to recast the continuous-domain problem
into a discrete problem by feeding the parametric solution
of (11) into the optimization Problem (10) and optimizing
over the parameters ak, xk and bk. Although this optimization
problem is non-convex with respect to the knot locations
xk, this issue can be avoided by gridding. This amounts to
restricting the search space of the problem to the space L-
splines with knots on a uniform grid, which we properly define
in Section IV.

III. EXPONENTIAL SPLINES

For the sake of clarity, we restrict ourselves in all that
follows to the class of ordinary differential regularization
operators, which cover the vast majority of 1D real-world ap-
plications. These lead to so-called exponential splines, which
have been studied extensively in [31]. In this section, we
introduce basic information on exponential splines.

A. Differential Operators

We focus on ordinary differential operators

L = DN0 + aN0−1D
N0−1 + . . .+ a0I (12)

where D and I are the derivative and identity operators
respectively. Let

P (X) = XN0 +

N0−1∑
n=0

anX
n =

N0∏
n=1

(X − αn)

be the polynomial function associated to L which has roots
α = (α1, . . . , αN0

) ∈ CN0 . We can thus refer to L as Lα. Let

α(1), . . . , α(Nd) be the distinct roots of P with multiplicity
n(1), . . . , n(Nd) (Nd ≤ N0). It is well known from linear
system theory that the null space of Lα is

Nα = span
{
x 7→ xneα(m)x

}
1≤m≤Nd, 0≤n≤n(m)−1

. (13)

For convenience, we characterize these operators in the Fourier
domain as

L̂α(w) =

N0∏
n=1

(jw − αn). (14)

Among the possible Green’s functions of Lα, we select the
canonical solution

ρα(x) = F−1
{

1

L̂α(w)

}
(x). (15)

which is uniquely defined. For example, the Green’s function
of the elementary operator Lα = D− αI when Re(α) < 0 is

ρα(x) = 1+(x)e
αx. (16)

B. Exponential B-splines

The exponential B-spline with knot spacing h > 0 of the
differential operator Lα is defined as

βα,h(x) =
1

hN0−1
F−1

{
N0∏
n=1

1− eh(αn−jω)

jω − αn

}
(x). (17)

For example, the first-order exponential B-spline is

βα,h(x) = 1[0,h](x)e
αx, (18)

and is thus supported in [0, h]. For higher orders, βα,h is
supported in [0, N0h] since it is proportional to the convolution
of N0 first-order exponential B-splines. A simple Fourier
calculation yields the innovation of the exponential B-spline

L{βα,h}(x) =
1

hN0−1

N0∑
k=0

dhα[k]δ(x− hk) (19)

where the sequence dhα is characterized by its z transform

Dhα(z) =

N0∏
n=1

(1− ehαnz−1), (20)

and thus has a finite support {0, . . . , N0}.

IV. SPECIFICATION OF THE SEARCH SPACE

A. Green’s Function Representation

As explained earlier, in order to discretize the continuous-
domain problem, we restrict the search space to L-splines (7)
with knots on a uniform grid, i.e., xk ∈ hZ where h > 0 is the
step size of the grid. In the case of exponential splines (i.e.,
L = Lα), the search space with step size h is thus defined as

MLα,h(R) =
{
s = p+

∑
k∈Z

a[k]ρα(· − kh) (21)

: a ∈ `1(Z), p ∈ Nα

}
⊂MLα(R).
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The choice of the search space MLα,h(R) is obviously
guided by Theorem 1, which states that Problem (10) has L-
splines solutions, although their knots are not on a uniform
grid. The search space therefore contains functions which are
close approximations of a solution when the grid size h is
small. A mathematical justification is given in Section VI-A.

B. B-Spline Representation and Conditioning
The key property of the search space MLα,h(R) is that it

has an alternative representation in the B-spline basis. This
is a fundamental property of cardinal (i.e., h = 1) L-splines
in general, including cardinal exponential splines [31, Section
III. C]. Here, we show the equivalence of these bases for any
h > 0 in our particular search space MLα,h(R).

Proposition 1. The search space MLα,h(R) can be repre-
sented in the B-spline basis as

MLα,h(R) =
{
s =

∑
k∈Z

c[k]βα,h(· − kh) : c ∈ `1,hα(Z)
}
(22)

where βα,h is defined as in (17) and

`1,hα(Z) =
{
(c[k])k∈Z : (dhα ∗ c) ∈ `1(Z)

}
. (23)

The proof is given in Appendix A. The major contribution
of this paper is the use of the B-spline representation (22)
of MLα,h(R) throughout the discretization process, whereas
[17] uses the Green’s function representation (21). The point
of doing so is that contrary to the Green’s function, B-splines
have finite support; in fact, they are the members ofMLα,h(R)
that have minimal support. This makes the B-spline basis close
to being orthogonal (it is a Riesz basis [31, Theorem 1]), which
leads to Problem (5) being well-conditioned.

The conditioning of an inverse problem is a measure of
its numerical stability: a problem is well-conditioned if a
small perturbation of the signal coefficients leads to a small
perturbation of its measurements. When the basis functions
have limited support as in the B-spline case, it is clear that
a slight disturbance of the basis coefficients does not change
the signal - and thus its measurements - significantly. However,
this is not the case in the Green’s function case, since not only
do the basis functions have infinite support, but they are often
non vanishing or even increasing as one moves away from the
centers, e.g., xN0−1

+ for L = DN0 . Therefore, a small perturba-
tion of a basis coefficient greatly affects the reconstructed sig-
nal everywhere. The measurements are thus greatly impacted
and the problem is severely ill-conditioned [17], [35]. This
intuition is confirmed in practice: we observe that in identical
settings (i.e., same regularization operator L, measurement
operator ν, regularization parameter λ and grid size h), the
relevant condition number is systematically greater in Problem
(4) than in Problem (5). For example, in the experiment shown
in Fig. 3, the condition number of the matrix to be inverted
is cond(HT

βL
HβL

+ λLTL) = 5.7 × 104 using the B-spline
formulation, compared to cond(HT

ρLHρL + λI) = 1.5× 1012

in the Green’s function case. This difference of conditioning
largely justifies the use of the B-spline representation of
MLα,h(R) rather than its Green’s function representation.

V. EXACT DISCRETIZATION INMLα,h(R)
A. Discrete Problem Formulation

Let h > 0 and Lα be an ordinary differential operator. In
order to discretize Problem (10) in MLα,h(R), we use the
B-spline representation of s ∈MLα,h(R) given in (22)

s(x) =
∑
k∈Z

c[k]βα,h(x− kh) (24)

where c ∈ `1,hα(Z). Using (19), the sparsity of s in the
Green’s function basis is given by ‖dhα ∗ c‖0, where ‖ · ‖0 is
the `0 ”norm” which counts the number of non-zero entries of
a sequence or vector. When we feed (24) into the continuous-
domain Problem (10), using (19) once again, we get the
following discretized optimization problem

Sh = argmin
c∈`1,hα(Z)

∥∥∥∥∑
k∈Z

c[k]ν(βα,h(· − hk))− y

∥∥∥∥2
2

+
λ

hN0−1
‖dhα ∗ c‖1, (25)

where the associated cost function is denoted by Jh :
`1,hα(Z) → R+. By adapting Lemma 20 in [5], it can
be shown that Sh is a non-empty weak∗-compact subset of
`1,hα(Z). Note that Problem (25) is exactly equivalent to
the continuous-domain Problem (10) restricted to the search
space MLα,h(R). This is the key feature of our formulation:
the standard approach to discretize an inverse problem is to
use an approximate discrete forward model as a surrogate
for a continuous model, which leads to discretization errors.
This is not the case of our method, in which the discrete
forward model is equal to the continuous one; the former
is simply restricted to the native space MLα,h(R). To the
best of our knowledge, aside from [17] of which this paper
is an extension, no other work in the literature discretizes
non-quadratic continuous-domain problems exactly by using
a dictionary.

B. Finite Problem

In real-world applications, the signal of interest usually has
a given finite support, which we can assume to be IT = [0, T ]
without loss of generality. Hence, in all that follows, we can
assume that the measurement functionals νm, be they ordinary
function or distributions such as Dirac impulses, are supported
in IT . This assumption is completely inconsequential for
signals supported in IT , but it is necessary to express (25)
as a finite-dimensional problem. In this case, only a finite
number of B-spline coefficients affect the data fidelity term
in (25); we denote by I = {imin, . . . , imax} ⊂ Z the set of
their indices and N = #I . Assuming that T/h ∈ N, we have
imin = −N0+1, imax = T/h−1 and thus N = T/h+N0−1.
To make Problem (25) finite, we optimize over the N B-spline
coefficients in I , which are denoted by c ∈ RN . By imposing
natural boundary conditions for the regularization term, we get
the following discrete finite-dimensional problem.

Sh = argmin
c∈RN

‖Hc− y‖22 + λ‖Lc‖1︸ ︷︷ ︸
J(c)

(26)
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where the system matrix H : RN → RM is

H = (himin
, . . . ,himax

) : hk = ν(βα,h(· − hk)) (27)

and the Toeplitz-like regularization matrix L : RN → RN−N0

is a finite section of the infinite-dimensional regularization
matrix in Problem (25), i.e.,

L =
1

hN0−1


dhα[N0] · · · dhα[0] 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 dhα[N0] · · · dhα[0]

 .

(28)

Despite the seemingly arbitrary boundary conditions on
the regularization term (we are representing a convolution
involving an infinite sequence as a finite matrix multiplication),
remarkably, thanks to the finite support assumption, Problem
(26) is exactly equivalent to the infinite Problem (25):

Proposition 2. Under the assumptions of Theorem 1 and
assuming that the νm functionals are supported in IT :
• We have kerH ∩ kerL = {0}, and the solution set Sh

of Problem (26) is a non-empty compact convex set;
• Problems (25) and (26) are equivalent, and there exists a

natural bijection between their solutions sets which maps
any sequence c∗ ∈ Sh ⊂ `1,hα(Z) to a vector c∗ ∈ Sh ⊂
RN such that c∗|I = (c∗[imin], . . . , c

∗[imax]) = c∗.

The proof of Proposition 2 is given in Appendix B. We
refer to Problem (26) as being well-posed due to the property
kerH ∩ kerL = {0}, which implies that its solution set
Sh is bounded, but not necessarily unique. Proposition 2
demonstrates that the finite Problem (26) is equivalent to the
continuous-domain Problem (10) restricted to the search space
MLα,h(R). This is quite a remarkable outcome: we are able to
solve an infinite continuous-domain problem in an exact way
as a standard discrete inverse problem with `1 regularization.
Once again, this is to the best of our knowledge a novelty,
which is this time not present in [17].

Despite the proven equivalence between problems (25)
and (26), one might wonder how to proceed in practice to
reconstruct the underlying continuous-domain signal s once a
solution c∗ ∈ Sh is reached. By Proposition 2, there exists
a unique sequence c∗ ∈ Sh such c∗|I = c∗. The following
observations, which are direct consequences of the proof of
Proposition 2, can be made concerning s:
• The continuous-domain reconstructed signal is s =∑

k∈Z c
∗[k]βα,h(· − kh);

• The N B-spline coefficients c∗ are sufficient to recon-
struct s exactly in the interval of interest IT ;

• The sparsity of s in the Green’s function basis is given
by ‖Lc∗‖0.

These observations indicate that all the relevant information
concerning the reconstructed signal s (i.e., its expression in
IT and sparsity) is directly encoded in the vector c∗ ∈ Sh
of Problem (26). Hence, computing the corresponding infinite
sequence c∗ ∈ Sh is unnecessary. In practice, the infinite
Problem (25) can thus be altogether forsaken in favor of the
computationally feasible finite Problem (26).

C. Reaching a Sparse Solution

In this section, we study the so-called Penalized Basis
Pursuit (PBP) problem formulated in (26)

Sh = argmin
c∈RN

‖Hc− y‖22 + λ‖Lc‖1 (29)

where the system and regularization matrices H and L are
defined in (27) and (28) respectively. This problem is close
to typical compressed sensing problems (L is a TV-like
regularization matrix), which have been studied at length in the
litterature [3], [5] and are known to yield sparse solutions in
a certain basis. The specificity of this problem lies in the fact
that L is not invertible. However, Theorem 1 strongly suggests
that (26) has sparse solutions, since it is a discretized version
of the continuous-domain problem. This instinct is confirmed
by the following representer theorem, the proof of which is
given in Appendix C.

Theorem 2 (Discrete Representer Theorem). Let 0 ≤ N0 ≤
M < N , H : RN → RM and L : RN → RN−N0 such
that kerH ∩ kerL = {0} and L is of full rank, i.e., ranL =
N −N0. Then the solution set S of the optimization problem

S = argmin
c∈RN

‖Hc− y‖22 + λ‖Lc‖1 (30)

is a compact convex set whose extreme points c∗ verify
‖Lc∗‖0 ≤M −N0.

Theorem 2 is a generalization of Theorem 6 in [5], since
it allows for more general regularization matrices (L must be
right-invertible). It is also similar to Theorem 2.4 in [16], but
with a tighter bound on the sparsity, and with an elementary
proof using only standard linear algebra. This result directly
applies to Problem (26), since kerH ∩ kerL = {0} by
Proposition 2 and L in (28) is of full rank. Remarkably,
the bound on the sparsity M − N0 is the same as for the
continuous-domain Problem (32) (Theorem 1), which confirms
the close connection between both problems. This is not the
case in the Green’s function formulation of [17], where the
sparsity is bounded by M .

Although Theorem 2 guarantees that Problem (26) has
sparse solutions, only the extreme points of Sh are known to
be sparse, and in general, Sh is non unique. Therefore, while a
solution of Problem (26) can readily be reached using standard
solvers such as ADMM, there is no guarantee that this solution
will be sparse. In fact, we will demonstrate experimentally
later on that, as observed with FISTA in [17], ADMM often
converges towards non-sparse solutions, i.e., vectors c∗ such
that ‖Lc∗‖0 > M − N0. To circumvent this issue, we use
the following lemma, which is well known in the absence of
a regularization matrix [36, Lemma 1]. As it turns out, the
latter does not make it more challenging: an elementary proof
is given in Appendix D for the sake of completeness.

Lemma 1. Let H : RN → RM , L : RN → RP , y ∈ RM and
λ > 0. We assume that the problem is well posed, i.e., kerH∩
kerL = {0}. Then the solution set Sh of the PBP Problem
(26) is a compact convex set which has a unique measurement
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yλ ∈ RM such that ∀c ∈ Sh, Hc = yλ. Moreover, for any
two solutions c1, c2 ∈ Sh, we have

(Lc1)i × (Lc2)i ≥ 0 ∀i ∈ {1, . . . , P}. (31)

Note that in the case of Problem (26), as shown in Propo-
sition 2, we have kerH ∩ kerL = {0}, which implies
that Lemma 1 applies to our problem for P = N − N0.
Lemma 1 provides an indirect way of reaching an extreme
point of Sh: any solution c∗ ∈ Sh has a fixed measurement
Hc∗ = yλ. Therefore, Problem (26) can be recast as a
constrained optimization problem

argmin
c∈RN

‖Lc‖1 s.t. Hc = yλ, (32)

which clearly has the same solution set Sh, since the constraint
is satisfied for any c ∈ Sh. This constrained problem can, in
turn, be recast as a linear program by introducing the slack
variable u ∈ RN−N0 :

SLP
h = argmin

(c,u)∈R2N−N0

N−N0∑
i=1

ui s.t. (33)

u+ Lc ≥ 0; u− Lc ≥ 0; Hc = yλ, (34)

where (c,u) is the concatenation of the vectors c ∈ RN
and u ∈ RN−N0 . The following proposition characterizes its
solution set SLP

h in terms of Sh:

Proposition 3. SLP
h is a compact convex set which has extreme

points (c∗,u∗) such that c∗ is an extreme point of Sh.

The proof is given in Appendix E. Proposition 3 allows us
to apply the well-known simplex or dual-simplex algorithms
[37], [38] to the linear program (33). These algorithms are
known to converge to an extreme point (c∗,u∗) of the solution
set SLP

h . Since c∗ is an extreme point of Sh, Theorem 2 then
ensures that it is a sparse solution we are looking for. However,
to run this linear program, yλ needs to be known: hence, we
must find a solution (though not necessarily an extreme point)
of the PBP Problem (26) beforehand using ADMM or any
other suitable algorithm. This solution cADMM ∈ Sh is then
used to compute yλ = HcADMM, which is used in turn to run
the simplex algorithm. This procedure is adapted from [17],
in which the same idea is used in the Green’s function basis.

VI. REFINING THE GRID

In the previous sections, we have established an experi-
mental pipeline to solve the continuous-domain problem in
MLα,h(R) for a fixed grid size h. We now study the behavior
of the solutions when the grid size h decreases, and how they
relate to solutions of the full continuous-domain Problem (10).

A. Convergence of the Cost Function

We place ourselves in the conditions of Theorem 1,
which states that there exists at least one solution to the
continuous-domain Problem (10) of the form s(x) = p(x) +∑K
k=1 akρα(x−xk). This solution does not a priori have knots

on a uniform grid, and is thus not included in MLα,h(R).

However, by picking h sufficiently small, it can be approached
arbitrarily closely by

sh(x) = p(x) +

K∑
k=1

akρα(x− xhk) ∈MLα,h(R), (35)

where xhk ∈ hZ converges to xk.
The following lemma shows that sh is indeed a good

approximation of s in terms of cost:

Lemma 2. Let all the hypotheses of Theorem 1 be met for
a spline-admissible operator L. Then, there exists a family of
functions of the form sh = p+

∑K
k=1 akρL(·−xhk) ∈ML,h(R)

where p ∈ NL, K ≤ M − N0 and xhk ∈ hZ for any h > 0
such that

lim
h→0
J (sh) = min

f∈ML(R)
J (f) = J 0. (36)

The proof is given in Appendix F. Note that Lemma 2
applies in the most general setting of Theorem 1 and is
therefore not limited to differential operators of the form (12).

Going back to exponential B-splines, let J 0
h =

minc∈`1,hα(Z) Jh(c) be the optimal cost of the discrete Prob-
lem (25). We derive the following theorem, which stems
directly from Lemma 2 and is similar to Lemma 8 in [14]:

Theorem 3 (Convergence of the cost function of the discrete
problem). Let all the hypotheses of Theorem 1 be met, and
Lα be an ordinary differential operator. Then

lim
h→0
J 0
h = J 0. (37)

Proof. Firstly, we observe that

J 0
h ≥ J 0 (38)

since for any c ∈ `1,hα(Z), we can define s(x) =∑
k∈Z c[k]βα,h(x−hk) ∈MLα,h(R) which verifies Jh(c) =

J (s) ≥ J 0. Next, let sh be a family of functions for any
h > 0 as specified by Lemma 2. Since sh ∈ MLα,h(R), by
(22), sh can be expressed in the B-spline basis as sh(x) =∑
k∈Z c[k]βα,h(x − hk) where c ∈ `1,hα(Z). Therefore, we

have

J 0
h ≤ Jh(c) = J (sh)

h→0→ J 0

which together with (38) proves the desired result.

This result can in fact be extended to any operator L
which has an admissible B-spline basis. Theorem 3 shows
that the choice of MLα,h(R) as a search space for the
continuous-domain problem is a sound one: by solving the
discrete problem, we recover a solution which is arbitrarily
close in terms of cost to the solution(s) of the continuous
problem if h is sufficiently small. Moreover, note that there
is no requirement in Theorem 3 that the natural gridded
approximation sh defined in (35) is a solution of the discrete
Problem (25): J 0

h might actually be smaller than J (sh).
We can therefore hope for a faster convergence than that of
J (sh)→ J 0.

7



Input: ν, α, T , y, λ, imin, ε
Output: c∗
i = imin; c = 0; costp = +∞; error = ε+ 1;
while error > ε do

h = T/2i;
update H, L ; // Depend on h,ν,α, T
c = ADMM(c↑2;H,L,y, λ);
error = |cost(c)− costp|/costp;
costp = cost(c);
i = i+ 1;

end
yλ = Hc;
c∗ = Simplex(H,L,y, λ,yλ);

Algorithm 1: Pseudocode of our algorithm

B. Multiresolution Strategy

Although Section V-C provides an experimental pipeline
to solve the continuous-domain problem in MLα,h(R) for
a fixed grid size h, the choice of the latter is somewhat
arbitrary. In practice, in order to choose the grid size, we use
the convergence results of Theorem 3. We recursively split
the grid in half by taking hi = T/2i for increasing values
of i ∈ N, and we solve the corresponding finite problems.
This way, the finest grid (highest value of i) contains all its
coarser predecessors, which implies that the search spaces are
embedded, i.e., MLα,hi

(R) ⊂ MLα,hi+1
(R). This allows us

to use the solution obtained with the previous grid as a starting
point of ADMM, which leads to considerable time gains.
Another consequence of this embedding is that J 0

hi
≥ J 0

hi+1
,

which indicates that splitting the grid in half can only improve
the solution in terms of cost. Theorem 3 then guarantees
that limi→+∞ J 0

hi
= J 0. This gives us a natural stopping

criterion: we increment i until the relative decrease of cost
(J 0

hi−1
−J 0

hi
)/J 0

hi−1
is smaller than some tolerance parameter

ε. When ε is sufficiently small, we consider that the cost
function has converged and that there is no need to make the
grid any finer. Note that the simplex step is only necessary
for the final grid size. This complete procedure is detailed in
Algorithm 1.

In Algorithm 1, ADMM(c↑2;H,L,y, λ) runs ADMM on
Problem (26) with the starting point c↑2. The latter corre-
sponds to the vector of B-spline coefficients c converted to
the current grid size, which is twice as fine as that of c. This
conversion is made possible by the embedding of the search
spaces. Similarly, Simplex(H,L,y, λ,yλ) runs the simplex
algorithm on the constrained Problem (33) (no starting point
is required). The output c∗ of this algorithm is therefore a
vector whose size is not predetermined, but which represents
a continuous-domain signal in IT that is sparse in the Green’s
function basis, and yields a cost close to J0.

VII. NUMERICAL EXPERIMENTS

We now discuss our implementation of Algorithm 1 and
present some results. The differential regularization operators
that we consider in our experiments either have identical or
unique poles. Our algorithms are implemented using Global-

BioIm [39], an inverse problem library developed in our group,
as well as the Gurobi optimizer [40] for the simplex algorithm.

A. Experimental Setting

1) Test signal: We attempt to reconstruct sparse signals of
the form

s(x) =

Ks∑
k=1

akρL(x− xk) +
N0∑
n=1

bnpn(x), (39)

for which gTV regularization is an adequate prior by Theorem
1. The sparsity index Ks is chosen by the user and the
knots xk are drawn at random in the interval of interest IT
following a uniform distribution. The coefficients ak and bn
are i.i.d Gaussian random variables projected on the subspace
of vectors (a,b) ∈ RK+N0 for which s is supported in IT .
This is to enforce the finite support assumption on the test
signal, which is implicit in the discrete problem formulation
(26). Therefore, aside from the approximation error on the
knot locations, the test signal in (39) is in the span of
feasible signals reconstructed by the discrete problem, which
is obviously a desirable property.

2) Measurements: We implemented three types of measure-
ment operators ν:
• Ideal sampling: This case corresponds to a measurement

operator ν(f) =
(
〈δ(· − x1), f〉, . . . , 〈δ(· − xM ), f〉

)
=(

f(x1), . . . , f(xM )
)

, where x ∈ (IT )
M . Given the form

of NL in (13), it can be shown that ν satisfies the well-
posedness assumption Nν ∩ NL = {0} as soon as M ≥
N0 and all sampling points xm are pairwise distinct. We
either take uniformly spaced knots or random samples
following a uniform distribution in IT for x.

• Fourier sampling: For an odd number of measurements
M , we define the measurement operator
ν(f) =

(
f̂|IT (0),Re(f̂|IT (ω2)), Im(f̂|IT (ω2)), . . . ,

Re(f̂|IT (ωM+1
2

)), Im(f̂|IT (ωM+1
2

)
)

where f|IT = f ×
1[0,T ] is f to which a rectangular window function on
the interval IT is applied. The sampling frequencies are
ω1 = 0 and ωm for 2 ≤ m ≤ M which are drawn
from a uniform distribution in (0, ωmax]. Since ŝ(0) ∈ R
when s is a real signal, there is no need to take the
real and imaginary parts; however, this is necessary for
non-zero frequencies in order to have real measurements.
The maximum frequency ωmax is chosen such that the
spectrum of s has small energy above this threshold.

• Inner product with dephased cosines: This type of mea-
surement is a variation of Fourier sampling: we take the
inner product with functions x 7→ cos(ωmx+ θm) where
the θm are drawn from a uniform distribution in [0, π).
Compared to Fourier sampling where each sampling
frequency accounts for two measurements, this allows
for the sampling of a broader spectrum of frequencies:
ν(f) =

(
f̂|IT (0), 〈cos(ω2x+θ2), f|IT 〉, . . . , 〈cos(ωMx+

θM ), f|IT 〉
)

, where as for Fourier sampling, ω1 = 0 and
ωm ∈ (0, ωmax] for m = {2, . . . ,M}.
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Simplex

Fig. 1: Reconstruction results for L = D, M = 15 (ideal
sampling), grid size h = 1

128 .
Sparsity: 118 after ADMM, 13 after simplex.

We compare experimental results using these measurement
operators, predicting that reconstructed signals should be
closer to the test signals when sampling in the Fourier domain
than with ideal sampling. This ensues from the theory of
compressed sensing: Fourier matrices are known to have good
recovery properties with few measurements [41], whereas
sampling matrices clearly do not. In order to be more realistic
and to verify the robustness of our algorithm, we add Gaussian
noise to the measurements with standard deviation σ computed
from a given Signal-to-Noise Ratio (SNR).

3) Regularization Parameter: The choice of the regular-
ization parameter λ is critical, as it greatly affects the recon-
structed signal: high values of λ can lead to overly regularized
solutions, whereas low values tend to suppress the effect of
regularization. The value of λ should be tuned according to
the type of measurement. To this end, in our experiments, we
choose a value of λ among a list of potential values such that
the SNR between the reconstructed signal and the test signal
is the highest for a certain value of h. The selected λ is then
used for all values of h, as specified in Algorithm 1.

B. Experimental Results

We now present several results of our numerical implemen-
tation.

1) Sparsity: In our experiments, we observe that, as pre-
dicted by Theorem 2, the final reconstructed signal has sparsity
K ≤M −N0 in the Green’s function basis.

However, running the simplex after ADMM is far from
being superfluous: reconstructed signals after ADMM are
typically not sparse at all. This is best illustrated in the case of
ideal sampling, where we observe a staircase effect between
measurements (Fig. 1). Although this phenomenon does not
affect the cost function, it is clearly not optimal in terms of
sparsity, and it illustrates the non-uniqueness of Sh. However,
after the simplex step, the sparsity improves dramatically,
going from 118 to 13 ≤ M − N0 in Fig. 1, as predicted
by Theorem 2.

2) Measurement Types Comparison: Fig. 2 shows a typ-
ical example of reconstruction results after the simplex step
for all three measurement types, with an identical grid size
h = 1/128. The SNR values are computed with respect to the

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2
Ground truth

Measurements (samples)

Simplex (samples)

Simplex (Fourier)

Simplex (cos)

Fig. 2: Reconstruction results for L = D(D − I), M = 15
measurements, grid size h = 1

128 .
Ideal sampling (−−): λ = 7.71 · 10−9, Sparsity= 13, SNR=
13.76 dB;
Fourier sampling (··): λ = 1.35 · 10−8, Sparsity= 12, SNR=
24.04 dB;
Dephased cosine sampling (−·): λ = 6.12 · 10−9, Sparsity=
13, SNR= 24.90 dB.

test signal; they show that as predicted, reconstruction results
are much better in terms of SNR when sampling is done in
the Fourier domain. Indeed, for ideal sampling, when there
are no measurement points in the vicinity of a jump (around
x = 0.3 and x = 0.8 in Fig. 2), the reconstruction result
can vastly deviate from the test signal. On the other hand, the
reconstruction using Fourier and dephased cosine samples is
remarkably similar to the test signal, despite the small number
of measurements (M = 15) and a test signal with compara-
tively high sparsity (Ks = 30). Note that in all three cases,
the reconstructed signals have sparsity K ≤ M − N0 = 13
which conforms with Theorem 2.

3) Decreasing Grid Size: As the grid size decreases, the
search space of our optimization problem becomes larger:
we can therefore reconstruct functions in finer detail. This is
illustrated in Fig. 3, in which we observe that very coarse
grids approximate complex signals very poorly, whereas after
splitting the grid in half recursively, these signals can rapidly
be approximated much better (Fig. 3c).

To illustrate the effect of the decreasing grid size in terms
of cost, we present an example run of Algorithm 1 with a reg-
ularization operator L = D3 in Fig. 4. The final reconstructed
signal is shown in Fig. 4a: notwithstanding the reasonably fine
grid size (h = 1/28), the reconstruction is near-perfect. The
evolution of the cost function with respect to the grid size
in our example is shown in Fig. 4b: we observe that after
an initial rapid decrease, the cost function starts plateauing,
which is in line with Theorem 3. Given the aspect of this
evolution, it is safe to assert that the cost is very close to its
limit value J0 specified by Theorem 3. Although we could
consider tightening the tolerance ε to get a marginally smaller
cost, this is not necessarily a sensible choice. Indeed, for very
fine grids (e.g., h < 1/211), the increased scale of the problem
can cause computational problems larger than the potential
gain in terms of cost. We found the choice of ε = 10−3

to be a good compromise in our experimental setting: the
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16

Fig. 3: Reconstruction results after simplex for L = D2, M = 31 (dephased cosine sampling) with decreasing h.

final grid size h is typically coarser than 1/210, even for
very non-sparse test signals (Ks ≈ 100) and with many
measurements (M ≈ 100). For such grid sizes, due to the
good conditioning of the system matrix H, the optimization
problems are entirely feasible (ADMM typically converges in
a few seconds with a properly tuned penalty parameter ρ) and
computational problems are avoided.

In order to compare reconstruction results for different grid
sizes, we applied the simplex step as described in Sec. V-C
for every grid size h in our example. Despite the convergence
of the cost function for the finer grid sizes observed in Fig.
4b, the variations in the sparsity (Fig. 4c) indicate that the
reconstructed signals are not identical from one grid size to
the next. However, in regard to the optimization problem, there
is no reason to decrease the grid size any further or to favor
one solution over another if both yield the same cost within a
user-defined tolerance.

C. Comparison with Discrete Methods

In this section, we assess the pertinence of our framework
by comparing it with a purely discrete method. The standard
way of discretizing Problem (10) would be to consider uniform
samples of the reconstructed function, i.e., a pixel basis, and
to approximate derivative operators with finite differences.
Within this framework, the underlying discrete optimization
problem of the form (26) is very similar for both methods.
Indeed, in both cases, the regularization matrix L is a finite
difference-type matrix as in (28). However, since the basis
functions are different, the number of coefficients N and the
system matrix H differ. We solve both problems using our
pipeline described in V-C.

We consider noiseless Fourier-domain measurements (de-
phased cosine sampling) with M = 100. As explained earlier,
this bolsters the recovery properties of the reconstruction,
and thus allows us to use similarity metrics between the
reconstructed and test signals to compare both methods.

Such a comparison is made in Figure 5, with L = D4 and
λ = 10−15. For the sake of fairness, we use a piecewise
linear test signal, since the latter does not resemble the basis
functions of either method. Figure 5a shows the reconstruction
result, using a coarse grid for visualization purposes. Our

continuous-domain reconstruction is clearly a lot closer to the
test signal; this observation is confirmed by looking at the
SNR of both reconstructions in Figure 5b. We notice that the
SNR is similar for both methods using finer grids: this is in
keeping with [42], which demonstrates some form of conver-
gence of discrete methods towards solutions of continuous-
domain problems as the grid size goes to zero. However, our
continuous-domain method converges much faster (i.e., for
coarser grids) towards a very faithful reconstruction.

Note that the observed linear regime of the blue curve in Fig.
5b is consistent with the approximation power of pixels, which
is well known to be in O(h). Moreover, using finite differences
instead of the derivative yields additional errors which increase
with the order N0 of the operator and when the grid gets
coarser. Conversely, our method is exact in the continuous
domain for any grid size, which explains why a grid of h =
1/25 can be sufficiently fine. Finally, note that although the
discrete method leads to a slightly better-conditioned problem,
the difference in speed is negligible due to the Riesz basis
property of exponential B-splines.

VIII. CONCLUSION

In this paper, we have devised an efficient multiresolution
algorithm to compute sparse solutions of continuous-domain
inverse problems with gTV regularization numerically. Our
grid-based discretization uses the B-spline dictionary basis
matched to the operator L. On the theoretical side, we
proved that this is an exact discretization of the underlying
continuous-domain problem restricted to a search space, and
that this discrete problem converges in terms of cost towards
the continuous problem when the grid size decreases. On
the experimental side, we implemented this discretization
scheme for ordinary differential regularization operators L,
and several different measurement operators. Our experimental
results demonstrate that our formulation is computationally
inexpensive, well suited for practical problems and compares
favorably to standard, purely discrete methods.

APPENDIX

A. Proof of Proposition 1
We first prove the inverse inclusion c ∈ `1,hα(Z) ⇒ s =∑
k∈Z c[k]βα,h(· − kh) ∈MLα,h(R). The innovation (19) of
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(c) Evolution of the sparsity index of the reconstructed signal.

Fig. 4: Example run for L = D3 (quadratic splines), M = 31
(dephased cosine sampling).

the exponential B-spline shows that the latter is indeed an L-
spline in the sense of Definition 2. Next, a simple calculation
using (19) yields a = 1

hN0−1 (dhα ∗ c) ∈ `1(Z), which implies
that s ∈MLα,h(R).

We now show the direct inclusion, i.e., that MLα,h(R) is
spanned by B-splines. It can be shown [31, Equation (22)] that
there exists a unique sequence phα that is an inverse of dhα
for the discrete convolution product and verifies

ρα(x) = hN0−1
∑
k∈Z

phα[k]βα,h(x− hk). (40)

This sequence phα is slowly growing with the same growth
rate n0 as ρα, meaning that phα[k]/|k + 1|n0 is a bounded
sequence. Next, the proof that Nα is spanned by the cardinal
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Fig. 5: Comparisons between our continuous model and the
pixel-based discrete model for L = D4, M = 100 (dephased
cosine sampling).

B-spline basis is given in [31, Section III., C., 2)]. Both these
properties are given for cardinal B-splines (i.e., h = 1), and
they can be adapted without difficulty for B-splines with knots
spacing h. There only remains to prove that the sequence c
of B-spline coefficients of s = p +

∑
k∈Z a[k]ρα(· − kh) ∈

MLα,h(R) (i.e., a ∈ `1(Z)) is in `1,hα(Z). A simple cal-
culation yields c = hN0−1(phα ∗ a), which is clearly well
defined when a ∈ S(Z) (the space of rapidly-decreasing
sequences) since phα is slowly growing. Next, S(Z) is dense
in `1(Z), which allows us to extend this definition to any
a ∈ `1(Z) by continuity [5, Theorem 16]. We thus have
dhα∗c = a ∈ `1(Z). Finally, for elements of Nα, the sequence
c of B-spline coefficients verifies dhα ∗ c = 0 ∈ `1(Z). This
proves the direct inclusion and thus the desired result.

B. Proof of Proposition 2

The second item of Proposition 2 entails the existence of
bijective linear map θ : Sh → Sh such that θ(c∗)|I = c∗ for
any c∗ ∈ Sh. In order to construct this mapping, we rely on
the following lemma:

Lemma 3. Assume that the νm (1 ≤ m ≤M ) functionals are
supported in IT . Then solutions c∗ ∈ Sh of Problem (25) are
uniquely determined by their N coefficients c∗|I .

Proof. Let c∗ ∈ Sh be a solution of the discrete Problem
(25). Consider a sequence c such that c|I = c∗|I and whose
remaining coefficients are free. The latter do not affect the
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data fidelity term due to the finite support assumption on the
νm. When N > N0, c[imax +1] can be uniquely chosen such
that (dhα ∗ c)[imax + 1] =

∑N0

k=0 dhα[k]c[imax − k + 1] = 0.
Similarly, all c[k] coefficients for k > imax can be uniquely
determined recursively to nullify (dhα ∗ c)[k] as a linear
combination of the N0 − 1 previous coefficients. The same
can be done for coefficients c[k] with k ≤ 0, using this time
the N0 − 1 following coefficients of c. By construction, this
sequence c yields a regularization cost smaller or equal to that
of c∗, and since both yield the same data fidelity cost, we
have Jh(c) ≤ Jh(c∗). Since c∗ is a solution of (25) and the
construction of c is unique, we necessarily have c = c∗.

The proof of Lemma 3 details the construction of an injec-
tive linear map θ̃ : RN → `1,hα(Z) such that for any c ∈ RN ,
θ̃(c)|I = c. Let c ∈ RN , and consider the corresponding
sequence θ̃(c) ∈ `1,hα(Z). Following the proof of Lemma 3,
Jh(θ̃(c)) can be computed using only the N coefficients c.
Indeed, all other coefficients (θ̃(c)[k])k 6∈I do not affect the
data fidelity term and cancel out all the regularization terms
which they affect. This implies that Jh(θ̃(c)) = Jh(c) =
‖Hc−y‖22+λ‖Lc‖1, where H and L are defined as in (27) and
(28) respectively. Since by Lemma 3, Sh ⊂ θ̃(RN ), problems
(25) and (26) are equivalent in the sense that θ̃(Sh) = Sh, and
the restriction θ = θ̃|Sh

: Sh → Sh is a bijective linear map.
Concerning the first item of Proposition 2, let c ∈

kerH ∩ kerL, the corresponding signal s verifies s =∑
k∈Z θ̃(c)[k]βα,h(·−kh) ∈ Nν ∩Nα = {0} (well-posedness

assumption in Theorem 1), which implies that c = 0. Hence,
kerH∩kerL = {0}, which implies that Problem (26) is well-
posed and thus that its solution set Sh is a non-empty compact
set. The latter is also convex due to the convexity of the cost
function Jh.

C. Proof of Theorem 2

Let J : c 7→ ‖Hc− y‖22 + λ‖Lc‖1. Since J is continuous
and coercive due to the well-posedness assumption kerH ∩
kerL = {0}, S is a non-empty, closed compact set. Therefore,
by the Krein-Milman theorem, it is the closed convex hull of
its extreme points.

Let c∗ be an extreme point of S. Assume by contradiction
that Lc∗ has sparsity K > M−N0, i.e. Lc∗ =

∑K
k=1 ank

enk

where the nk ∈ {1, . . . , N} are distinct, ank
6= 0 and

{ei}N−N0
i=1 is the canonical basis of RN−N0 . Consider the

vector space T = ranL ∩ span{enk
}Kk=1. To find a lower

bound on the dimension of T , we use the relation

dim (X ∩ Y ) = dimX + dimY − dim (X + Y )

≥ dimX + dimY − P, (41)

where X and Y are vector subspaces of RP . Since the rank of
L is N −N0, for X = ranL and Y = {enk

}Kk=1, (41) yields
R = dimT ≥ K > M−N0 (with P = N−N0). Let {tr}Rr=1

be a basis of T . By definition of T , there exist vectors gr and
coefficients trk ∈ R such that tr = Lgr =

∑K
k=1 t

r
kenk

.
Next, we define yr = Hgr ∈ RM for all r ∈ {1, . . . , R},

and zn = Hpn ∈ RM for all n ∈ {1, . . . , N0} where
{pn}N0

n=1 is a basis of kerL. The collection of vectors

{y1, . . . ,yR, z1, . . . , zN0} has R + N0 ≥ K + N0 > M
elements, and is thus linearly dependent. Therefore, there exist
coefficients αr, βn ∈ R such that

∑R
r=1 αryr+

∑N0

n=1 βnzn =

0 and (α,β) 6= 0. We then define c0 =
∑R
r=1 αrgr +∑N0

n=1 βnpn ∈ RN , which is clearly in kerH. Assume
by contradiction Lc0 =

∑R
r=1 αrtr = 0. We thus have

c0 ∈ kerH∩kerL = {0}. Moreover, since the tr are linearly
independent, we have α = 0, and thus c0 =

∑N0

n=1 βnpn = 0.
Yet the pn are also linearly independant, which means that
β = 0, which contradicts (α,β) 6= 0. Therefore, we have
Lc0 6= 0, which implies that c0 6= 0.

Finally, we pick an ε > 0 such that

ε <
mink ank

maxk |
∑R
r=1 αrt

r
k|
. (42)

Note that ε is well defined since for all k, ank
> 0

and
∑R
r=1 αrt

r
k = 0 for all k would imply that Lc0 =∑R

r=1 αrtr =
∑K
k=1

(∑R
r=1 αrt

r
k

)
enk

= 0, which we have
proved to be false. We can then compute:

‖L(c∗ ± εc0)‖1 = ‖
K∑
k=1

(
ank
± ε

R∑
r=1

αrt
r
k

)
enk
‖1

=

K∑
k=1

(
ank
± ε

R∑
r=1

αrt
r
k

)

= ‖Lc∗‖1 ± ε
K∑
k=1

R∑
r=1

αrt
r
k

since by definition of ε, ank
± ε
(∑R

r=1 αrt
r
k

)
> 0 for all k.

Notice that both vectors (c∗±εc0) yield the same data fidelity
cost as c∗ in Problem (26): indeed, H(c∗± εc0) = Hc∗ since
c0 ∈ kerH. Therefore, if

∑K
k=1

∑R
r=1 αrt

r
k 6= 0, then either

(c∗+εc0) or (c∗−εc0) yields a cost strictly smaller than that of
c∗ in Problem (26), which is impossible since c∗ is a solution
of the latter. Consequently,

∑K
k=1

∑R
r=1 αrs

r
k = 0 and so

(c∗±εc0) ∈ S. Yet c∗ = 1
2 (c
∗+εc0)+

1
2 (c
∗−εc0), and since

εc0 6= 0, c∗ is not an extreme point of S, which contradicts our
initial assumption. This proves the desired result K ≤M−N0.

D. Proof of Lemma 1

Due to the well-posedness assumption, the cost function
J is coercive and since it is continuous, Sh is non-empty
and bounded. Let c1, c2 ∈ Sh be two (possibly identical)
solutions. We have J(c1) = J(c2) = J0, and for any
α ∈ [0, 1], we define cα = αc1 + (1 − α)c2. The convexity
of J yields J(cα) ≤ αJ(c1) + (1 − α)J(c2) = J0. Yet,
since J0 is the minimum of the cost function J , we have
J(cα) = J0, which implies that cα ∈ Sh and thus that Sh
is a convex set. Another implication is that the convexity
inequality is in fact an equality. For the data fidelity term,
the strict convexity of the squared `2 norm implies that
Hc1 − y = Hc2 − y⇔ Hc1 = Hc2 = yλ.

The second property (31) results from the case of equality in
the triangular inequality of the `1 norm: we have ‖Lcα‖1 =
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α‖Lc1‖1 + (1 − α)‖Lc2‖1. Each coordinate can be treated
separately, yielding

| (Lcα)i | = α|(Lc1)i|+ (1− α)|(Lc2)i|
⇔(Lc1)i × (Lc2)i ≥ 0 ∀i ∈ {1, . . . , P}.

E. Proof of Proposition 3

We prove the following statement, which is stronger than
that of Proposition 3:
SLP
h is a compact convex set, and Sh and SLP

h have cor-
responding extreme points through the one-to-one mapping
φ : Sh → SLP

h defined by φ(c) = (c, |Lc|) and its inverse
φ−1 : SLP

h → Sh defined by φ−1((c,u)) = c.

Proof. Let us first observe that SLP
h is of the form SLP

h =
{(c, |Lc|) ∈ R2N−N0 , c ∈ RN}, where |x| is the vector of
component-wise absolute values of x. This implies that {c ∈
RN , (c, |Lc|) ∈ SLP

h } is the solution set of the constrained
optimization Problem (32), which is equal to Sh. Therefore,
we have proved that Sh = {c ∈ RN , (c, |Lc|) ∈ SLP

h }, and
thus that SLP

h = {(c, |Lc|) ∈ R2N−N0 , c ∈ Sh}. Hence,
SLP
h is a non-empty compact set as the continuous image of

the non-empty compact set Sh through φ. Moreover, SLP
h is

convex as the solution set of a linear program.
Next, (31) in Lemma 1 implies that φ : Sh → SLP

h is a linear
map. Moreover, φ is invertible and its inverse φ−1 : SLP

h → Sh
is also linear. The desired result immediately follows.

F. Proof of Lemma 2

We first recap some useful properties of ML(R) given in
[15]. Let (φ,p) be a biorthogonal system for NL in the sense
of Definition 3 in [15]. Therefore, p = (p1, . . . , pN0

) is a basis
of NL and φ = (φ1, . . . , φN0

) is a basis of N ′L the dual space
of NL. Referring to Part 2 of Theorem 5 in [15], any element
f ∈ML(R) has a unique representation as f = L−1φ {w}+ q

where w ∈M(R) and q ∈ NL. The operator L−1φ is specified
by Theorem 4 in [15] and is a right inverse of L such that
φ(L−1φ {w}) = 0 for any w ∈ M(R). Next, by Theorem 6
in [15], the predual of ML(R) is CL(R) = CL,p(R) ⊕ N ′L,
where CL,p(R) = L∗{C0(R)}, L∗ being the adjoint operator
of L and C0(R) the set of continuous functions which vanish
at infinity. Finally, we remind our reader that given a space A
with predual B (i.e., B′ = A), the sequence (ak)k∈N where
ak ∈ A converges towards a ∈ A for the weak∗ topology if
∀b ∈ B, limk→∞〈ak, b〉 = 〈a, b〉.

By Theorem 1, there exists a solution s to Problem (10)
such that L{s} =

∑K
k=1 akδ(· − xk) where K ≤ M − N0

and all xk are pairwise distinct. As stated earlier, s can be
represented as s = L−1φ {w}+p where w =

∑K
k=1 akδ(·−xk)

and p ∈ NL. We thus have J (s) = J0 = ‖ν(s) − y‖22 +
λ‖a‖1. For a given h > 0, let xhk ∈ hZ be the grid element
closest to xk for all k ∈ {1, . . . ,K}, i.e., |xk − xhk | ≤ h

2 .
For small enough values of h, all xhk are pairwise distinct;
we place ourselves in this configuration. We then define sh =
p+
∑K
k=1 akL

−1
φ {δ(·−xhk)}, which is inML,h(R) since it can

also be written sh = q +
∑K
k=1 akρL(· − xhk) where q ∈ NL.

It yields a cost J (sh) = ‖ν(sh)− y‖22 + λ‖a‖1 since the xhk
are pairwise distinct.

Hence, there only remains to prove that ν(sh) converges to
ν(s) when h→ 0. We now show that sh → s for the weak∗

topology when h → 0; i.e., 〈sh, f〉 → 〈s, f〉 for any f ∈
CL(R). Let f = f1+f2 ∈ CL(R) be the unique representation
of f such that f1 ∈ CL,p(R) and f2 ∈ N ′L. We first notice that
φ(s − sh) = 0 since φ(L−1φ {w}) = 0 for any w ∈ M(R).
Therefore, since f2 ∈ span{φn}N0

n=1 we have 〈s−sh, f2〉 = 0.
Next, by definition of CL,p(R), ∃g ∈ C0(R) such that f1 =
L∗{g}. We thus have

〈s− sh, f1〉 = 〈s− sh,L∗{g}〉
= 〈L{s− sh}, g〉

=

K∑
k=1

ak〈δ(· − xk)− δ(· − xhk), g〉

=

K∑
k=1

ak(g(xk)− g(xhk)).

Moreover, from the definition of C0(R), g is continuous, and
since limh→0 x

h
k = xk, we have limh→0〈s− sh, f1〉 = 0. We

have thus proved that sh converges to s for the weak∗ topol-
ogy. Since ν is weak∗-continuous, we have limh→0 ν(sh) =
ν(s) and thus limh→0 J (sh) = J (s).
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