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In this paper, we study the Besov regularity of Lévy white noises on the 
d-dimensional torus. Due to their rough sample paths, the white noises that we 
consider are defined as generalized stochastic fields. We, initially, obtain regularity 
results for general Lévy white noises. Then, we focus on two subclasses of noises: 
compound Poisson and symmetric-α-stable (including Gaussian), for which we make 
more precise statements. Before measuring regularity, we show that the question is 
well-posed; we prove that Besov spaces are in the cylindrical σ-field of the space 
of generalized functions. These results pave the way to the characterization of the 
n-term wavelet approximation properties of stochastic processes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The classical theory of stochastic processes deals with the definition and study of pointwise processes 
(Xt)t∈T , where T is a continuous-domain index set. For T = R, Lévy processes are important examples 
that are stochastically continuous with stationary and independent increments. Conventionally, these pro-
cesses are constructed by providing the probability law of their finite-dimensional marginals (Xt1, · · · , XtN ). 
Actually, they are fully characterized by the law of X1, which is infinitely divisible [24]. In this paper, we 
are using a more abstract approach. For us, a process is a probability measure on the space of generalized 
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functions, and as such, it is called a generalized stochastic process. We are following the seminal work of 
Gelfand and Vilenkin (Chapter III of [13]), and this approach has at least two advantages: 1) it allows us 
to give a meaning to processes that have no classical definition, such as white noises or their derivatives 
and 2) the solutions of stochastic partial differential equations are defined in a very general way. Along with 
these advantages, we face the difficulty of not knowing a priori anything about the regularity of generalized 
stochastic processes. The question of regularity is thus a crucial one. For instance, the regularity of a process 
is directly related to its n-term wavelet approximation [8,10,28] or tree approximation [1,7].

In this paper, we propose to determine the regularity of white noises defined on the d-dimensional 
torus Td. We obtain regularity results for general Lévy noises, and we make more precise statements for 
the classes of compound Poisson and symmetric-α-stable white noises. Our reason for working with white 
noises and not, for instance, pointwise Lévy processes, is that there is not a unique way to define Lévy 
processes indexed by r ∈ R

d with d ≥ 2; in fact, there are several definitions of the so-called Lévy fields 
that generalize the one-dimensional setting. However, for each such definition, a d-dimensional Lévy field is 
obtained by integrating its corresponding Lévy white noise. Moreover, we prefer to study Lévy white noises 
on Td, over those on Rd, in order to focus solely on the question of regularity. Indeed, the study of functions 
on Rd mixes the questions of regularity and decay at infinity. For stochastic processes, understanding the 
decay properties is already challenging (consider the log iterate law for Brownian motion [20]).

We measure the regularity of periodic stochastic processes in terms of Besov spaces, which generalize 
certain families of Sobolev spaces. In general, they provide a finer measure of smoothness than Sobolev and 
Hölder spaces, and they often appear in Banach space interpolation, when interpolating between classical 
smoothness spaces. Our primary interest in Besov spaces is their connection to wavelet analysis. Wavelet 
bases are composed of scaled versions of a mother wavelet, and for any given Besov space, we can define a 
wavelet basis. This is very convenient for studying stable processes, as we shall see.

To the best of our knowledge, the specific question of the Besov regularity of general periodic Lévy noises 
has not been addressed in the literature. However, there are numerous works dealing with the regularity 
of Lévy-type processes, and these are closely related to ours. On the regularity of Gaussian processes, 
we mention [3,4,6,22]. The Sobolev regularity of non-periodic Gaussian white noises was first addressed by 
Kusuoka [21]. More recently, Veraar obtained important results on the Besov regularity of periodic Gaussian 
white noises [32]; our work extends some of these results to the case of non-Gaussian noises. Stable classical 
processes were studied in [6,17]. More generally, Herren and Schilling examined the local Besov regularity of 
Lévy processes in one dimension [14,19,25,26]. The works of Schilling include results on the global regularity 
of Lévy processes in terms of weighted Besov spaces and extend to the case of Feller processes. For a 
review on the sample path properties of one dimensional Lévy processes, see [5, Chapter 5]; see also [2]. 
As we said, there are different definitions of classical Lévy fields that generalize the one-dimensional Lévy 
processes (cf. [12, Section 4] for a white noise approach). For discussions on this question, we refer the reader 
to [9,11].

Our work is motivated by the recent development of a probabilistic model for natural images, the inno-
vation model [31]. Images are described as solutions of stochastic partial differential equations driven by a 
Lévy white noise. When the white noise is non-Gaussian, the processes of the innovation model are called 
sparse processes, to which the results of this paper can be applied. Indeed, the regularity of Lévy noises is 
the first question to address in order to understand the regularity of sparse processes. Note that the theory 
in [31] is not periodic; however, the present work is an important first step toward the understanding of 
sparse processes in general.

This paper is organized as follows. In Section 2, we introduce the main notions for our study: the definition 
of periodic generalized stochastic processes and Besov spaces. Then, we show that the question of the Besov 
regularity of a generalized process is well-posed. Technically, we show that Besov spaces are part of the 
cylindrical σ-field of S ′(Td) (Section 3). Taking advantage of these new results, we determine the Besov 
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regularity of periodic white noises, with a special emphasis on stable noises (Section 4). The last section 
contains a discussion of our results and some possible extensions.

2. Mathematical foundations

2.1. Periodic Lévy white noises

In this paper, we study the regularity of periodic Lévy white noises. It is well-known that white noises 
cannot be defined as pointwise stochastic processes. Nevertheless, they can be defined as random generalized 
functions [13]. Note that Gelfand and Vilenkin only define non-periodic white noises, as generalized pro-
cesses, i.e. random elements of D′(Rd), the space of generalized functions. Thus, we extend [13] to periodic 
generalized processes and periodic white noises so that a periodic white noise is defined as a random element 
of S ′(Td), the space of generalized functions on the d-dimensional torus Td = R

d/Zd.
For a proper definition of periodic generalized processes, we introduce a measurable structure on the 

space of periodic generalized functions. The space of smooth periodic functions is denoted by S(Td), with 
topological dual S ′(Td). For u ∈ S ′(Td) and ϕ ∈ S(Td), we denote their duality products as 〈u, ϕ〉, assumed 
to be linear in both components. We use the same notation, in general, for pairs of elements from topological 
dual spaces. For (u, ϕ) ∈ E′ × E with S(Td) ⊂ E and E′ ⊂ S ′(Td), we write 〈u, ϕ〉, with the test function 
ϕ in the second position.

We denote probability spaces as (Ω, F , P). A cylindrical set of S ′(Td) is a subset of the form{
u ∈ S ′(Td)

∣∣ (〈u, ϕ1〉 , · · · , 〈u, ϕN 〉) ∈ B
}
, (1)

with N ∈ N, (ϕ1, · · · , ϕN ) ∈ (S(Td))N and B a Borel subset of RN . The cylindrical σ-field of S ′(Td) is the 
σ-field Bc(S ′(Td)) of S ′(Td) generated by the cylindrical sets.

Definition 1. A generalized periodic process on Ω is a measurable function

s : (Ω,F) →
(
S ′(Td),Bc

(
S ′(Td)

))
. (2)

The probability law of s is the probability measure Ps on the measurable space 
(
S ′(Td),Bc

(
S ′(Td)

))
:

∀B ∈ Bc(S ′(Td)), Ps(B) := P ({ω ∈ Ω | s(ω) ∈ B}) . (3)

The characteristic functional of s is the Fourier transform of its probability law, given for ϕ ∈ S(Td) by

P̂s(ϕ) :=
∫

S′(Td)

ei〈u,ϕ〉dPs(u). (4)

The characteristic functional characterizes the law of s. Because the space S(Rd) is nuclear, we have the 
following result, known as the Minlos–Bochner theorem.

Theorem 1. (See Theorem 3, Section III-2.6, [13].) A functional P̂ : S(Td) → C is the characteristic 
functional of some generalized process s if and only if P̂ is continuous, positive-definite, and P̂(0) = 1.

A function f : R → C is said to be a Lévy exponent if it is the log-characteristic function of an infinitely 
divisible law. To be precise, Lévy exponents f are continuous functions that are conditionally positive 
definite of order one with f(0) = 0 [31, Section 4.2]. The Lévy–Khintchine theorem (cf. Theorem 8.1 of [24]) 
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ensures that there exists μ ∈ R, σ2 ≥ 0 and a Lévy measure V – i.e., a Radon measure on R\{0} with ∫
R\{0} min(1, t2)V (dt) < ∞ – such that

f(ξ) = iμξ − σ2ξ2

2 +
∫

R\{0}

(
eiξt − 1 − iξt1|t|≤1

)
V (dt). (5)

A Lévy white noise w on D′(Rd) is defined from its characteristic functional by the relation, for all 
ϕ ∈ D(Rd),

P̂w(ϕ) = exp

⎛⎝∫
Rd

f(ϕ(r))dr

⎞⎠ , (6)

with f a Lévy exponent (see [13, Theorem 6, Section III-4.4]). Lévy white noises are stationary and indepen-
dent at every point (which means that 〈w,ϕ1〉 and 〈w,ϕ2〉 are independent if the supports of ϕ1, ϕ2 ∈ D(Rd)
are disjoint). Following the same idea, we now define periodic Lévy white noises.

Definition 2. A generalized periodic process w is a periodic Lévy white noise if its characteristic functional 
has the form

P̂w(ϕ) = exp

⎛⎝∫
Td

f(ϕ(r))dr

⎞⎠ , ∀ϕ ∈ S(Td), (7)

with f a Lévy exponent.

The proof that the previous functional P̂w is a well-defined characteristic functional on S(Td) is deduced 
from the case of white noises over D′(Rd) (see [13, Theorem 5, Section III-4.3]). Essentially, this reduces to 
the fact that the periodization of test functions from D(Rd) are test functions in S(Td).

2.2. Smoothness spaces

While our goal is to characterize the smoothness of white noise processes in terms of Besov regularity, 
we make use of Sobolev spaces as an intermediate step. The Sobolev space Hτ

2 (Td) of order τ ∈ R is defined 
as follows.

Definition 3. A periodic generalized function f is in Hτ
2 (Td) if its norm, defined by

‖f‖Hτ
2

:=
√∑

n∈Zd

(1 + |n|)2τ
∣∣〈f, e−2πi〈n,·〉

〉∣∣2, (8)

is finite.

Besov spaces can be used to accurately characterize the smoothness of periodic generalized functions. 
One of the advantages of using these spaces is that they are well suited to wavelet analysis. We can define 
wavelet bases for Besov spaces, and the wavelet analysis provides a means to define an isomorphism between 
Besov spaces on the domains Td and N.

For clarity in the definition, we index the Besov sequences in a manner analogous to the wavelet index. 
The index j denotes the scaling index of the wavelet, and it ranges from 0 to ∞. We adjust the scaling so 
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that the scale 0 wavelets are supported within the torus, and L ∈ N is used for this purpose. The index G
is used to refer to the gender of the wavelet. Since the coarsest scale includes the scaling function, the set of 
indices G0 at scale 0 has 2d elements. For j > 0, Gj has 2d − 1 elements. The translation sets are denoted 
as

P
d
j =

{
m ∈ Z

d
∣∣ 0 ≤ mk < 2j+L, 1 ≤ k ≤ d

}
, j ∈ N0. (9)

These are the 2(j+L)d lattice points in 2(j+L)
T
d. Finally, we denote the smoothness of a wavelet by the 

index u ∈ N; i.e., u denotes the number of continuous derivatives of a given wavelet basis. For a given 
smoothness u, we can construct compactly supported wavelets that are orthonormal bases of L2(Td), cf. 
[29, Section 1.3.2]. We consider only wavelets that are real valued.

Proposition 1. (See Proposition 1.34, [29].) If u ∈ N, then there is a wavelet system{
Ψj,per

G,m

∣∣∣ j ∈ N0, G ∈ Gj , m ∈ P
d
j

}
(10)

with regularity u that is an orthonormal basis of L2(Td).

We exclusively use the wavelet characterization of Besov spaces. For further details on alternative defi-
nitions, see [27, Section 3.5]. We begin by specifying the Besov sequence spaces.

Definition 4. (See Definition 1.32, [29].) Let τ ∈ R, 0 < p, q ≤ ∞. Then the Besov sequence space bτ,per
p,q is 

the collection of all sequences

λ =
{
λj,G
m ∈ C

∣∣ j ∈ N0, G ∈ Gj ,m ∈ P
d
j

}
(11)

such that

‖λ‖bτ,per
p,q

:=

⎛⎜⎝ ∞∑
j=0

2j(τ−d/p)q
∑

G∈Gj

⎛⎝∑
m∈Pd

j

∣∣λj,G
m

∣∣p⎞⎠q/p
⎞⎟⎠

1/q

< ∞. (12)

When p, q = ∞, suitable modifications must be made to the norm.

The following is a characterization of periodic Besov spaces.

Theorem 2. (See Theorem 1.37, [29].) Let {Ψj,per
G,m } be an orthonormal basis of L2(Td) with regularity u ∈ N. 

Let 0 < p, q ≤ ∞ and τ0 ∈ R such that u > max
(
τ0, d (1/p− 1)+ − τ0

)
. Let f ∈ S ′(Td). Then f ∈ Bτ0

pq(Td)
if, and only if, it can be represented as

f =
∑
j,G,m

λj,G
m 2−(j+L)d/2Ψj,per

G,m , λ ∈ bτ0,per
p,q , (13)

which converges unconditionally in S ′(Td) and in any space Bτ
p,q(Td) with τ < τ0. Furthermore, this repre-

sentation is unique,

λj,G
m =

〈
f, 2(j+L)d/2Ψj,per

G,m

〉
, (14)

and
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Fig. 1. On the left: this diagram provides a graphic representation of Besov spaces, including the Sobolev spaces. The vertical axis 
corresponds to the smoothness parameter τ , while the horizontal axis corresponds to the inverse of the “singularity” parameter p. 
A given point (1/p0, τ0) represents the spaces Bτ0

p0,q
(Td) for 0 < q ≤ ∞. On the right: this diagram illustrates the second item of 

Proposition 2. The plotted Besov space Bτ0
p0,q0

(Td) at (1/p0, τ0) embeds in all of the Besov spaces Bτ1
p1,q1

(Td) below the Sobolev 
embedding line (with slope d) for p1 ≥ p0, and it embeds in the spaces Bτ1

p1,q1
(Td) below the line of slope 0 for p1 < p0.

I : f �→
{〈

f, 2(j+L)d/2Ψj,per
G,m

〉}
is an isomorphic map of Bτ0

p,q(Td) onto bτ0,per
p,q .

Besov spaces are Banach spaces when p, q ≥ 1 and quasi-Banach spaces otherwise. Connections between 
Besov spaces with different parameters are provided below. For the benefit of the reader, we recall the 
necessary results from [27]. We follow the notation of this reference for (quasi-)Banach space embeddings.

Definition 5. A (quasi-)Banach space A1 is continuously embedded in another (quasi-)Banach space A2, 
denoted as A1 ⊂ A2, if there exists a constant C > 0 such that

‖f‖A2
⊂ C ‖f‖A1

(15)

for every f ∈ A1.

Proposition 2. (See pp. 164–170, [27].) If τ ∈ R and ε > 0, then

Bτ
2,2(Td) = Hτ

2 (Td),

Bτ+d(1/p0−1/p1)+
p0,q0 (Td) ⊂ Bτ−ε

p1,q1(T
d), 0 < p0, p1 ≤ ∞, 0 < q0, q1 ≤ ∞ (see Fig. 1),

Bτ+d(1/p−1/2)+
p,q (Td) ⊂ Hτ−ε

2 (Td), 0 < p ≤ ∞, 0 < q ≤ ∞,

H
τ+d(1/2−1/p)+
2 (Td) ⊂ Bτ−ε

p,q (Td), 0 < p ≤ ∞, 0 < q ≤ ∞.

(16)

In the sequel, we use a simplified version of Theorem 2, making the connection with Sobolev spaces. 
Before stating this result, we recall the duals of Besov spaces. For 0 < p < ∞, the conjugate p′ is the 
solution of 1/p + 1/p′ = 1 if p ≥ 1, and p′ = ∞ if p < 1.

Theorem 3. (See p. 171, [27].) Let τ ∈ R, 0 < p, q < ∞. Then, we have

•
(
Bτ

p,q(Td)
)′ = B−τ

p′,q′(Td) if 1 ≤ p < ∞,
•
(
Bτ

p,q(Td)
)′ = B

−τ+d(1/p−1)
∞,q′ (Td) if 0 < p < 1.

Corollary 1. Let τ ∈ R, 0 < p ≤ ∞, ε > 0, and u ∈ N such that u > max(τ, d(1/p −1/2)+−τ+ε). Let {Ψj,per
G,m }

be an orthonormal basis of L2(Td) with regularity u. Then, Bτ
p,q(Td) is the subset of Hτ−d(1/p−1/2)+−ε

2 (Td)
corresponding to functions f satisfying
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{〈
f, 2(j+L)d/2Ψj,per

G,m

〉}
∈ bτ,per

p,q .

Proof. The inequality u > max(τ, d(1/p − 1/2)+ − τ + ε) implies that u is greater than the three quantities 
τ , d (1/p− 1)+ − τ , and d(1/p − 1/2)+ − τ + ε. The first two conditions are required to apply Theo-
rem 2. The last condition guarantees that the wavelets are included in the dual of the Sobolev space 
H

τ−d(1/p−1/2)+−ε
2 (Td). �

Corollary 2. Let ε > 0, f ∈ H
−d/2−ε
2 (Td), τ ∈ R, 0 < p, q ≤ ∞, and u ∈ N such that u > max(d/2 +

ε, τ, d(1/p − 1/2)+ − τ + ε). Let {Ψj,per
G,m } be an orthonormal basis of L2(Td) with regularity u. Then f ∈

Bτ
p,q(Td) iff

{〈
f, 2(j+L)d/2Ψj,per

G,m

〉}
∈ bτ,per

p,q . (17)

Proof. We have the inclusion f ∈ H
−d/2−ε
2 (Td) ⊂ Hτ1

2 (Td), where

τ1 = min
{
−d/2 − ε, τ − d

(
1
p
− 1

2

)
+
− ε

}
. (18)

Therefore, Theorem 2 implies that f has a wavelet expansion with coefficients in bτ1,per
2,2,d . We also know that 

Bτ
p,q(Td) ⊂ Hτ1

2 (Td), so we apply Corollary 1 to complete the proof. �
This corollary can be summarized as follows. We have a function f in H−d/2−ε

2 (Td), and we want to know if it 
is in a given Besov space Bτ

p,q(Td). We therefore determine a Sobolev space Hτ1
2 (Td) that both H−d/2−ε

2 (Td)
and Bτ

p,q(Td) are embedded in. The coefficients of the wavelet basis for Hτ1
2 (Td) then characterize the 

Bτ
p,q(Td) smoothness.

Proposition 3. (See p. 164, [27].) If τ < d(1/p − 1) and 0 < p, q ≤ ∞, then the Dirac distribution δ is in 
the Besov space Bτ

p,q(Td).

3. Besov spaces are measurable

The framework of generalized stochastic processes allows us to define very general processes, such as white 
noises or (weak) derivatives of white noises of any order. Consequently, the problem of existence of a solution 
of a stochastic partial differential equation is more easily solved than in the classical framework. However, 
we only know that our solution is a random element in the whole space S ′(Td) of periodic generalized 
functions. In particular, we know a priori nothing about the regularity of a generalized stochastic process. 
We would like to say, for instance, that a process is continuous if its sample paths are almost surely (a.s.) in 
the space of continuous functions on the torus. More generally, we would like to understand the regularity in 
terms of Besov spaces. However, to ask the question “Is my process in a given Besov space with probability 
one?”, we first need to show that this question is well-posed. This requires us to show that Besov spaces are 
measurable subspaces of the space of generalized functions.

Theorem 4 (Besov spaces are measurable). For every 0 < p, q ≤ +∞ and every τ ∈ R, we have

Bτ
p,q(Td) ∈ Bc(S ′(Td)), (19)

where we remind the reader that Bc(S ′(Td)) is the cylindrical σ-field of S ′(Td).
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We prove this result in two steps. First, we focus on the Sobolev spaces Hv
2 (Td) for v ∈ R, and we show 

that they are measurable subspaces of S ′(Td). Then, we reduce the question to the fact that every Besov 
space is a measurable subspace of some Sobolev space. This simplification step is useful because we have 
a wavelet characterization of Besov spaces as subspaces of Sobolev spaces. In order to apply the described 
approach, we use the following result.

Lemma 1. Let E be a topological vector space, E′ its topological dual and Bc(E′) the cylindrical σ-field on E′, 
generated by the cylinders of the form

Cϕ1,···,ϕN ,B := {f ∈ E′ | (〈f, ϕ1〉 , · · · , 〈f, ϕN 〉) ∈ B} . (20)

Here, N ∈ N\{0}, ϕ1, · · · , ϕN ∈ E and B is a Borel subset of RN . Then, for every countable set S, every 
collection of finite sets Tn (n ∈ S), every ϕn, ϕn,m ∈ E (n ∈ S and m ∈ Tn), and every α, β > 0, we have{

f ∈ E′

∣∣∣∣∣ ∑
n∈S

|〈f, ϕn〉|α < ∞
}

∈ Bc(E′) (21)

and ⎧⎨⎩f ∈ E′

∣∣∣∣∣∣
∑
n∈S

( ∑
m∈Tn

|〈f, ϕn,m〉|α
)β

< ∞

⎫⎬⎭ ∈ Bc(E′). (22)

Proof. We prove (22) and deduce (21) by choosing Tn to have cardinality 1 with β = 1. We denote by RN

the space of real sequences, with the product σ-field. The set of couples (n, m) with n ∈ S and m ∈ Tn is 
denoted by A. By definition of the cylindrical σ-field, for fixed ϕ = (ϕn,m)(n,m)∈A, the projection

πϕ(f) = (〈f, ϕn,m〉)(n,m)∈A (23)

is measurable from E′ to RN. (Rigorously, this projection is from E′ to RA, but A being countable, we 
admit this slight abuse of notation.) Moreover, the function Fα,β from RN to R+ ∪{∞} that associates to a 

sequence (an,m)(n,m)∈A the quantity 
∑

n∈N

(∑
m∈Tn

|an,m|α
)β is measurable. Finally, since R+ is measurable 

in R+ ∪ {∞}, ⎧⎨⎩f ∈ E′

∣∣∣∣∣∣
∑
n∈N

( ∑
m∈Tn

|〈f, ϕn,m〉|α
)β

< ∞

⎫⎬⎭ = π−1
ϕ

(
F−1
α,β(R+)

)
(24)

is measurable in E′. �
Proof of Theorem 4.
Step 1: Hv

2 (Td) is measurable.
For a fixed v ∈ R, we have

Hv
2 (Td) =

⎧⎨⎩f ∈ S ′(Td)

∣∣∣∣∣∣
∑
n∈Zd

(1 + |n|)2v
∣∣∣〈f, e−2πi〈n,·〉

〉∣∣∣2 < ∞

⎫⎬⎭ . (25)

Thus, the conditions of Lemma 1 are satisfied, with E = S(Td), S = Z
d, α = 2 and ϕn = (1 + |n|)v e−2πi〈n,·〉, 

and we obtain that Hv
2 (Td) ∈ Bc(S ′(Td)).
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Moreover, we know that S(Td) =
⋂

k∈Z
Hk

2 (Td) is a countably Hilbert nuclear space [18, Section 1.3]. Its 
topology is defined by the family of Hilbert norms associated with the Sobolev spaces Hk

2 (Td) with k ∈ Z. 
Actually, we can also include the Hilbert norm of H−v

2 (Td) into the family, resulting in the same nuclear 
topology on S(Td). Hence, we are in the context of Theorem 1.2.41 of [18], and we know that

Bc(Hv
2 (Td)) =

{
B ∩Hv

2 (Td)
∣∣ B ∈ Bc(S ′(Td))

}
. (26)

Coupled with the measurability of Hv
2 (Td), we deduce that

Bc(Hv
2 (Td)) ⊂ Bc(S ′(Td)). (27)

Step 2: Bτ
p,q(Td) is measurable.

Let us fix 0 < p, q < ∞ and τ ∈ R. Corollary 1 ensures that, for ε > 0, u ∈ N such that u >
max(τ, d(1/p − 1/2)+ − τ + ε) and {Ψj,per

G,m } an orthonormal basis in L2(Td) with regularity u, there exists 
v ∈ R (v = τ − d(1/p − 1/2)+ − ε) such that

Bτ
p,q(Td) =

⎧⎪⎨⎪⎩f ∈ Hv
2 (Td)

∣∣∣∣∣∣∣
∑

j∈N,G∈Gj

⎛⎝∑
m∈Pd

j

∣∣〈f, ϕ(j,G),m
〉∣∣p⎞⎠q/p

< ∞

⎫⎪⎬⎪⎭
ϕ(j,G),m = 2j(α−d/p+d/2)+Ld/2ψj,per

G,m . (28)

Again, we satisfy the conditions of Lemma 1, with E = Hv
2 (Td), S = {(j, G), j ∈ N, G ∈ Gj}, Tn = P

d
j for 

n = (j, G), α = p, and β = q/p.
Thus, we know that Bτ

p,q(Td) ∈ Bc(Hv
2 (Td)). Considering this together with (27), we finally deduce (19).

Suitable modifications are made for the cases p = ∞ or q = ∞. �
Let s be a generalized periodic process with probability law Ps that satisfies Ps(Bτ

p,q(Td)) = 1. We 
define the set Ω0 :=

{
ω ∈ Ω

∣∣ s(ω) ∈ Bτ
p,q(Td)

}
, and we say that s admits a version localized in the space 

Bτ
p,q(Td). It is defined by s̃(ω) = s(ω), if ω ∈ Ω0, and s̃(ω) = 0 otherwise. We then identify s with s̃. As such, 

it becomes possible to consider random variables of the form 〈s, f〉 with f ∈ (Bτ
p,q(Td))′ (see Theorem 3), 

and possibly f /∈ S(Td). This fact will be used in the next section.

4. On the regularity of Lévy noises

4.1. Regularity of general Lévy noises

As mentioned previously, we can only consider a priori test functions ϕ ∈ S(Td) as windows for a given 
periodic generalized process s. However, in order to use Corollary 1 and measure the Besov regularity of s, 
we first derive preliminary results on Sobolev regularity. Here, we restrict the domain of definition of every 
periodic white noise so that we can consider test functions (wavelets) in Hd/2+ε

2 (Td), and not necessarily in 
S(Td).

Proposition 4. If w is a periodic white noise, and ε > 0, then

P
(
w ∈ H

−d/2−ε
2 (Td)

)
= 1. (29)

1 Ito showed that (26) holds not only for S′(Td) but for every space S′ that is dual to a multi-Hilbert space S. Note that the 
cylindrical σ-field is called the Kolmogorov σ-field in [18], so it is denoted by BK(S′).
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Proof. According to Theorem A.22 of [15], it is sufficient to prove the two following results:

1. the inclusion I : Hd/2+ε
2 (Td) → L2(Td) is a Hilbert–Schmidt operator, and

2. the characteristic functional P̂w is continuous with respect to the norm ‖ · ‖L2(Td).

For the first point, we simply remark that the family{
(1 + |n|)−d/2−εe2πi〈n,·〉

}
n∈Zd

(30)

is an orthonormal basis of Hd/2+ε
2 (Td). Moreover, we have∑

n∈Zd

‖(1 + |n|)−d/2−εe2πi〈n,·〉‖2
L2(Td) =

∑
n∈Zd

(1 + |n|)−d−2ε < ∞. (31)

Hence, I is Hilbert–Schmidt.
Let us now show that P̂w is continuous with respect to ‖ · ‖L2(Td). Since P̂w is positive definite, it is 

sufficient to demonstrate continuity at the origin, see for instance [16]. The characteristic functional of w
has the general form of (7) with f a Lévy exponent, so it has a Lévy–Khintchine representation (5). Let 
{ϕn}n∈N

be a sequence of functions in S(Td) with ‖ϕn‖L2(Td) → 0. If we develop the Lévy expansion of f
in (7), then ∣∣∣log P̂w(ϕn)

∣∣∣ ≤ |μ| ‖ϕn‖L1(Td) + σ2

2 ‖ϕn‖L2(Td)

+
∫
Td

∫
0<|t|≤1

∣∣∣eiϕn(r)t − 1 − iϕn(r)t
∣∣∣V (dt)λ(dr)

+
∫
Td

∫
|t|>1

∣∣∣eiϕn(r)t − 1
∣∣∣V (dt)λ(dr) (32)

where λ is the Lebesgue measure on Td, normalized such that λ(Td) = 1. Let ε > 0, and M ≥ 1
such that 

∫
|t|>M

V (dt) ≤ ε. Let n be large enough so that ‖ϕn‖L2(Td) ≤ ε/M . Then, ‖ϕn‖L1(Td) ≤√
λ(Td) ‖ϕn‖L2(Td) = ‖ϕn‖L2(Td) ≤ ε/M .
We have to control the different terms of (32).
First, we remark that, since M ≥ 1,

|μ| ‖ϕn‖L1(Td) + σ2

2 ‖ϕn‖L2(Td) ≤ (μ + σ2/2)ε. (33)

For the penultimate term, using the fact that 
∣∣eix − 1 − ix

∣∣ ≤ x2, we have∫
Td

∫
0<|t|≤1

∣∣∣eiϕn(r)t − 1 − iϕn(r)t
∣∣∣V (dt)λ(dr) ≤ ‖ϕn‖L2(Td)

∫
0<|t|≤1

t2V (dt)

≤

⎛⎜⎝ ∫
0<|t|≤1

t2V (dt)

⎞⎟⎠ ε (34)

2 Theorem A.2 of [15] ensures that, if E is a countably Hilbert space included in L2(Rd), then we can deduce bounds on the 
support of a probability measure over E′ from the continuity of the characteristic functional. Here, we use a version of this result 
where E = S(Td) ⊂ L2(Td), the adaptation to the periodic case being straightforward.
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For the last term of (32), we use 
∣∣eix − 1

∣∣ ≤ |x| and 
∣∣eix − 1

∣∣ ≤ 2, which yields∫
Td

∫
|t|>1

∣∣∣eiϕn(r)t − 1
∣∣∣V (dt)λ(dr) =

∫
Td

∫
|t|>M

∣∣∣eiϕn(r)t − 1
∣∣∣V (dt)λ(dr)

+
∫
Td

∫
1<|t|≤M

∣∣∣eiϕn(r)t − 1
∣∣∣V (dt)λ(dr)

≤ 2

⎛⎝∫
Td

λ(dr)

⎞⎠
⎛⎜⎝ ∫

|t|>M

V (dt)

⎞⎟⎠

+

⎛⎜⎝ ∫
1<|t|≤M

|t|V (dt)

⎞⎟⎠ ‖ϕn‖L1(Td)

≤ 2ε + M

⎛⎜⎝ ∫
1<|t|≤M

V (dt)

⎞⎟⎠ ε

M
(35)

≤

⎛⎜⎝2 +
∫

1<|t|

V (dt)

⎞⎟⎠ ε. (36)

Finally, for a given ε and n large enough, we have∣∣∣log P̂w(ϕn)
∣∣∣ ≤ κε, (37)

with

κ = |μ| + σ2

2 +
∫

R\{0}

min(1, t2)V (dt) + 2 < ∞. (38)

Thus, we can conclude that P̂w is continuous with respect to ‖·‖L2(Td). �
Corollary 3. Let w be a Lévy white noise. Then, for every 0 < p, q ≤ ∞ and τ ∈ R such that

τ < d

(
1

max (p, 2) − 1
)
, (39)

we have

w ∈ Bτ
p,q(Td) a.s. (40)

Proof. From the fourth relation of (16), we know that for all 0 < p, q ≤ ∞ and τ > 0, we have the 
inclusion H−d/2−ε

2 (Td) ⊂ B
−d/2−ε−d(1/2−1/p)+−τ
p,q (Td). We already know from Proposition 4 that w is a.s. in 

H
−d/2−ε
2 (Td) for any ε > 0, from which we deduce (40). �
Corollary 3 gives a general result on the Besov localization of Lévy white noises. Moreover, we shall use 

Proposition 4 to obtain stronger results on the regularity of stable noises in Section 4.3.
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4.2. Regularity of compound Poisson noises

Compound Poisson noises are a special case of Lévy noises. For all ϕ ∈ S(Td), the characteristic functional 
of a compound Poisson noise w has the form

P̂w(ϕ) = exp

⎛⎜⎝c

∫
Td

∫
R\{0}

(eiξtϕ(r) − 1)P (dt)λ(dr)

⎞⎟⎠ , (41)

where c > 0 and P is a probability measure on R\{0} [30]. Note that in the referenced work, compound 
Poisson noises are defined over Rd. However, this definition is applicable to Td by restriction and periodiza-
tion.

A compound Poisson noise on the d-dimensional torus is a.s. a finite sum of Dirac delta functions with 
random locations and sizes. This makes the question of its Besov regularity especially simple. Indeed, from 
Theorem 1 of [30], we have the following equality in law:

w(r) =
N∑

n=1
anδ(r − rn). (42)

In this formula, N is a Poisson random variable with parameter c, the vector (an) ∈ R
N is i.i.d. with 

law P , and the vector of random Dirac locations (rn) ∈ (Rd)N satisfies that, for every measurable A ⊂ T
d, 

# {n | rn ∈ A} is a Poisson random variable of parameter cλ(A). Note, moreover, that (rn) and (an) are 
independent.

Proposition 5. Let w be a compound Poisson noise. Then, for every τ ∈ R and 0 < p, q ≤ ∞ such that 
τ < d (1/p− 1), we have w ∈ Bτ

p,q(Td) almost surely.

Proof. The Besov smoothness of a single Dirac was stated in Proposition 3. Since the process w is almost 
surely a finite sum of Diracs, it has the same regularity. �
4.3. Regularity of SαS noises

For a given α ∈ (0, 2], a symmetric-α-stable (SαS) white noise wα is a generalized stochastic process with 
characteristic functional

P̂wα
(ϕ) = exp

(
−γα ‖ϕ‖αLα(Td)

)
, (43)

where γ > 0 is the shape parameter. For α = 2, w2 is the Gaussian white noise. Details on stable laws can 
be found in [23].

Theorem 5. Given α ∈ (0, 2], let wα be a SαS white noise.

• If α = 2, then for every 0 < p, q ≤ ∞ and every τ < −d/2, we have

w2 ∈ Bτ
p,q(Td) a.s.; (44)

• if α < 2, then for every 0 < p, q ≤ ∞ and τ ∈ R such that

τ < d

(
1 − 1

)
, (45)
max (p, α)
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we have

wα ∈ Bτ
p,q(Td) a.s. (46)

We first prove a result on the moments of SαS white noises.

Definition 6. For every α ∈ (0, 2] and p ∈ (0, ∞), let

Cp,α(ϕ) := E [|〈wα, ϕ〉|p]
‖ϕ‖pLα(Td)

∈ [0,∞] (47)

for ϕ ∈ S(Td)\{0}.

Lemma 2. Let α ∈ (0, 2] and p ∈ (0, ∞). The functional Cp,α is independent of ϕ ∈ S(Td), and moreover, 
Cp,α < ∞ iff α = 2 or p < α < 2.

Proof. The characteristic function of the random variable 〈w,ϕ〉 / ‖ϕ‖Lα(Td) is

P̂w

(
ξ

ϕ

‖ϕ‖Lα(Td)

)
= exp

⎛⎝−γα

∥∥∥∥∥ ξϕ

‖ϕ‖Lα(Td)

∥∥∥∥∥
α

Lα(Td)

⎞⎠ = exp (−γα|ξ|α) . (48)

Thus, the random variables ‖ϕ‖−1
Lα(Td) 〈w,ϕ〉 are identically distributed for every ϕ �= 0. From this, we 

deduce that

Cp,α(ϕ) = E [|〈w,ϕ〉|p]
‖ϕ‖pLα(Td)

= E

[∣∣∣‖ϕ‖−1
Lα(Td) 〈w,ϕ〉

∣∣∣p] (49)

is independent of ϕ. Moreover, Cp,α is the pth-moment of a SαS random variable. As such, it is always finite 
for α = 2 (Gaussian case) and it is finite for α < 2 iff p < α. �
Proof of Theorem 5. We first focus on Besov spaces of the form Bτ

p,p(Td) with 0 < p < ∞. Let u ∈ N

such that u > max(d/2 + ε, τ, d (1/p− 1/2)+ − τ + ε) for some ε > 0, and let {Ψj,per
G,m } be an orthonor-

mal basis of L2(Td) with regularity u. From Corollary 2 and Proposition 4, we know that w ∈ Bτ
p,p(Td)

iff

hp,α,ψ =
∑
j≥0

2j(τp−d+dp/2)
∑
G,m

∣∣∣〈w,ψj,per
G,m

〉∣∣∣p < ∞. (50)

We deduce that if

E [hp,α,ψ] =
∑
j≥0

2j(τp−d+dp/2)
∑
G,m

E

[∣∣∣〈w,ψj,per
G,m

〉∣∣∣p] (51)

is finite, then wα ∈ Bτ
p,p(T) a.s. (of course, a positive random variable X – here the Besov norm of w – with 

a finite mean is a.s. finite).
Based on Lemma 2, we know that

E

[∣∣∣〈w,ψj,per
G,m

〉∣∣∣p] = Cp,α

∥∥∥ψj,per
G,m

∥∥∥p . (52)

Lα(Td)
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Moreover, a change of variables shows that, for every (j, G, m),∥∥∥ψj,per
G,m

∥∥∥p
Lα(Td)

= 2jdp(1/2−1/α)
∥∥∥ψper

G,0

∥∥∥p
Lα(Td)

. (53)

Then, we have

E [hp,α,ψ] =
∑
j≥0

2j
(
τp−d+ p

2
) ∑
G,m

E

[∣∣∣〈w,ψj,per
G,m

〉∣∣∣p]
=
∑
j≥0

2j
(
τp−d+ dp

2

) ∣∣Pd
j

∣∣∑
G

Cp,α2jdp
( 1
2− 1

α

) ∥∥∥ψper
G,0

∥∥∥p
Lα(Td)

= 2LdCp,α

∑
G

∥∥∥ψper
G,0

∥∥∥p
Lα(Td)

⎛⎝∑
j≥0

2j
(
τp+dp− dp

α

)⎞⎠ ,

recalling that Pd
j are the translation sets satisfying 

∣∣Pd
j

∣∣ = 2(j+L)d. Finally, E [hp,α,ψ] is finite iff Cp,α < ∞
and τp + dp − dp/α = p(τ + d − d/α) < 0, i.e., τ < d/α− d.

For α = 2 (Gaussian case), we have Cp,α < ∞ for every p < ∞. Hence, we obtain (44) for every p = q �= ∞
and τ < −1/2. The other cases are deduced with the help of Proposition 2. For instance, for τ < −d/2, 
let 0 < ε < −τ − d/2. Then, w2 ∈ Bτ+ε

2,2 (Td) a.s. and Bτ+ε
2,2 (Td) ⊂ Bτ

∞,∞(Td). Thus, w2 ∈ Bτ
∞,∞(Td) a.s. 

For 0 < p, q ≤ ∞ and τ < −d/2, let us fix 0 < ε < −d/2 − τ . Then, Bτ+ε
p,p (Td) ⊂ Bτ

p,q(Td), and thus 
w2 ∈ Bτ

p,q(Td) a.s.
Similarly, because Cp,α < ∞ for p < α, we obtain (46) for p = q < α and τ < d/α− d.
If α ≤ p = q ≤ ∞ and τ < d/p − d, we define δ = d/p − d − τ > 0. Then we let 0 < ε < δ/3 and p0 < α

such that 1/α < 1/p0 < 1/α + δ/3d. From Proposition 2, we know that

Bτ+d/p0−d/p+ε
p0,p0

(Td) ⊂ Bτ
p,p(Td). (54)

Moreover, we have

τ + d

p0
− d

p
+ ε = d

p0
− d + ε− δ

<
d

α
− d. (55)

Hence,

wα ∈ Bτ+d/p0−d/p+ε
p0,p0

(Td) ⊂ Bτ
p,p(Td) a.s. (56)

This proves (46) for p = q. The other cases follow from embedding arguments similarly to the Gaussian 
case. �
5. Discussion

The primary contributions of this paper are the smoothness estimates for non-Gaussian white noises. In 
Fig. 2, we summarize the results of the previous section, i.e. Corollary 3, Proposition 5, and Theorem 5.

As a point of fact, the results in the Gaussian case are not new. Indeed, Veraar obtained (44) in Theo-
rem 3.4 of [32], and his result is actually stronger because he showed that w2 ∈ B

−d/2
p,∞ (Td) almost surely 

for 1 ≤ p < ∞. In our case, we only have results for regularity τ < −d/2. Moreover, Veraar derived some 
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Fig. 2. These diagrams represent the Besov localization of different white noises. A white noise is in a given Besov space Bτ
p,q(Td)

a.s. if (1/p, τ) is located in the shaded region of the diagram.

converse results, showing, for instance, that w2 is almost surely not in B−d/2
p,q (Td) if q �= ∞. This slight 

refinement is largely due to the fact that his approach is intrinsically Gaussian in nature (the white noise 
is described by its independent collection of Fourier coefficients, see Proposition 3.3 of [32]). Unfortunately, 
these methods do not naturally extend to the non-Gaussian setting.

By contrast, our approach allows us to directly work with Besov parameters p, q < 1 that are not 
considered in [32]. For instance, we see that in the proof of Theorem 5 for α < 1, we deduce all of our 
regularity results from the preliminary cases with p = q < α < 1.

Symmetric-α-stable noises are natural generalizations of Gaussian white noises. They are a parametric 
family defined by the parameter α ∈ (0, 2], where α = 2 corresponds to the Gaussian case [23]. In Theorem 5, 
we characterized their smoothness behavior. As α becomes smaller, we see in particular that the regularity 
of wα increases. When α goes to zero, the shaded region in Fig. 2(d) converges to the shaded region for a 
compound Poisson noise, Fig. 2(b).

While we have determined smoothness bounds, we have not yet exhausted the topic of regularity for 
periodic Lévy noises. First, we conjecture a 0 − 1 law for the Besov regularity of periodic noises.

Conjecture 1. For every noise w and every τ ∈ R, 0 < p, q ≤ ∞,

P
(
w ∈ Bτ

p,q(Td)
)

= 0 or 1.

Second, in the case of α-stable noises, we obtained results for regularity smaller than 1/α− 1. However, it 
is shown in Theorem IV.1 of [6] that SαS processes on the real line (d = 1) with 1 < α < 2 are in the local 
Besov spaces Bα

p,∞,loc(R) if 1 ≤ p < α. This suggests the following.

Conjecture 2. If 0 < p < α < 2, the SαS processes wα satisfy

P

(
wα ∈ Bd(1/α−1)

p,∞ (Td)
)

= 1.

We expect finer results than Corollary 3 for the regularity of general Lévy noises (non-stable, non-compound 
Poisson). Ideally, we should be able to compute the probability of every Besov space for each Lévy noise. 
Finally, in a future work, we plan to extend the results of this paper to sparse stochastic processes that are 
solutions of non-Gaussian stochastic partial differential equations.
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