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Abstract Consider a random process s that is a solution of the stochastic differential
equation Ls = w with L a homogeneous operator and w a multidimensional Lévy
white noise. In this paper, we study the asymptotic effect of zooming in or zooming
out of the process s. More precisely, we give sufficient conditions on L and w such
that a® s (- /a) converges in law to a non-trivial self-similar process for some H, when
a — 0 (coarse-scale behavior) or a — oo (fine-scale behavior). The parameter H
depends on the homogeneity order of the operator L and the Blumenthal-Getoor and
Pruitt indices associated with the Lévy white noise w. Finally, we apply our general
results to several famous classes of random processes and random fields and illustrate
our results on simulations of Lévy processes.
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1 Introduction

A random process s is self-similar if there exists H, called the self-similarity index
of s, such that the rescaled process a5 (-/a) has the same probability law than s for
every a > 0. A Lévy process is a stochastically continuous random process X =
(X ());er that vanishes at O and with stationary and independent increments. When
the marginals of X (#) are symmetric-«-stable (S« S), the process X is self-similar [46].
More precisely, for the SaS process X, with 0 < o < 2, we have that
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a’* X, (t/a) L X, ), (1)

forevery t € Rand a > 0. The self-similarity index of X, is therefore H = 1/«. The
case a = 2 corresponds to the Brownian motion. However, the Lévy process X is no
longer self-similar when the noise is not stable.

The study of self-similar processes (indexed by ¢+ € R) and fields (indexed by
x € R? with d > 2) is a branch of probability theory [17]. They have been applied
in areas such as signal and image processing [7,19,43] or traffic networks [34,40],
among others [36,37]. Many prominent random processes are self-similar, including
fractional Brownian motion [38], its higher-order extensions [42], infinite-variance
stable processes [46], and their fractional versions [29]. The case of random fields
has also been investigated in both the Gaussian [2,4,15,35,52] and the «-stable case
[1,2,6].

As already seen below, the self-similarity is intimately linked with stable laws
[46], since they are the only possible probabilistic limits of the renormalized sum
of independent and identically distributed random variables. This is the well-known
(generalized) central limit theorem [24, Sect. X VII-5], with the consequence that self-
similar processes are often scaling limits of many discretization schemes and stochastic
models [5,11,16,32,50].

The self-similarity imposes a strong constraint on the law of the random process. In
particular, it intimately links the behaviors at coarse and fine scales. We have mentioned
how the self-similar models have been successfully used, but it can also appear to be
too restrictive. One advantage of the family of Lévy processes and their generalizations
is to overcome this restriction.

In this paper, we focus on the impact of rescaling operations for a broad class of
random processes that are asymptotically or locally self-similar. These processes are
specified as the solutions of a stochastic differential equation (SDE) of the form

Ls = w, (2)

where w a multidimensional Lévy white noise and L is a differential operator on the
functions from R¥ to R. We assume moreover that the operator L is homogeneous of
some order y > 0, in the sense that L{¢(-/a)} = a7 (Lg)(-/a) for any function ¢
and a > 0. Typically, in dimension d = 1, the derivative is homogeneous of order 1.
Our aim is to study the statistical behavior of the rescaling x +— s(x/a) of a solution
of (2) when a > 0 is varying. Our two main questions are:

e What is the asymptotic behavior of s(-/a) when we zoom out the process (i.e.,
when a — 0)?
e What is the local behavior when we zoom in (i.e., when a — 00)?

Our main contribution is to identify sufficient conditions such that the rescaling
a's(-/a) of a solution of (2) has a non-trivial self-similar asymptotic limit as a goes
to 0 or co. When this limit exists, the parameter H is unique and depends essentially
on the degree of homogeneity y of L and on the Blumenthal-Getoor and Pruitt indices
Boo and B of w [8,44]. The indices By and B, are used in the literature to characterize
the asymptotic and local behaviors of Lévy processes and more generally Lévy-type
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processes [9]. We summarize the main results of our paper in Theorem 1.1. Precise
definitions and rigorous statements are given later.

Theorem 1.1 Let L be a y-homogeneous operator and w a Lévy process with indices
Boo and Bo. Under some technical conditions, the solution s to the equation Ls = w
has the following properties.

e The process s is asymptotically self-similar of order Hxo = y +d(1/Bp — 1), in
the sense that a™>s(-/a) converges to a self-similar process of order Hy, when
a— 0.

e The process s is locally self-similar of order Hioc = y +d(1/Boo — 1), in the sense
that a™ecs(-/a) converges to a self-similar process of order Hio. when a — oo.

O

The paper is organized as follows: In Sect. 2, we introduce the framework of gen-
eralized random processes, while the general class of random processes of interest
is addressed in Sect. 3. We precise and demonstrate Theorem 1.1 in Sect. 4, where
we identify sufficient conditions under which the asymptotic behavior of afs(-/a) is
known at coarse and fine scales. We also investigate the necessity of these conditions.
Finally, we apply our results in Sect. 5 to specific classes of random processes, for
different types of white noises and operators.

2 Generalized Random Processes

The theory of generalized random processes was introduced independently in the 1950s
by Itd [30] and Gelfand [26]. Among the benefits of this theory to the construction
and study of random processes, we mention:

e Its generality It allows one to define the broadest class of linear processes, including
processes with no pointwise interpretation such as Lévy white noises.

e The availability of an infinite-dimensional Bochner theorem The characteristic
functional (see Definition 2.2) characterizes the law of a generalized random pro-
cess in the same way the characteristic function does for random variables. This
allows for the construction of generalized random processes via their characteristic
functional (see Theorem 2.3 below).

o The availability of an infinite-dimensional Lévy continuity theorem The conver-
gence in law of a sequence of random vectors is equivalent to the pointwise
convergence of the corresponding characteristic functions. This result is also true
for the generalized random processes defined over the extended space of tempered
distribution S’ (R?) (see Theorem 2.5). This provides a powerful tool to show the
convergence in law of random processes. We shall exploit this tool extensively in
this paper.

2.1 Generalized Random Processes and Their Characteristic Functional

The space of rapidly decaying and infinitely differentiable functions is denoted by
S(R?) and endowed with its usual Fréchet topology. Its continuous dual, the space of
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tempered distribution, is S’ (R?). We fix a probability space (2, F, &2). The space of
real-valued random variables L°() is endowed with the Fréchet topology associated
with the convergence in probability.

Definition 2.1 A generalized random process s on S'(R?) is mapping ¢ +— (s, ¢)
from S(R?) to LO(2) that is linear and sequentially continuous in probability. O

The generalized random process s in Definition 2.1 is specified as a random linear
functional over the space S (Rd ). Alternatively, one can see s as a random variable
with values in S’(R?); that is, a measurable map from € to S’(R?), where S’ (R?) is
endowed with the Borelian o-field associated with the strong topology. This equiva-
lence is a consequence of the structure of the nuclear Fréchet space of S(RY) [25,31].
It means in particular that one should look at s as a random tempered generalized
function.

Definition 2.2 The characterzsttc functional of a generalized random process s is
defined as @ (@) = E[e!®#] for every ¢ € S(R?). O

As announced in Introduction of Sect. 2, we present the generalizations of the
Bochner and Lévy continuity theorems for generalized random processes.

Theorem 2.3 A functional 2 (RY) — C is the characteristic functional of a
generalized random process if and only if it is continuous and positive definite over
S(RY) and normalized as ?(O) =1 O

This result is known as the Minlos—Bochner theorem. It is valid for any functional
defined over a nuclear Fréchet space such as S (R4) [41] and more generally over
an inductive limit of nuclear Fréchet spaces such as D(R?), the space of compactly
supported smooth functions [25, Theorem I1.3.3]. The nuclear structure of S (Rd) is
at the heart of the theory of generalized random processes.

Definition 2.4 A sequence of generalized random processes (s,) converges in law

to the generalized process s if, for any ¢i,...,on € S(R?), the sequence of
random vectors ({(s,, @1), ..., (Sx, @n)) converges in law to the random vector
({s, @1) - (s, 0N ). o

Theorem 2.5 A sequence of generalized random processes (s,) convergesin law to the
generalized random process s if and only if 4@;” (o) = 3”; (@) for any ¢ € S(RY).
O

This result was proved by X. Fernique for the space of compactly supported smooth
functions D(R?) [25, Theorem I11.6.5]. The case of a nuclear Fréchet space (including
S(R%)) is simpler and can be deduced from the results of Fernique. It is also proved by
P. Boulicaut in [10] together with a converse to this result: The weak convergence of
probability measures on the dual of a Fréchet space F is equivalent with the pointwise
convergence of the characteristic functionals on F if and only if F is nuclear [10,
Theorem 5.3]. A comprehensive and self-contained exposition of the theory of gen-
eralized random processes, including proofs of Theorems 2.3 and 2.5, can be found
in [3].
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2.2 Lévy White Noises and Infinite Divisibility

The construction of continuous-domain Lévy white noises and related processes is
intimately linked with the infinite divisibility of the finite-dimensional marginals of
those processes [27,47]. A random variable (and more generally a random vector)
is infinitely divisible if it can be decomposed (in law) as the sum of N i.i.d. random
variables for every N. The logarithm of the characteristic function & of an infinitely
divisible random variable X is called its Lévy exponent, denoted by ¥; i.e., Px(§) =
exp(¥ (£)).

Initially, the family of Lévy white noises was introduced over the space D’ (R?)
of generalized functions [27, Chapter III]. There is a one-to-one correspondence
between infinitely divisible random variables and Lévy white noises in/\D’(Rd).
Indeed, the characteristic functional of a Lévy white noise is of the form &2, (¢) =
exp( fRd W(p(x))dx) where W is a Lévy exponent. However, a Lévy white noise on
D' (R?) is not necessarily tempered (a counterexample is given in [18, Sect. 3.1]). The
characterization of tempered white noises has been obtained recently and is based on
Theorem 2.6.

Theorem 2.6 Let VU be a continuous function from R to C. The functional
P(p) = exp ( /R ) \Il(go(x))dx) 3)

is the characteristic functional of a generalized random process in S'(R?) ifand only if
W is a Lévy exponent and the infinitely divisible random variable X with Lévy exponent
W has a finite €-moment for some € > 0, such that E[| X |¢] < oc. O

We have shown that the existence of a finite absolute moment is sufficient for w
being tempered in [18, Theorem 3]. More recently, Dalang and Humeau [12, Theo-
rem 3.13] have proved that this condition is also necessary. This provides a one-to-one
correspondence between tempered Lévy noise and infinitely divisible random variable
having a finite absolute moment, which justifies the following definition.

Definition 2.7 A generalized random process w whose characteristic functional has
form (3) with W satisfying the two conditions of Theorem 2.6 is called a Lévy white
noise in S'(R%). O

The finiteness of absolute moments is strongly related to the behavior of the Lévy
exponent at the origin or, equivalently, the asymptotic behavior of the Lévy measure u
associated with W (see Sect. 5.1 for a short reminder on (symmetric) Lévy measures).
Especially, the condition E[| X |”] < oo is equivalent to fl f1>1 |£]P u(dt) < oo for every
p > 0[47, Sect. 5.25]. The point in Theorem 2.6 is that € can be arbitrarily small;
hence, this requirement for being tempered is extremely mild and satisfied by any
Lévy noise encountered in practice.

A Lévy white noise is stationary in the sense that w(- — x() and w have the same
law for every xo € R?. It is moreover independent at every point, meaning that (w, ¢;)
and (w, @) are independent whenever ¢ and ¢, have disjoint supports.
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As we shall see, one particular subclass of Lévy white noise plays a crucial role as
potential scaling limits of general Lévy white noises: the SaS (symmetric-c-stable)
white noises.

Definition 2.8 Let 0 < o < 2. A Lévy white noise wy is a SaS white noise if its
characteristic functional has the form

Py () = exp(— Cligl%) “
for some C > 0 and every ¢ € S(RY), where ||¢|lq = (fRd|go(x)|°‘dx)l/°‘. O

Functional (4) is a characteristic functional and corresponds to (3) with Lévy expo-
nent W(§) = —C |§|%. For every ¢ € S(R?), the random variable X = (wy, ¢) is
SaS with characteristic function Zx (§) = exp(— Cll¢|l§ |£]1%). For o = 2, one rec-
ognizes the Gaussian law. When o < 2, by contrast, the considered random variables
have infinite variances. More information on non-Gaussian SaS random variables and
processes can be found on [46].

2.3 Indices of Lévy White Noises

Definition 2.9 We consider the following quantities associated with a Lévy exponent
W

B )
Bo=supqpel[0,2], limsup <00y, 5)
g0 &7
N W)
Bso =inf { p €[0,2], lim sup <0o0¢. (6)
lEl>oo 1§17
We call By the Pruitt index and B the Blumenthal-Getoor index of V. O

The Blumenthal-Getoor index S, was initially introduced in [8] to study the
behavior of Lévy processes at the origin. It is connected to the local regularity of
Lévy processes [22], and more generally of Feller processes [48,49]. The index By is
the asymptotic counterpart of B, in the sense that it relies to the behavior of Lévy
processes at infinity. It was considered by Pruitt [44] and is highly connected to the
existence of moments of the infinitely divisible random variable with Lévy exponent
W. Many global regularity properties of Lévy [20] and Feller processes [49] are cap-
tured by the knowledge of By and B~.. Moreover, one can often characterized By with
the Lévy measure associated with W (see [14, Sect. 3]). The fact that a Lévy white
noise on &’ (Rd) always has a finite moment € > 0 finite (see Theorem 2.6) imposes
that By > 0. Consequently, we should always consider indices such that 0 < Sy < 2.

Consider a Lévy exponent W with indices 0 < S, Boo < 2and fix0 < p < 2. The
notation f (&) 07 g (&) means that g(¢) # 0 for & # 0 and that f(£)/g(€) converges

o0

to 1 when & goes to 0/0c. From the definition, we easily see if W(§) ~ —C |&|?, then
o
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Boo = p. Similarly, if W (&) ,(\), —C |&|P, then By = p. Therefore, the indices By and

B are, respectively, the only possible power law behavior of the Lévy exponent in
the origin or asymptotically, respectively. Finally, if the Lévy exponent is bounded as
W) < CIEIP, then Boo < p < Po.

3 Linear SDE Driven by Lévy White Noises

The main goal of this section is to introduce the class of random processes of interest
for the study of the local and asymptotic self-similarity. A linear differential operator
L and a white noise in S’(R?) being given, we consider the linear SDE

Ls = w. (N

We say that a solution exists if there is a generalized random process s in S’(R?) such
that the processes Ls and w are equal in law (or equivalently, the same characteristic
functional). The general framework to solve (7) is based on the existence of inverse
operators with adequate properties [54, Chapter 4]. In this section, we first construct
generalized random processes that are solutions of (7) (Sect. 3.1). Then, we introduce
the homogeneous operators and the class of studied processes, called y-order linear
processes in Sect. 3.2.

3.1 Construction of Linear Processes

Let L be a continuous and linear operator from & (R?) to S’(R?). Then, its adjoint is
the operator L* from S(R?) to S'(R?) defined as (L*¢1, ¢2) = (@1, Lga) for every
91, 92 € SRY).

Proposition 3.1 (Specification of a linear process). Consider a linear and continuous
operator L from S(RY) to S'(RY) and a Lévy white noise w on S'(R?). Assume the
existence of a topological vector space X such that
e The adjoint L* of L admits a left inverse operator T that is linear and continuous
from S(RY) to X; .
e The characteristic functional &y, of w can be extended as a continuous and
positive-definite functional on X.

Then, there exists a generalized random process s whose characteristic functional is,
— — d

for every ¢ € S(RY), Zs(¢) = P (T@). Moreover, we have that Ls @ w. O

By considering a more general X', this result refines the original theorem that was

first presented in [54, Sect. 3.5.4] albeit with some unnecessary restrictions on X'. The

principle is simply to check the conditions of the Minlos—Bochner theorem. We give
the proof for the sake of completeness.

ProoL Set @(p) = @) (Te). From the assumption on @\w and T, we easily deduce
that & is well defined and continuous over S(R¥) by composition. Itis positive definite
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by composition of linear and a positive-definite functions. Finally, T{0} = 0, hence
@0) = % (0) = 1. Therefore, P is the characteristic functional of a generalized
random process s according to Theorem 2.3. For the last point, we simply remark that,
T being a left inverse of L*, P s(¢) = E[elLs:9)] = E[ei:L™¢)] = P, (TL*@) =

%((p), which is equivalent to Ls @ w. O

Definition 3.2 A generalized random process constructed via Proposition 3.1 is called
a linear process. O

In practice, for given L and w, one has to determine an adequate space X" in order
to correctly define the process s. The choice of X is generally driven by the white
noise. For instance, we will consider the case X = L% (Rd ) when dealing with SaS
white noises. The optimal choice of X" for a given w is investigated in [21] based on
the results of [45]. Then, the main issue becomes the existence of a left inverse with
the adequate stability, mapping S(R¢) into X'

3.2 Homogeneous Operators and y-Order Linear Processes

This section is dedicated to the specification of random processes concerned by The-
orem 1.1. We start with some definitions. For u € S'(RY), xo € R?, and a > 0, we
define u (- — x¢) as the tempered distribution such that (u (- — xg), ¢) = (u, ¢(-+ x9))
for every ¢ € S(R?). Similarly, u(-/a) is the tempered distribution such that
(u(-/a), ¢) = (u,a’p(a)).

Definition 3.3 Consider a linear and continuous operator L. from S(RY) to S'(RY).
We say that L is y-homogeneous for some y € R if L{p(-/a)} = a7V (Lp)(-/a) for
every ¢ € SRY) and a > 0. O

For instance, the derivative is a 1-homogeneous operator. We shall now focus on
operators L that are: (1) linear shift invariant, (2) continuous from S(R?) to S’(R%),
and (3) y-homogeneous for some y > 0. Moreover, inspired by Proposition 3.1,
the adjoint operator L* should have a left inverse with some stability property. We
shall essentially consider two cases, assuming the existence of a left inverse T as in
Proposition 3.1 for ¥ = R(R?), the space of rapidly decaying measurable functions
(see below), or X = LP (Rd ) for some p such that 0 < p < 2. These spaces naturally
arise as domains of continuity of the characteristic functional of Lévy white noises.

The space R(R?) is defined as R(RY) = {f measurable, (1 + |-DVf €
L*(R?) for all N € N}. It is endowed with a natural Fréchet topology, as a projective
limit of the Hilbert spaces L3 (R?) = {f, (1 + |-DV f € L2 (RY)}, N € N (see [39,
Chapter IV] for more details on Fréchet spaces).

Fix a linear, shift-invariant, continuous, and y-homogeneous operator from S (Rd)
to S’(Rd), with y > 0. We consider two cases.

e Condition (C1) The adjoint L* admits a (— y)-homogeneous left inverse that
continuously maps S(R) to R(R?).

e Condition (C2) The adjoint L* admits a (— y)-homogeneous left inverse that
continuously maps S (R?) to LP(R?) for some 0 < p < 2.
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Note that (C1) is more restrictive than (C2) since R(R?) c L?(R%) for any0 < p <2.

One shall construct the random processes of interests thanks to Proposition 3.1. We
start by giving some new results on the continuity of the characteristic functionals of
Lévy white noises that allow for new compatibility conditions between an operator L
and a Lévy white noise w in the general case and for p-admissible white noise (see
Definition 3.4 below).

Definition 3.4 We say that a Lévy exponent W is p-admissible for 0 < p < 2 if
[W(&)] < C &P for some C > 0 and every £ € R. By extension, a Lévy white noise
with a p-admissible Lévy exponent is said to be p-admissible itself. O

Proposition 3.5 Let w be a Lévy white noise over S'(RY). Then, the characteristic
functional 9’ of w can be extended as a continuous and positive-definite functional
over R(RY). If moreover w is p-admissible for some 0 < p < 2, then ﬁw can be
extended as a continuous and positive-definite functional over LP (R?). O

Proof The proof for L (Rd ) is similar to the one for R(R?); hence, we omit it. We
only need to prove the continuity, because the positive-definiteness follows simply by
density of & (RY) in R(R?). The positive-definiteness of @w in S(RY) implies that

| P(¢2) — P(p))| < 2|1 — P(g2 — 1) ®)
for any ¢1, ¢y € S(Rd) (see, for instance, [25, Sect. I1.5.1] or [55, Sect. IV.1.2, Propo-

sition 1.1]). For every z € C with f{z} < 0, one has |e* — 1| < |z|. Since R{¥} < 0,
this implies that

1 —<§ZK¢)|§‘1-_eﬁwﬁ4wa»dx -

W(p(x))dx
]Rd

- / W (p(x))[dx. (9)
Rd

Moreover, according to [18, Corollary 1], w being tempered, there exists C > 0 and
€ > 0 such that [W ()| < C(|€|° + |&|%). Putting the ingredients together, we then
easily show that

|Zute) = Zuen] = € (o2 = o1llE + g2 — @113) (10)

Hence, ﬁu can be extended continuously to functions ¢ € RMRY c L2RY) N
L€ (RY) as expected. O

Remark In [54, Definition 4.4], an alternative definition of the p-admissibility was
introduced. Since this definition requires an additional bound on the derivative of
the Lévy exponent and is used for the construction of random processes only for
1 < p < 2, the second part of Proposition 3.5 is a generalization of [54, Theorem 8.2].
Proposition 3.5 allows for new criteria to solve SDEs driven by Lévy white noises.

Theorem 3.6 Let w be a Lévy white noise on S'(R?) with Lévy exponent W and L be
a linear, y-homogeneous, and continuous operator from S R to S'(RY) fory > 0.
We consider two cases.
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e Condition (C1) The adjoint L* admits a (— y)-homogeneous left inverse T that
maps S(RY) to R(RY).

o Condition (C2) There exists 0 < p < 2 such that (i) the adjoint L* admits a
(— y)-homogeneous left inverse T that maps S(R?) to LP(R?) and (ii) ¥ is
p-admissible.

when (C1) or (C2) are satisfied, there exists a generalized random process s whose
characteristic functional is P (p) = 9 (Te). Moreover, s is a solution of (7). O

Proof The result follows from the application of Proposition 3.1 with X' = R(RY)
and X = LP(R?), respectively. The assumptions on ﬂ are satisfied due to Proposi-
tion 3.5. O

Definition 3.7 A generalized random process s constructed with the method of The-
orem 3.6 is called a y-order linear process. We summarize the situation described in
Theorem 3.6 with the (slightly abusive) notation s = L™ w. O

Remark The Lévy exponent of a SaeS white noise is W(§) = —C |£|* for some
constant C > 0 and thus is «-admissible. The construction of a process s such thatLs =
wy therefore relies on the existence of a left inverse T of L* that maps continuously
S(R?) into L*(RY).

4 Scaling Limits of y-Order Linear Processes

In this section, we study the statistical behavior of y-order linear processes at coarse
and fine scales. We recall that for a generalized random process s and a nonnegative
real number a, the process s(-/a) is defined by (s(-/a), ¢) = al(s, p(a-)).

e We zoom out the process when a < 1. In particular, we consider the limit case
a — 0 and call it the coarse-scale behavior of s.

e We zoom in the process when a > 1. Again, we pay attention to the limit case
a — oo, which one call the fine-scale behavior of s.

In general, we shall see that s(-/a) has no non-trivial limits itself when a — 0/o0c.
However, we will encounter situations where a s (- /a) has a stochastic limit for some
H € R. When it exists, the coefficient H is unique and determines the renormalization
procedure required to observe the convergence phenomenon.

In what follows, we first treat the case of SDEs driven by SaS white noises as
a preparatory example. Their solutions are actually self-similar and have therefore
straightforward scaling limit behaviors (Sect. 4.1). We then give sufficient conditions
on the Lévy exponent to determine the coarse- and fine-scale behaviors of y-order
linear processes. These results are presented in Sect. 4.2 and are the main contributions
of this paper. Finally, we question the necessity of our conditions such that the scaling
limit exists in Sect. 4.3.

4.1 Linear Processes Driven by SaS White Noises

When the white noise is stable, the change of scale has by definition no effect on
the noise up to renormalization. Under reasonable assumptions on the operator L, we
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extend this fact to solutions of SDEs driven by SaS white noises. This property is
referred to as self-similarity.

Definition 4.1 A generalized random process s is said to be self-similar of order H

if afls(-/a) @ s for all @ > 0. The parameter H is called the Hurst exponent of s. O

The coarse-scale and fine-scale behaviors of a self-similar process are obvious,
since the law of the process is not changed by scaling, up to renormalization.
The self-similarity property is directly inferred from the characteristic functional of
the process. Indeed, since ﬁﬂs(/a)(g)) = E[el@”sC/.0)] = R[eils ‘HH“’(“'))]
33 (a?tH p(a-)), we deduce that s is self-similar of order H if and only if 32 () =
9 (a9tH @(a-)) forevery ¢ € S (R9) and a > 0. This equivalence and some other
considerations on self-similar processes can be found in [54, Sect. 7.2].

Proposition 4.2 Lety > 0and 0 < a < 2. We assume that s = L™ wy, is a y-order
linear process driven by a SaS white noise. Then, s is self-similar with Hurst exponent

H=y+di -0 O

Proof By definition of a y-order linear process, there exists a linear operator T, left
inverse of/L\*, that is (— y)-homogeneous, continuous from S (R?) to L¥(R?), and
such that Z;(¢) = exp(— C||Te||S). Then, we have

D@t g(@)) = exp (= Clla” ' T{p(@)} ) € exp (— Clla’(Te}@|3)
i) .
= exp (= CTylg) = Zs(e).

where we used, respectively, the (— y)-homogeneity of T and the change of variable

y = ax in (i) and (ii). This implies that s is self-similar with the Hurst exponent
H=y+d(l/a—1). O

4.2 Linear Processes at Coarse and Fine Scales

Here we consider the general problem of characterizing the coarse and large-scale
behaviors of y-order linear processes. We analyze the coarse- and fine-scale behavior
separately even if the methods of proof are similar, in order to emphasize the different
assumptions: The relevant parameter of the underlying white noise is the index Sy at
coarse scales and B at fine scales.

We have seen in Sect. 4.1 that two ingredients are sufficient to make a linear process
self-similar: the self-similarity of the Lévy noise and the homogeneity of the left inverse
operator T of L*. Moreover, the self-similarity of a Lévy noise is equivalent to the
stability of the underlying infinitely divisible random variable [46]. Even if y-order
linear processes are not self-similar in general, one can often recover the self-similarity
by asymptotically zooming the process in or out.

Definition 4.3 We say that the generalized random process s is asymptotically self-
similar of order Hyo € R (locally self-similar of order Hyo. € R, respectively) if

@ Springer



J Theor Probab

the rescaled processes atlog(. /a) (afhoe g (. /a) , respectively) converge in law to a
non-trivial generalized random process as a — 0 (a — oo, respectively). O

The terminology of Definition 4.3 is justified by Proposition 4.3.

Proposition 4.4 [f the generalized random process s is asymptotically self-similar of
order Hys (locally self-similar of order Hioc, respectively), then the limit is self-similar
of order Hso (Hoc, respectively). O

Proof Assume that s is asymptotically self-similar of order Hy. Then, there exists
a process soo such that af>s(-/a) converges in law to soo. Let b > 0 and set s, =
bHos(./b). Clearly, s, is also asymptotically self-similar with limit b%>s..(-/b).
Moreover, af™>s, (- /a) = (ab)">s(-/(ab)). This latter quantity has the same limit in
law than a®>~s(-/a) as a — 0, which is so. As a consequence, we have shown that
bHeog (- /b) and 5o, have the same law for any » > 0 and the limit is Hyo-self-similar.
The proof is identical in the local case. O

One now considers the following question: When is a generalized Lévy process
asymptotically self-similar, when is it locally self-similar, and, if so, what are the
asymptotic and local Hurst exponents Hs, and Hjo.? Theorems 4.5 and 4.6 answer
these two questions.

Theorem 4.5 (Coarse-scale behavior of y-order linear processes). We consider a Lévy
white noise w with Lévy exponent W and index By € (0, 2] and a y-homogeneous
operator L with y > 0. We assume that there exists an operator T such that (T, ¥)
satisfies one of the following set of conditions.
e Condition (C1) T is a (— y)-homogeneous left inverse of L*, continuous from
S(R?) to R(RY); or
e Condition (C2) T is a (— y)-homogeneous left inverse of L*, continuous from
S(R?) to LPo(RY) and W is By-admissible.
Lets = L~'w be the y-order linear process with characteristic functional @Ts(q)) =
Py(T). If W(§) E —C |&]P for some constant C > 0, we have the convergence in

law

1 _
ay+d<ﬁ0 l)s(-/a) @) SL.Bo» (11)
a—0

where Lsy g, @ wg, is a SaS white noise with o = By. In particular, s is asymptoti-
cally self-similar of order Hyo =y + d(ﬂl0 —1). O

Proof First, assuming that (C1) or (C2) holds, Theorem 3.6 implies that both 3/5,1, (Te)
and % fo (Te) = exp(— C||To|| gg) are characteristic functionals; hence, the pro-
cesses s and si_ g, are well defined.

By Theorem 2.5, we know moreover that the convergence in law (11) is equivalent
to the pointwise convergence of the characteristic functionals. Hence, we have to prove
that, for every ¢ € S(R?),

73 Bo
log yawrd(l/ﬂ()*l)g(./a)((ﬂ) ;’) _C||T(P||ﬂ0~ (12)
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We fix ¢ € S(Rd). Then, we have

(a? T B0Ds( 1), o) = (w,a?T4/Pog(a)) L (w, T{a? T4/Pop(a )}
W (w, a'P(Tp)(a)), (13)

where we have used that (s, ¢) = (w, Te) and the (— y)-homogeneity of T in (i) and
(ii), respectively. Therefore, we have

108 7, a11y-1) 5y @) = log Py (@/P{Tg}(a)) = fR W(@/P(Ty)(ax))dx
— / (a—d\y(ad/ﬁow(y)) dy. (14)
Rd
By assumption on W, we have moreover that, for every y € R4,
=W (P Tp(y)) — ~CITo(yIP. 1)
a—0

We split here the proof in two parts, depending on whether T and W follow (C1) or
(C2).

e We start with (C2). The fp-admissibility of W implies that
la=w (0B Tp(p)| < € 1Ty ™ (16)

for some C’ > 0 and every y € R?. The right term of (16) is integrable by
assumption on T. Therefore, the Lebesgue dominated convergence theorem applies
and (12) is showed.

e We assume now (C1). In that case, we do not have a full bound on W. We know,
however, that Te is bounded; hence, | T¢|cc < oo. Since W is continuous and
behaves like (— C |-|#0) at the origin, there exists C’ > 0 such that |W(§)| <
C' |&|% for every |£] < | Tolloo. Hence, for all @ < 1, we have |a?/f0Top(y)| <
1, and (16) is still valid. Again, we deduce (12) from the Lebesgue dominated
convergence theorem.

Finally, the limit process sp_ g, is self-similar with order Hyo = y +d (% —1) according
to Proposition 4.2. 0

Theorem 4.6 (Fine-scale behavior of y-order linear processes). Under the same

assumptions as in Theorem 4.5 but replacing o by Boo € (0, 2], we considers = L™ w

a y-order linear process. If the Lévy exponent W of w satisfies W (&) ~ —C |&|P= for
oo

some constant C > 0, then we have the convergence in law
+d(7——1 d
& F= 50y D s, (17)
a— o0
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where Ls g, @ wg,, is a SaS white noise with a = Boo. In particular, s is locally
self-similar of order Hioc = Y + d(ﬂ%C —1). O

Proof The proof is similar to the one of Theorem 4.5, and we only develop the parts
that differ. If T and W satisfy (C2), the proof follows exactly the line of Theorem 4.5.

We should therefore assume that T maps continuously S (Rd) to R(Rd). Restarting
from (14) with B instead of By, we split the integral into two parts and get

log @;Vﬂ(l/ﬂoofl)s(‘/u)((p) = /Rd 1|T¢,<y)|ad/ﬂoczla_d‘l'(ad/’g‘”Tw(y))dy

- AQ Lipg(ytad /oo <10~ W @P2To(y)dy

= 1(a) + J(a). (18)

Control of 1(a) We have, by assumption on W, that ]l|T¢(y)|ad/5wzla_d\ll(ad//3°°
Te(y)) — —C |Te(y) |/Soo . Moreover, since the continuous function W behaves like
a—> o0
(-C |-|’3°C) at infinity, there exists a constant C’ such that |[W (§)| < C'|& |’3OO for every
|&] > 1. Moreover, the function T¢, which is in R(Rd), is bounded. Hence, we have,
when a > [TollZ), that |1 jp, ) a0/ =104 W (@P=To(y))| < C'[T(y)|P> for
ally € R?. The function on the right is integrable; therefore, the Lebesgue dominated
convergence applies and we obtain that /(a) — —C||Tg|5~.
a—» 00 R
Control of J(a) As seen in (10), there exists C’ > 0 and € > 0 such that | W (§)| <

C'(|E|I€+ & |2). Without loss of generality, one can choose € < B. Then, for [§] < 1,
we have |W(§)| < 2C’ |£|€ and, therefore,

‘ /R gt 10~ W @PTo(y)dy| < 2C'a" PV Toe. (19)

Since R(RY) € LE(R?) and € < o, we have || Tpl|¢ < oo and a¢/P==1 — 0,

a— o0
which implies that J(a) —> 0. We have shown that log yaerd(l/ﬂoo—l)Y(./a)(q)) =
a— 00 -
I1(a)+ J(a) — —-C ||T(p||§°°, as expected. Finally, the limit process st g, is self-
a— 00 e :

similar with order Hjoc = y + d( }% — 1) according to Proposition 4.2. O

4.3 Discussion and Converse Results

In this section, we investigate the generality of our results by questioning the hypothe-
ses in Theorems 4.5 and 4.6. One should only consider the case of y-homogeneous
L operators whose adjoint has a (— y)-homogeneous stable inverse T. We start with
preliminary results.

e The renormalization procedures in Theorems 4.5 and 4.6 have to be compared
with the index H = y +d(1/a — 1) of a y-order self-similar process (see Propo-
sition 4.2). In particular, the y-order linear processes studied in this section are
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asymptotically self-similar with index y + d(1/Bo/0c — 1), Where Bo/ec = Bo or
Boo- One can say that the lack of self-similarity of s vanishes asymptotically or
locally.

e (CI) has to be understood as the sufficient assumption on the operator T such that
the process s with characteristic functional @ (Ty) is well defined without any
additional assumption on the Lévy white noise w. Therefore, (C1) is restrictive
for the operator but applies to any Lévy noise.

e This is in contrast to (C2). Here, the restriction on T is minimal since the process
SL.Bojeo should be well defined, and, therefore, T should at least map S (]Rd ) into
LPore (R?). It means that (C2) gives sufficient assumptions on the Lévy white
noise such that the minimal assumption on T is also sufficient.

e When the variance of the noise is finite, we have in particular that 8y = 2. Under the
assumptions of Theorem 4.5, the process a? ~%/2s(-/a) converges to a Gaussian
self-similar process. This can be seen as a central limit theorem for y -order finite-
variance linear processes. This finite-variance result was already established in
our previous work [19, Theorem 4.2]. Theorem 4.5 is a generalization for the
infinite-variance case.

e For important classes of Lévy white noises, the parameter S is 0 and Theorem 4.6
does not apply. This includes (generalized) Laplace white noises and compound
Poisson white noises (see Sect. 5.1). In that case, one does not expect the underlying
process to be locally self-similar. This is made more precise and proved when L
satisfies (C1) in Proposition 4.7.

Proposition 4.7 Let w be a white noise with Blumenthal-Getoor index Boc =
0. Assume that L is a y-homogeneous operator and that there exists a (— y)-
homogeneous left inverse T of L* that is continuous from S(R?) 10 R(R4 ) Let s =

L~'w be the y-order linear process wzth characteristic functional ,@s (p) = Py (T(p)
Then, for every H € R, a’’s(-/a) —> 0. O
a— 00

Proof Due to Theorem 2.5, we have to show that, for every ¢ € S@RY),
log@ e /a)(§0) =2 0. Proceeding as in Theorem 4.5, we easily show that

log Py () = fR @ T () dy. (20)

According to (10), there exists €, C’ > 0 such that |W(§)| < C’|&|€ for || < 1.
Without loss of generality, one can assume that € < ﬁllﬂ' This implies in particular
that e (d + H) —d < 0. The knowledge that 8o, = 0 is enough to deduce that W (§) is
also dominated by |£|€ for |£| > 1. Thus, there exists C > 0 such that |¥(§)| < C [§|€
for every & € R. Restarting from (20), we obtain that

o Py @) =€ [ a0 Tyy)|“dy = CTplca ™0, 2
R4
which vanishes when a — oo due to our choice for €. This concludes the proof. O
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In Theorems 4.5 and 4.6, we assume some asymptotic behaviors of the Lévy expo-
nent at 0 or at co. We see here that under reasonable conditions, this assumption is
necessary for (11) or (17) to occur.

Proposition 4.8 Let s = L™ w be a y-order linear process with y > 0. We also
assume that s behaves at coarse scale as

afl>g(./a) — Sl (22)

where Hoo € R and Lsy, ¢ = wq is a SaS white noise with 0 < o < 2. Then, Hy, =
y +d(1/a —1). If moreover WV is bounded by |-|* at the origin, then W (§) P’ —C|&|*

for some C > 0.
Assume now that s behaves at fine scale as

aocs(-ja) — L (23)
a— o0
where Hyoc € R and LsL o = wy is a SaS white noise with 0 < a < 2. Then,
Hyoe =y +d(1/a—1). If moreover V¥ is bounded by |-|* at oo, then V(&) ~ —C |&|*
o0
for some C > 0. O

Proof Due to (22), s is asymptotically self-similar; hence, its limit is self-similar of
order Hy, (Proposition4.4). We also now that sy, 4 is self-similar of order y +d (1/a—1)
with Proposition 4.2. Thus, H, =y +d(1/a — 1).

By y-homogeneity, we have L{a?¢(1/¢=Dg(./a)} = a?1/*=Dy(./a). Hence,
applying the linear operator L each side, (22) implies that ad ({/e=Dy(-/a) converges
in law to wy. In particular, 3” (a?*g(a-)) converges to @wa () = exp(=Cllel%)
for ¢ € S(RY). We show now that this convergence can be extended to functions
f € R(RY). Indeed, fora > 0, f € R(R?), ¢ € S(RY), we have

D@ @) = Puy (1] = | Pu@® £ @) - Pu@g@)|+

+ | P @) — Py ()]
= (i) + (i) + (i) (24)

Pu(@4@)) = Py 0

Using the arguments of the proof of Proposition 3.5 and Theorem 4.5, we see that
(i) < 2|1 — Py, (f — 9)| <2C|lf — ¢l|%. With the same ideas, we have

() =2

Zuta(f@) = @] <2 [ a v () - ptym|ay
< IS - ol ©3)

where the last inequality is obtained by exploiting that |¥| is bounded by |-|* at the
origin. The second term (ii) vanishes when a — 0 for ¢ € S(R?) fixed. It means it
suffices to select ¢ € S(R?) such that || f — @|l§ is small and then a > 0 such that
(ii) is small (this is possible because ¢ € S (Rd) hence, (ii) vanishes when a — 0)
to make |@ (@?® f(a-)) — gzwa (f )| arbitrarily small as expected.
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Letus now consider f = 1y jja. Then, we have log ﬁv(ad/"‘f(w) = a4 (a4
— log Py, (f) = —=C. With f = =19 34, we have similarly that a /W (— a/®)
a—

converges to — C. Finally, setting & = +a?/%, we obtain that W (&) \S\N o —C&|%.

The proof for the local case is very similar. The only difference is for the control of
K(a) == [gaa™ |W(@?®(f(y) — ¢(y)))|dy in (25) when a — oco. Then, the result
follows from the same decomposition and arguments used in (18). Indeed, we have

K@ = [, Lt sy —gipzra™ [#@F0) = o] ay

+ /R dia gy pii1@” (W@ () = p()] dy
= I(a) + J(a). (26)

We bound [ (a) < C|| f — || because W is bounded by |-|* at infinity. We also have
that J (a) vanishes when a — 00, as we see by bounding || by || with € < « [¢
exists because w is tempered, see (10)]. m]

As afinal remark, we point out that there exist Lévy exponents W that are oscillating
between two different power laws at infinity. Some examples are constructed in [23,
Examples 1.1.15 and 1.1.16]. These examples coupled with Proposition 4.8 imply that
one cannot hope to have local self-similarity for any y-order linear process.

5 Application to Specific Classes of SDEs and Simulations
5.1 Examples of Lévy White Noises

We introduce classical families of Lévy white noises that allow us to illustrate our
results.

From infinitely divisible random variables to Lévy white noises Consider a Lévy white
noise w on S'(R?) and a family of functions ¢, € S (R?) that converges to Ly 1y«
for the topology of R(RY) (see Sect. 3.2). Since the characteristic functional of w is
continuous over R(RY) (Proposition 3.5), one can show that the sequence ((w, ¢;)) is
a Cauchy sequence in L°(£2). It therefore converges to some random variable denoted
by X = (w, ]].[O’l]d). This random variable is infinitely divisible, with characteristic
function

Px (&) = exp </Rd (gL 1 (x))dx) = exp (V(§)). 27)

The latter equality in (27) comes from the fact that ¥ (0) = 0. The law of w is fully
characterized by the law of (w, 1 jj4). This principle is made rigorous and extended
to many more test functions in [21].

By convention, the terminology for the random variable (w, 1| jj¢) is inherited
by the underlying white noise w. We have already exploited this principle for the
definition of SaS white noises, with the particular case of the Gaussian white noise.
Another example is the Cauchy white noise that corresponds to the case « = 1.
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Compound Poisson White Noises A compound Poisson white noise is such that
(w, Ljg 1¢) is a compound Poisson random variable with characteristic function of

the form [54, Sect. 4.4.2] @}w,ﬂmm)(g) = exp(M(Prump(§) — 1)), where A > 0 and

Q/'Z\Jump is the characteristic function of a probably law &y such that Pyyyp{0} =0
(no singularity at the origin). The notation ﬁump is motivated by the fact that the
underlying probability law is the common law of the jumps of the compound Poisson
white noise [53]. The Lévy exponent of a compound Poisson white noise is bounded,;
hence, its index is B = 0. The Pruitt index Sy can take any value in (0, 2] and is
equal to 2 if (w, 1 jj¢) is symmetric with a finite variance. When the law of the
jump is Gaussian (Cauchy, respectively), we call w a Poisson—Gaussian white noise
(a Poisson—Cauchy white noise, respectively).

Generalized Laplace White Noises Another interesting infinitely divisible family is
given by the generalized Laplace laws. We follow here the notations of [33]. A
generalized Laplace white noise is such that (w, 1 j1¢) is a generalized Laplace

TeE =
exp (— clog(1 + 52)) with ¢ > 0. When ¢ = 1, we recognize the Laplace law.
The Blumenthal-Getoor and Pruitt indices of generalized Laplace white noises are
Boo = 0 (since W grows asymptotically slower than any polynomial) and Sy = 2
(symmetric finite-variance white noise), respectively.

variable whose characteristic function is given by @w,ﬂm €)=

Layered Stable White Noises Finally, we consider the family of white noises intro-
duced by Houdré and Kawai in [28] to illustrate the richness of the Lévy family. We
first need some notation. A Lévy measure is a measure v on R such that v{0} = 0
and fR inf(1, 2)v(dr) < oo. Then, for v a symmetric Lévy measure, the function
U(E) =— fR( 1 — cos(&ét))v(dr) is a Lévy exponent. This is a particular case of the
Lévy—Khintchine decomposition of a Lévy exponent [54, Theorem 4.2]. Then, for
o, B € (0,2), we consider the measure

dr dr
Ve, p(dt) = Ljpj<1—— +

e ]l|t|>1W- (28)

We easily check that vy g is a symmetric Lévy measure and define therefore the
Lévy exponent W, g(§) = — fR(l — cos(§1))vy,g(dt). When a = B, we recover a
SaS white noise with Lévy measure vy (df) = dt/ |t|°‘+1. The Lévy white noise with
exponent Wy, g is called an layered stable white noise. Its interest for our purpose is
that it displays all the possible joint behaviors of the Lévy exponent at the origin and
at infinity, as shown in Proposition 5.1. Many additional properties of layered stable
laws and processes have been studied in [28].

Proposition 5.1 For 0 < o, B < 2, the Lévy exponent Wy g satisfies Wy g(§) ~
[e¢)
—Coo |£]% and Wy g(8) E —Co Iélﬂ with Cq, Coo > 0 some constants. O
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Table 1 Some Lévy white noises with their Blumenthal-Getoor indices

White noise Parameter (&) Bo Boo

Gaussian 62>0 — o222 2 2

Non-Gaussian SaS a€(0,2) — &% a a

Generalized Laplace c>0 —clog(1+& 2) 2 0

Symmetric finite-variance A >0, Pyump k(((}?//\]ump & -1 2 0
compound Poisson

Compound Poisson with SarS A>0,a€(0,2) e Y — 1y o 0
jumps

Layered stable o, B €(0,2) Wy, p(8) o B

Proof We have

W, 5(6) = —/ ( —cos(ét))i—/ (1 = cos(E) —L_
T s [t st |¢BH1
= W (E) 4 Wa(£). (29)

Then, by the change of variable x = £¢, we have that

dx o dx o
) = - </x|§|§|(l —eos S et = ([ cosn T e

(30)

while [W2(8) < |

lt]>1 Z‘tl‘iﬁ = o(|&]%), implying the expected asymptotic behav-

ior with Coo = [p(1 — cosx)lx“jT"H. Similarly, we have that Wy (&) v —(fp(1 —
cos.x) ) 617 while [W1(E)] < 3(fj,1< peer) €7 = 0(§17). where we have

used that |1 — cos(é7)| < # This implies the behavior of W at the origin with
Co= [p(1— cosx)lx“%. O

Proposition 5.1 implies that (B~, Bo) = («, B). Therefore, y -order linear processes
based on a layered stable white noise share the interesting following property: While
failing to be self-similar, they offer a transition from a local self-similarity of order
Hyoc = y+d(1/a—1) toan asymptotic self-similarity of order Hoo, = y +d(1/8—1).
This can be of interest for modeling purposes.

Summary By studying the behavior of the Lévy exponent around the origin and at co
(as we did for W, g), one easily obtains the indices of the Lévy white noises of Table 1.

@ Springer



J Theor Probab

5.2 Lévy Processes and Sheets

The canonical basis of R is (ex)k=1..4- We denote by Dy the partial derivative along
the direction eg. Then, a Lévy sheet in dimension d is a solution of

Ls=D;---Dys =w (31)

with w a d-dimensional Lévy white noise [13]. When d = 1, one recognizes the family
of Lévy processes that corresponds to the differential equation Ds = w in dimension
d=1.

The linear operator L = Dy ---Dy is continuous from & (Rd) to § (Rd) and
d-homogeneous. Its adjoint L* = (—1)dD 1---Dg admits the natural (— d)-
homogeneous (left and right) inverse defined by (L*) o (x) = j;_OO’XI)X.._X(_OO’Xd)
@(t)dt for x = (x1,...,xq) and ¢ € S(R?). Unfortunately, (L*)~! is unstable in the
sense that it does not map S (R%) in any L? (RY) space, 0 < p < 2 (and, a fortiori, not
in R(R?)). We can however correct (L*)~! to transform it into a stable left inverse.
For this, we define T as the adjoint of the operator T*¢(x) = f(O,X|)><~-~><(0,xd) (t)dt.

The operator T is (— d)-homogeneous and continuous from S (RY) to R(RY) [18,
Sect. 4.2]. We satisfy therefore the Condition (C/l\) of Thggrem 3.6 and define
s = (D1 ---Dg)~'w with characteristic functional Z(¢) = Z,,(Tg) for any white
noise w.

This way of defining s can be interpreted in terms of boundary conditions—it
imposes that s(x) = 0 almost surely for every x = (x1, ..., x4) such that one of the
xx 18 0. In particular, in dimension d = 1, itimposes that s(0) = 0 almost surely. Here,
the random variable s(x), not well defined from the specification of s as a generalized
random process, is understood as the limit in probability of random variables (s, ¢)
where ¢ approximates the shifted Dirac impulse §(- — x) in an adequate sense.
This extension is possible for the same reasons one can consider the random variable
(w, Lo 1¢) for any Lévy noise, which has been already discussed below. Applying
the results of Sect. 4.2, we directly deduce Proposition 5.2.

Proposition 5.2 Consider w a Lévy white noise with indices 0 < By, Boo < 2, and
s = (Dy---Dyg)"w as above. Then,

o IfW(§) Y —C |&]P for some C > 0, then a®/Pos(-/a) a—_)(>) SD;--Dy,for
o IfW(§) ~—C IEIﬁoo for some C > 0, then ad/ﬁ“’s(/a) —> SD|--Dy, foc-
o0 a— o0

Here, sp,,..Dy0 = (D1 - ‘D) Ywy, where wy is a SaS white noise. O

We illustrate our results on dimension 1 with some simulations of Lévy processes.
First, we consider three Lévy processes driven, respectively, by the Laplace white
noise, the Poisson—Gaussian white noise, and the Poisson—Cauchy white noise. We
look at the processes at three different scales by representing them on [0, 1], [0, 10],
and [0, 1000]. We only generate one process of each type and represent it on the
different intervals: This corresponds to zooming out it. The theoretical prediction at
large scale is as follows: The Laplace and Poisson—Gaussian processes should be
statistically indistinguishable from the Brownian motion, while the Poisson—Cauchy
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Fig. 1 Lévy processes at three different scales and comparison with the corresponding self-similar process
at large scale according to Theorem 4.5

process should be statistically indistinguishable from the Cauchy process (also called
Lévy flight). We see in Fig. 1 that this is observed on simulations. For comparison
purposes, we also represent one realization of the expected limit process.

We now illustrate the difference between fine-scale and coarse-scale behaviors. To
do so, we consider a Lévy white noise w, sum of a Gaussian and a Cauchy white
noise that are independent. Then, we have Bp = 1 and Bo = 2. The prediction is
that the Lévy process driven by w converges to the Brownian motion at fine scales
and to the Lévy flight at coarse scales. Again, the theoretical prediction is observed on
simulations in Fig. 2, where one realization of the process is represented on [0, 1/10]
(fine scale), [0, 10] (intermediate scale), and [0, 1000] (coarse scale).

5.3 Fractional Lévy Processes and Fields

In dimension d, we consider the SDE
Ls = (- &) = w, (32)

where (— A)?/? is the fractional Laplacian whose Fourier multiplier is ||@]|? with
y > 0and y/2 ¢ N. The fractional Laplacian is self-adjoint and y-homogeneous.
For (p, y) satisfying
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Fig. 2 Sum of a Lévy flight and a Brownian motion at thee different scales

p>land(y +d/p—1) ¢N, (33)

(— A)Y/? admits a (unique) (— y)-homogeneous left inverse T, , that continu-
ously map S (R%) into LP(R%) [51, Theorem 3.7]. For such p, if the Lévy white
noise is p-admissible, we satisfy Condition (C2) of Theorem 3.6 and define s =
((— A)Y/?)~ly with characteristic functional 2 (¢) = 2, (T, pp). The process s
is called a fractional Lévy process (a fractional Lévy field when d > 2). Again, the
direct application of the results of Sect. 4.2 yields Proposition 5.3.

Proposition 5.3 For (p, y) satisfying (33), consider a p-admissible Lévy white noise
w with indices 0 < Bo, Boo < 2, and s = ((— A)”/2)71w as above. Then,

o I[fWU(§) ,5 -C |§|ﬂ°f0r some C > 0, then a7+d(1/ﬂ°_1)s(~/a) 3 S(— A28y
o IfU(§) ~ —C |§|5°°f0rs0meC > 0, thena?+4(1/Po=Dg(./q) %S AP B

Here, s_ ayr2 g = (—A)ﬂ’/zwa, where wy, is a SaS white noise. O

In dimension d = 1, identical results can be derived for the fractional derivative
L = DY in a very similar fashion. This includes in particular the fractional Brownian
motions [38] and its Lévy-driven generalizations. The construction of stable inverses
of the adjoint of D? is the subject of [54, Sect. 5.5.1].
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