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ABSTRACT

We provide an extension of the L2-spline pyramid (Unser et al.,
1993) using polyharmonic splines. We analytically prove that
the corresponding error pyramid behaves exactly as a multi-scale
Laplace operator. We use the multiresolution properties of poly-
harmonic splines to derive an efficient, non-separable filterbank
implementation. Finally, we illustrate the potentials of our pyramid
by performing an estimation of the parameters of multivariate fractal
processes.

Index Terms— polyharmonic splines, multiresolution analysis,
Laplacian pyramids, fractals.

1. INTRODUCTION

The Laplacian operator has a special status in image processing due
to its invariances with respect to three fundamental coordinate trans-
formations: translation, dilation and rotation. Such invariances ap-
pear naturally in real-world images, and have also been noted in
mammalian visual systems [1]. It can be shown that, under appro-
priate assumptions, the complete class of such invariant operators
reduces to the family of fractional Laplacians (−∆)

γ
2 with γ in R+.

There fractional Laplacians are isotropic differential operators of or-
der γ with the following Fourier domain definition in the sense of
distributions

(−∆)
γ
2 f(x)

F←→ ‖ω‖γ f̂(ω). (1)

In this paper, we propose an extension of the L2-spline pyra-
mid [2], in which we replace classical polynomial splines by poly-
harmonic splines associated with fractional Laplacians. Our ap-
proach is applicable in an arbitrary number of dimensions and can
be efficiently implemented with non-separable digital filters. We
specify the corresponding error pyramid and prove that it implicitly
corresponds to a wavelet analysis [3] where the basis functions are
smoothed versions of the fractional Laplacian defined above. The
proposed construction, therefore, behaves exactly like a Laplacian
pyramid; while this behavior is only approximate in Burt and Adel-
son’s landmark paper on multiresolution image processing [4]. We
point out that our pyramid has better energy compaction due to the
fact that it is built around a projector, and that it is well suited to the
analysis of fractal-like processes.

2. MULTIRESOLUTION POLYHARMONIC SPLINES

The natural spline functions associated with the (fractional) Lapla-
cian operator are Duchon’s thin-plate splines and their polyharmonic
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extensions [5, 6]. By definition, these functions are distributional so-
lutions of the operator equation

(−∆)
γ
2 s(x) =

X

k∈L

c[k]δ(x − xk) (2)

where δ(x) is Dirac’s delta distribution, xk’s are the spline knots,
and c[k]’s are the free parameters of the model. By integration, one
shows that these splines can be expressed as linear combinations of
xk-translates of the Green’s function of (−∆)

γ
2 —also known as

radial basis functions—plus a polynomial component from the null-
space of the operator. These thin-plate splines are commonly used
for non-rigid registration of images; however, they are very cumber-
some to implement numerically.

Fortunately, when the set of spline knots forms a uniform grid,
the resulting cardinal polyharmonic splines admit a simple represen-
tation in terms of B-spline-like shift-invariant basis functions [6, 7].
In particular, for γ > d/2, a cardinal spline function s(x) with knot
spacing T admits the following Shannon-like representation

s(x) =
X

k∈Zd

s(Tk)φγ

“x − kT
T

”
(3)

where φγ is the polyharmonic spline interpolator of order γ over
the Zd grid; i.e., the unique polyharmonic spline that satisfies the
interpolating condition φγ(k) = δk (δk is Kronecker’s delta). The
main feature of (3) is that s(x) is uniquely specified by its samples
on the uniform grid TZd.

The function φγ has the following Fourier domain expression:

φ̂γ(ω) =
1

1 +
P

k∈Zd\{0}

“
‖ω‖

‖ω+2πk‖

”γ . (4)

The above formula is an extension to fractional orders of an original
result due to Madych and Nelson [6].

Cardinal polyharmonic splines satisfy dyadic scaling relations
and, therefore, provide an ideal setting for constructing a multidi-
mensional multi-resolution analysis. In particular, the interpolator
φγ fulfills the 2-scale relation

φγ(x/2) =
X

k∈Zd

hγ [k]φγ(x − k), (5)

where the filter hγ is specified by its frequency response

Hγ(ejω ) = 2d φ̂γ(2ω)

φ̂γ(ω)
= 2d

P
k∈Zd ‖ω + 2πk‖−γ

P
k∈Zd ‖ω + πk‖−γ

, (6)

which is obviously 2π periodic.



Consequently, one can construct a hierarchy of dyadic multi-
resolution spline spaces by way of the definition

V(n)
def
=

n X

k∈Zd

a[k]φγ

`
·/2n − k

´˛̨
˛a ∈ $2

o

with the property that V(n) ⊂ V(n′) for all n > n′.
The dual of the polyharmonic spline interpolator φγ is the

unique function φ̃γ ∈ V(0) that is biorthonormal to φγ . In the
Fourier domain, the biorthonormality condition yields

ˆ̃φγ(ω) =
φ̂γ(ω)

P
k∈Zd |φ̂γ(ω + 2πk)|2

=
φ̂2γ(ω)

φ̂γ(ω)
, (7)

where we have used the specific form of the interpolator given by
Eq. (4) to establish the second equality.

Translates of φ̃γ span the same space as those of φγ . The
biorthonormality condition of the dual basis can be used to for-
mulate orthogonal projection onto V(n). Specifically, let f be an
L2(Rd) function; then the projection of f onto V(n) can be written
as

Pnf(x)
def
=

X

k∈Zd

2−nd〈f, φ̃γ(·/2n − k)〉L2φγ(x/2n − k).

Since the V(n) spaces are nested, successive projections at differ-
ent scales can be reordered and simplified in standard wavelet-theory
fashion. That is, Pn′Pnf = PnPn′f = Pnf for n′ ≤ n.

3. THE POLYHARMONIC PYRAMID

In this section we shall expose the existing relationship between the
polyharmonic error pyramid and the fractionally iterated Laplacian
operator.

The polyharmonic error pyramid is defined as a succession of
functions each corresponding to the difference between two orthog-
onal projections of consecutive resolution. Therefore, the n-th level
of the pyramid for n ∈ Z is expressed as

Pn−1f − Pnf = (I − Pn)Pn−1f ,

where I is the identity operator and where the right-hand side fol-
lows from the fact that PnPn−1 = Pn.

[The “Giza”1] Theorem. The polyharmonic error pyramid behaves
like a multi-scale (fractional) Laplacian operator. Specifically, for
γ > d,

fLPn[m]
def
= (I − Pn)Pn−1f(x)

˛̨
x=2nm

= (−∆)
γ
2

h
2n(γ−d)ηγ(·/2n) ∗ f

i
(x)

˛̨
x=2nm

, (8)

where ηγ ∈ L2(Rd) is a rescaled smoothing kernel that is charac-
terized by its Fourier transform

η̂γ(ω) =
1

‖ω‖γ

1X

i=0

(−1)i+1 φ̂2γ(ω/2i)

φ̂γ(ω/2i)
<

Cγ

(1 + ‖ω‖)2γ
,

with η̂(0) += 0.

1In honor of the Great Pyramid of Giza, Built c. 2560 B.C., which is the
oldest and largest of the three pyramids in the Giza Necropolis.

This theorem states how to compute a sampled version of the
pyramid by applying the fractional Laplacian to a smoothed version
of the image. Since η̂γ(0) += 0 and lim‖ω‖→∞ η̂γ(ω) = 0, the
function ηγ(·/2n) acts like a low-pass filter with a bandwidth that is
inversely proportional to the scale. Thus, the values of the pyramid
at a certain level n can be understood as the γ/2-iterated fractional
Laplacian of a bandlimited approximation of the signal. Therefore,
from now on, we shall refer to the pyramid defined in (8) as the
fractional Laplacian pyramid (fLP).

Note that this Laplacian-like behavior also exists over a finer
grid, but its formulation requires some modification of ηγ . In partic-
ular, we can show that for uniform grids where the sampling step is
2n′ times smaller than the sampling step of the theorem, the samples
can be separated over different cosets with one single kernel acting
on each coset.

4. IMPLEMENTATION

Because of the multi-scale properties of polyharmonic spline in-
terpolators, it is possible to implement the corresponding projec-
tors using a combination of non-separable digital filtering and sam-
pling rate conversions. The proposed implementation falls within
the framework of perfect reconstruction filterbanks and is summa-
rized in Fig. 1. The synthesis filter is given by (6) while the dual
analysis filter can be shown to be

H̃γ(ejω ) =
H2γ(ejω )
Hγ(ejω )

using Eqs. (6) and (7).
Computations are all made in the Fourier domain using mir-

ror boundary conditions. The delicate step is the precalculation of
Hγ(ejω ) and H2γ(ejω ), which can be done efficiently thanks to a
recently published result that exploits the connection between these
frequency responses and the Epstein zeta function [8].

Fig. 1. Implementation of the n-th level of the fLP with non-
separable digital filters.

In Fig. 1, the projection of a discrete image is denoted by
fn[k] = Pnf(2nk) for k ∈ Zd. f0 is the discrete image that cor-
responds to the function f evaluated at the multi-integers. We also
define f̃n as the discrete image that corresponds to the expansion of
fn into the corresponding space at scale n− 1. Note that because of
the interpolation property of our splines, we can express this discrete
image as follows: f̃n[k] = Pnf(2n−1k), for k ∈ Zd.

5. APPLICATION

5.1. Multiresolution analysis

We first present some experimental results comparing the Burt and
Adelson Laplacian pyramid (LP) and the fractional Laplacian pyra-
mid (fLP) described in (8) in terms of energy compaction over 2D
images.

Pyramid decompositions of Lenna (512 × 512) are shown in
Fig. 2 with a parameter a = 3/8 for the Burt and Adelson pyra-



mid and γ = 4 for the fLP; the contrast was linearly stretched in
each subband to facilitate visual comparison. In the LP, the amount
of information displayed at each resolution is significant and Lenna
is still recognizable. On the other hand, in the fLP we can barely
distinguish Lenna from the background; only very high-frequency
details are still visible in this representation.

Fig. 2. Comparison of Laplacian pyramids: levels 1 to 5 of the LP
(left) and the fLP (right).

In order to quantitatively compare both pyramids in terms of
energy compaction we computed the root mean square (RMS) value
as a measure of energy contained in each level (Fig. 3). The better
performance of the fLP is particularly striking at the finest resolution
where the RMS value is approximately reduced by a factor of 2.
Note that this effect is reversed at coarser scales because of the fact
that the fLP has a tendency to pack the energy into the coarser levels
of the pyramid.
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Fig. 3. Comparison of performance (in RMS terms) at successive
pyramid levels for Lenna image.

5.2. Analysis of fractal processes

Let BH be a multi-variate fractional Brownian motion (fBm)
field [9] with Hurst exponent H . Such processes are whitened
through the application of a fractional Laplacian with the appropiate
order [10, 11]:

(−∆)
H
2 + d

4 BH = εHW, (9)
where W is white Gaussian noise and εH is a constant.

Estimation of the Hurst parameter is important in image pro-
cessing due to the fact that it provides a criterion to classify different
types of texture based on their second statistical moments [12]. The
“Giza” theorem allows us to derive estimators for the Hurst exponent
of BH through a multiresolution analysis. Indeed, by using (9) we
show that appropriate samples of the n-th level of the fLP applied
to a non-stationary fBm field BH are stationary Gaussian processes
obtained by filtering white noise:

fLPn[m] = 〈BH , (−∆)
γ
2 2n(γ−d)ηγ( ·

2n −m)〉

= 〈(−∆)
γ0
2 BH , (−∆)

γ−γ0
2 2n(γ−d)ηγ( ·

2n −m)〉

= 〈εHW, (−∆)
γ−γ0

2 2n(γ−d)ηγ( ·
2n −m)〉,

where γ0 = H + d/2. In the above, the first equality is a conse-
quence of the “Giza” theorem, the second one holds by duality, and
the last follows from the definition of fBm.

We can also establish the following exponential behavior of the
variance across scale:

E{|fLPn[m]|2} = 4HnE{|fLP0[m]|2}. (10)

Table 1. Performance of the fLP-based estimator for the Hurst ex-
ponent.

True Value mean stdev
0.3 0.294 0.051
0.6 0.589 0.053
0.9 0.879 0.054

We used this result to estimate the Hurst exponent of fBm field
by computing the slope of the linear regression of the log of multi-
scale variances. The estimation was performed on 100 instances of
512×512 fBm images for three different values of H (0.3, 0.6 and
0.9) (see Figs. 4a–c) using polyharmonic splines with γ = 4. De-
composition levels from 2 to 7 were used for the estimation. The
average and standard deviation of the estimated values are shown in
Table 1. The same multiresolution analysis was applied to a mam-
mogram (Fig. 4d) in order to illustrate the behavior of our estimator
in the case of natural fractal-like images.

6. CONCLUSION

Thin plate splines [5] are elegant mathematical construction but they
are notoriously hard to implement because of the bad condition-
ing of Green’s functions of the underlying Laplace operators. The
proposed scheme bypasses this limitation by considering a set of
Shannon-like basis functions and taking advantage of a filterbank al-
gorithm together with an efficient Fourier-domain implementation.

We have formally shown the close relationship between the
fLP and the well-known Burt and Adelson pyramid, and com-
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(a) fBm, H = 0.3
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(b) fBm, H = 0.6
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(c) fBm, H = 0.9
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Fig. 4. Regression plots for the estimation of the of the Hurst exponent; (a), (b), (c): single realizations of the fBm process; (d): a region of a
mammogram.

pletely characterized the Laplacian behavior of the former. Since
the whitening operator of a fractional Brownian motion is also a
fractional Laplacian, one can exploit the Laplacian-like behavior of
the fLP in order to construct multiresolution estimators of the Hurst
exponent for fBm fields and other fractal-like images. Specifically,
we used the exponential dependence of the variance of the fLP co-
efficients on the scale, in order to provide a log-regression based
estimator of the Hurst parameter.
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