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The theory of sparse stochastic processes offers a broad class of statistical models 
to study signals, far beyond the more classical class of Gaussian processes. In this 
framework, signals are represented as realizations of random processes that are solu-
tion of linear stochastic differential equations driven by Lévy white noises. Among 
these processes, generalized Poisson processes based on compound-Poisson noises 
admit an interpretation as random L-splines with random knots and weights. We 
demonstrate that every generalized Lévy process—from Gaussian to sparse—can be 
understood as the limit in law of a sequence of generalized Poisson processes. This 
enables a new conceptual understanding of sparse processes and suggests simple 
algorithms for the numerical generation of such objects.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In their landmark paper on linear prediction [1], H.W. Bode and C.E. Shannon proposed that “a noise 
can be thought of as made up of a large number of closely spaced and very short impulses.” In this work, we 
formulate this intuitive interpretation in a mathematically rigorous way. This allows us to extend this intu-
ition beyond noise and to draw additional properties for the class of stochastic processes that can be linearly 
transformed into a white noise. More precisely, we show that the law of these processes can be approximated 
as closely as desired by generalized Poisson processes, which can also be viewed as random L-splines.

1.1. Main result

Let us define the first ingredient of our work. Splines are continuous-domain functions characterized by 
a sequence of knots and sample values. They provide a powerful framework to build discrete descriptions 
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Fig. 1. Examples of deterministic splines: (a) piecewise constant, (b) piecewise linear; and of random processes: (c) Brownian motion, 
(d) second-order Gaussian process.

of continuous objects in sampling theory [2]. Initially defined as piecewise-polynomial functions [3], they 
were further generalized, starting from their connection with differential operators [4–6]. Let L be a suitable 
linear differential operator such as the derivative. Then, the function s : Rd → R is a non-uniform L-spline
if

Ls =
∞∑
k=0

akδ(· − xk) (1)

is a sum of weighted and shifted Dirac impulses. The ak are the weights and the xk the knots of the spline. 
Deterministic splines associated to various differential operators are depicted in Fig. 1a and 1b. Note that 
the knots xk and weights ak can also be random, yielding stochastic splines.

The second main ingredient is a generative model of stochastic processes. Specifically, we consider linear 
differential equations of the form

Ls = w, (2)

where L is a differential operator called the whitening operator and w is a d-dimensional Lévy noise or 
innovation. Examples of such stochastic processes are illustrated in Fig. 1c and 1d.

Our goal in this paper is to build a bridge between linear stochastic differential equations (SDE) and 
splines. By comparing (1) and (2), one easily realizes that the differential operator L connects the random 
and deterministic frameworks. The link is even stronger when one notices that compound-Poisson white 
noises can be written as wPoisson =

∑∞
k=0 akδ(· − xk) [7]. This means that the random processes that are 

solution of Ls = wPoisson =
∑∞

k=0 akδ(· − xk) are (random) L-splines.
Our main result thus uncovers the link between splines and random processes through the use of Poisson 

processes. A Poisson noise is made of a sparse sequence of weighted impulses whose jumps follow a common 
law. The average density of impulses λ is the primary parameter of such a Poisson white noise. Upon 
increasing λ, one increases the average number of impulses by unit of time. Meanwhile, the intensity of 
the impulses is governed by the common law of the jumps of the noise. Upon decreasing this intensity, one 
makes the weights of the impulses smaller. By combining these two effects, the intuitive conceptualization 
of a white noise proposed by Bode and Shannon in [1] can be recovered.

Theorem 1. Every random process s solution of (2) is the limit in law of a sequence (sn) of generalized 
Poisson processes driven by compound-Poisson white noises and whitened by L.
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We shall see that the convergence procedure is based on a coupled increase of the average density and a 
decrease of the intensity of the impulses of the Poisson noises. This is in the spirit of Bode and Shannon’s 
quote and is, in fact, true for any Lévy noise.

1.2. Motivations and connection to related works

Our motivation to study stochastic differential equations such as (2) comes from signal processing. Ran-
dom processes and random fields are notorious tools to model uncertainty and statistics of signals. Gaussian 
processes are by far the most studied stochastic models because of their fundamental properties (e.g., sta-
bility, finite variance, central-limit theorem) and their relative ease of use. They are the principal actors 
within the classical paradigm of statistical signal processing [8]. Many fractal-type signals are modeled as 
self-similar Gaussian processes [9–12].

However, lots of real-world signals are empirically observed to be inherently sparse, a property that is 
incompatible with Gaussianity [13–15]. In order to overcome the limitations of Gaussian model, several other 
stochastic models have been proposed for the study of sparse signals. They include infinite-variance [12,16,
17] or piecewise-constant models based on compound Poisson laws [7]. Interestingly, the compound Poisson 
processes, which are playing a crucial role in Theorem 1, are shown to be sparsest among the family of Lévy 
processes in the sense of approximation theory [18] and of information theory [19].

In this paper, we model signals as continuous-domain random processes defined over Rd that are solutions 
of a differential equation driven by Lévy noise. They are called generalized Lévy processes. We thus follow 
the general approach of [20] which includes the models mentioned above. The common feature of these 
processes is that their probability distributions are always infinitely divisible, meaning that they can be 
decomposed as sums of any length of independent and identically distributed random variables. Infinite 
divisibility is a key concept of continuous-domain random processes [21] and will be at the heart of our work. 
In order to embrace the largest variety of random models, we rely on the framework of generalized random 
processes, which is the probabilistic version of the theory of generalized functions of L. Schwartz [22]. Initially 
introduced independently by K. Itô [23] and I. Gelfand [24], the framework has been developed extensively 
by these two authors in [25] and [26]. A thrilling aspect of generalized Lévy processes is their ability to 
model sparse signals, as soon as the underlying white noise is non-Gaussian. This has been demonstrated 
both experimentally [27] and theoretically [18,28]. For this reason, the non-Gaussian members of the Lévy 
family are referred to as sparse stochastic processes [20,29] to reflect their very compressibility nature.

Several behaviors can be observed within the family of generalized Lévy processes. For instance, self-
similar Gaussian processes exhibit fractal behaviors. In one dimension, they include the fractional Brownian 
motion [11] and its higher-order extensions [30]. In higher dimensions, our framework covers the family of 
fractional Gaussian fields [31–34] and finite-variance self-similar fields that appear to converge to fractional 
Gaussian fields at large scales [35,36]. The self-similarity property is also compatible with the family of 
α-stable processes [37] or fields [38], which have unbounded variances (when being non-Gaussian). More 
generally, every process considered in our framework is part of the Lévy family, including Laplace pro-
cesses [39] and Student’s processes [40]. Upon varying the operator L, one recovers Lévy processes [41], 
CARMA processes [42,43], and their multivariate generalizations [44,45,20]. Unlike those examples, the 
compound-Poisson processes, although members of the Lévy family, are piecewise-constant and have a fi-
nite rate of innovation (FRI) in the sense of [46]. For a signal, being FRI means that a finite quantity of 
information is sufficient to reconstruct it over a bounded domain.

The present paper is an extension of our previous contribution [47].1 We believe that Theorem 1 is relevant 
for the conceptualization of random processes that are solution of linear SDE. Starting from the L-spline 

1 In this preliminary work, we had restricted our study to the family of CARMA Lévy processes in dimension d = 1 and showed 
that they are limit in law of CARMA Poisson processes. Here, we extend our preliminary result in several ways. First, the class 
of processes we study now is much more general since we consider arbitrary operators. Moreover, we include multivariate random 
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interpretation of generalized Poisson processes, the statistics of a more general process can be understood 
as a limit of the statistics of random L-splines. In general, the studied processes that are solution of (2)
do not have a finite rate of innovation, except if the underlying white noise is Poisson. The convergence 
result helps us understand why non-Poisson processes do not have a finite rate of innovation. They in fact 
correspond to infinitely many impulses per unit of time as they can be approximated by FRI processes with 
an increasing and asymptotically infinite rate of innovation.

Interesting connections can also be drawn with some classical finite-dimension convergence results in 
probability theory. As mentioned earlier, there is a direct correspondence between Lévy white noises and 
infinitely divisible random variables. It is well known that any infinitely divisible random variable is the 
limit in law of a sequence of compound-Poisson random variables [21, Corollary 8.8]. Theorem 1 is the 
generalization of this result from real random variables to random processes that are solution of a linear 
SDE.

1.3. Outline

The paper is organized as follows: In Sections 2 and 3, we introduce the concepts of L-splines and gener-
alized Lévy processes, respectively. A special emphasis is put on generalized Poisson processes in Section 4
as they embrace both generalized Lévy processes and (random) L-splines. Our main contribution is Theo-
rem 1, which is proven in Section 5. Section 6 contains illustrative examples in the one- and two-dimensional 
settings, followed by concluding remarks in Section 7.

2. Nonuniform L-splines

We denote by S(Rd) the space of rapidly decaying functions from Rd to R, that is, the space of functions 
that decay faster than any polynomial together with their derivatives. Its topological dual is S ′(Rd), the 
Schwartz space of tempered generalized function [22]. We denote by 〈u, ϕ〉 the duality product between 
u ∈ S ′(Rd) and ϕ ∈ S(Rd). A linear and continuous operator L from S(Rd) to S ′(Rd) is spline-admissible if

• it is shift-invariant, meaning that

L{ϕ(· − x0)} = L{ϕ}(· − x0) (3)

for every ϕ ∈ S(Rd) and x0 ∈ R
d; and

• there exists a measurable function of slow growth (bounded by a polynomial) ρL such that

L{ρL} = δ (4)

with δ the Dirac delta function. The function ρL is a Green’s function of L.

Definition 1. Let L be a spline-admissible operator with measurable Green’s function ρL. A nonuniform 
L-spline with knots (xk) and weights (ak) is a function s such that

Ls =
∞∑
k=0

akδ(· − xk). (5)

processes, often called random fields. Finally, our preliminary report contained a mere sketch of the proof of [47, Theorem 8], while 
the current work is complete in this respect.
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Table 1
Some families of spline-admissible operators

Operator Parameter ρL(x) Spline type

DN N ∈ N\{0} 1
(N−1)!x

N−1u(x) B-splines [2,3]
(D + αI) α ∈ C,�(α) > 0 e−αxu(x) E-splines [48]
Dγ γ > 0 1

Γ(γ)x
γ−1u(x) fractional splines [6,49]

Dx1 · · ·Dxd
– u(x) =

∏d
i=1 u(xi) separable splines [20]

(−Δ)m/2 m − d ∈ 2N cm,d‖x‖m−d log‖x‖ cardinal polyharmonic splines [4]
(−Δ)γ/2 γ − d ∈ R

+\2N cγ,d‖x‖γ−d fractional polyharmonic splines [50]

Definition 1 implies that the generic expression for a nonuniform L-spline is

s = p0 +
∑
k∈Z

akρL(· − xk) (6)

with p0 in the null space of L (i.e., Lp0 = 0). Indeed, we have, by linearity and shift-invariance of L, that

L
{
s−

∑
k∈Z

akρL(· − xk)
}

= Ls−
∑
k∈Z

akδ(· − xk) = 0. (7)

Therefore, 
(
s−

∑
k∈Z

akρL(· − xk)
)

is in the null space of L.
We summarize in Table 1 important families of operators with their corresponding Green’s function and 

the associated family of L-splines. The Heaviside function is denoted by u. The large variety of proposed 
splines, both in the univariate (d = 1) or multivariate contexts, illustrates the generality of our result.

3. Generalized Lévy processes

In this section, we briefly introduce the main tools and concepts for the characterization of Gaussian 
and sparse stochastic processes. For a more comprehensive description, we refer the reader to [20]. First, let 
us recall that a real random variable X is a measurable function from a probability space (Ω, A, P) to R, 
endowed with the Borelian σ-field. The law of X is the probability measure on R such that PX([a, b]) =
P(a ≤ X(ω) ≤ b). The characteristic function of X is the (conjugate) Fourier transform of P. For ξ ∈ R, 
it is

P̂X(ξ) =
∫
R

eiξxdPX(x) = E[eiXξ]. (8)

3.1. Generalized random processes

Generalized Lévy processes are defined in the framework of generalized random processes [25], which is the 
stochastic counterpart of the theory of generalized functions. For the purpose of this paper, a self-contained 
presentation of all the mathematical foundations together with the proofs of the results thereafter can be 
found in [51].

3.1.1. Random elements in S ′(Rd)
We first define the cylindrical σ-field on the Schwartz space S ′(Rd), denoted by Bc(S ′(Rd)), as the σ-field 

generated by the cylinders
{
v ∈ S ′(Rd), (〈v, ϕ1〉, . . . , 〈v, ϕN 〉) ∈ B

}
, (9)

where N ≥ 1, ϕ1, . . . , ϕN ∈ S(Rd), and B is a Borelian subset of RN .
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Definition 2. A generalized random process is a measurable function

s : (Ω,A) → (S ′(Rd),Bc(S ′(Rd))). (10)

The law of s is then the probability measure Ps on S ′(Rd), image of P by s. The characteristic functional
of s is the Fourier transform of its probability law, defined for ϕ ∈ S(Rd) by

P̂s(ϕ) =
∫

S′(Rd)

ei〈v,ϕ〉dPs(v) = E[ei〈s,ϕ〉]. (11)

A generalized process s is therefore a random element in S ′(Rd). In particular, we have that

• for every ω ∈ Ω, the functional ϕ �→ 〈s(ω), ϕ〉 is in S ′(Rd); and
• for every ϕ1, . . . ϕN ∈ S(Rd),

ω �→ Y = (〈s(ω), ϕ1〉, . . . , 〈s(ω), ϕN 〉) (12)

is a random vector whose characteristic function is

P̂Y (ξ) = P̂s(ξ1ϕ1 + · · · + ξNϕN ) (13)

for every ξ = (ξ1, . . . , ξN ) ∈ R
N .

The probability density functions (pdfs) of the random vectors Y in (12) are the finite-dimensional marginals 
of s. We shall omit the reference to ω ∈ Ω thereafter.

3.1.2. Abstract nuclear spaces
We recall that function spaces are locally convex spaces, generally infinite-dimensional, whose elements 

are functions. To quote A. Pietsch in [52]: “The locally convex spaces encountered in analysis can be divided 
into two classes. First, there are the normed spaces (...). The second class consists of the so-called nuclear 
locally convex spaces.” Normed spaces and nuclear spaces are mutually exclusive in infinite dimension [53, 
Corollary 2, pp. 520]. The typical example of nuclear function space is the Schwartz space S(Rd) [53, 
Corollary, pp. 530]; see also [26].

The theory of nuclear spaces was introduced by A. Grothendieck in [54]. The required formalism is 
more demanding than the simpler theory of Banach spaces. The payoff is that fundamental results of 
finite-dimensional probability theory can be directly extended to nuclear spaces, while such generalizations 
are not straightforward for Banach spaces.

Let N be a nuclear space and N ′ its topological dual. As we did for S ′(Rd) in Section 3.1.1, we define 
a generalized random process on N ′ as a random variable s from Ω to N ′, endowed with the cylindrical 
σ-field Bc(N ′). The law of s is the image of P by s and is a probability measure on N ′. The characteristic 
functional of s is P̂s(ϕ) = E[ei〈s,ϕ〉], defined for ϕ ∈ N .

3.1.3. Generalized Bochner and Lévy theorems
First, we recall the two fundamental theorems that support the use of the characteristic function in 

probability theory.

Proposition 1 (Bochner theorem). A function P̂ : R → C is the characteristic function of some random 
variable X if and only if P̂ is continuous, positive-definite, and satisfies

P̂(0) = 1. (14)
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Proposition 2 (Lévy theorem). Let (Xn)n∈N and X be real random variables. The sequence Xn converges in 
law to X if and only if for all ξ ∈ R

P̂Xn
(ξ) −→

n→∞
P̂X(ξ), (15)

where P̂Xn
and P̂X are respectively the characteristic functions of Xn and X.

The infinite-dimensional generalizations of Propositions 1 and 2 were achieved during the 60s and the 
70s, and are effective for nuclear spaces only. See the introduction of [55] for a general discussion on this 
subject.

Initially conjectured by Gelfand, the so-called Minlos–Bochner theorem was proved by Minlos [56] for 
the case of Fréchet spaces and by Fernique for the general case [57].

Theorem 2 (Minlos–Bochner theorem). Let N be a nuclear space. The functional P̂ from N to C is the 
characteristic functional of a generalized random process s on N ′ if and only if P̂ is continuous, positive-
definite, and satisfies

P̂(0) = 1. (16)

The generalization of the Lévy theorem for nuclear spaces was obtained in [57] and is not as widely 
known as it should be. A sequence (sn)n∈N of generalized random processes in N ′ is said to converge in law 

to s, which we denote by sn
(d)−→

n→∞
s, if the underlying probability measures P̂sn converge weakly to P̂s, in 

such a way that
∫

S′(Rd)

f(v)dP̂sn(v) −→
n→∞

∫
S′(Rd)

f(v)dP̂s(v) (17)

for any continuous bounded function f : S ′(Rd) → R.

Theorem 3 (Fernique-Lévy theorem). Let N be a nuclear space. Let (sn)n∈N and s be generalized random 

processes on N ′. Then, sn
(d)−→

n→∞
s if and only if the underlying characteristic functionals of sn converge 

pointwise to the characteristic functional of s, so that

P̂sn(ϕ) −→
n→∞

P̂s(ϕ) (18)

for all ϕ ∈ N .

Interestingly, it also appears that nuclear spaces are the unique Fréchet spaces for which the Lévy theorem 
still holds [58, Theorem 5.3]. Therefore, the nuclearity is at the heart of infinite-dimensional generalization 
of Lévy theorem.

We shall use Theorems 2 and 3 with N = S(Rd). Theorem 2 is our main tool to construct solutions of 
stochastic differential equations as generalized random processes. On the other hand, Theorem 3 allows one 
to show the convergence in law of a family of generalized random processes.

3.2. Lévy white noises and generalized Lévy processes

White noises can only be defined as generalized random processes, since they are too erratic to be defined 
as classical, pointwise processes.
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3.2.1. Lévy exponents
Lévy white noises are in a one-to-one correspondence with infinitely divisible random variables. A random 

variable X is said to be infinitely divisible if it can be decomposed for every N ≥ 1 as

X = X1 + · · · + XN , (19)

where the Xn are independent and identically distributed (i.i.d.). The characteristic function of an infinitely 
divisible law has the particularity of having no zero [21, Lemma 7.5], and therefore can be written as 
P̂X(ξ) = exp(f(ω)) with f a continuous function [21, Lemma 7.6].

Definition 3. A Lévy exponent is a function f : R → C that is the continuous log-characteristic function of 
an infinitely divisible law.

Theorem 4 gives the fundamental decomposition of a Lévy exponent. It is proved in [21, Section 8].

Theorem 4 (Lévy–Khintchine theorem). A function f : R → C is a Lévy exponent if and only if it can be 
written as

f(ξ) = iμξ − σ2ξ2

2 +
∫
R

(eiξt − 1 − iξt1|t|≤1)V (dt), (20)

where μ ∈ R, σ2 ≥ 0, and V is a Lévy measure, which is a measure on R with∫
R

min(1, t2)V (dt) < ∞ and V ({0}) = 0. (21)

We call (μ, σ2, V ) the Lévy triplet associated to f(ξ). If, moreover, one has that∫
|t|≥1

|t|εV (dt) < ∞ (22)

for some ε > 0, then V is called a Lévy–Schwartz measure and one says that f satisfies the Schwartz 
condition.

3.2.2. Lévy white noises
If f is a Lévy exponent satisfying the Schwartz condition, then the functional

ϕ �→ exp

⎛
⎝ ∫

Rd

f(ϕ(x))dx

⎞
⎠ (23)

is a valid characteristic functional on S(Rd) [59, Theorem 3]. Hence, as a consequence of Theorem 2, there 
exists a generalized random process having this characteristic functional.

Definition 4. A Lévy white noise on S ′(Rd) is the generalized random process w whose characteristic func-
tional has the form

P̂w(ϕ) = exp

⎛
⎝ ∫

Rd

f(ϕ(x))dx

⎞
⎠ , (24)

where f is a Lévy exponent satisfying the Schwartz condition.
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Lévy white noises are stationary, meaning that w(· −x0) and w have the same probability law for every x0. 
They are, moreover, independent at every point, in the sense that 〈w, ϕ1〉 and 〈w, ϕ2〉 are independent if 
ϕ1 and ϕ2 have disjoint supports.

3.2.3. Generalized Lévy processes
We want to define random processes s solutions of the equation Ls = w. This requires one to identify 

compatibility conditions between L and w. This question was addressed in previous works [20,59,60] that 
we summarize now.

Definition 5. Let (μ, σ2, V ) be a Lévy triplet. For 0 ≤ pmin ≤ pmax ≤ 2, one says that (μ, σ2, V ) is a 
(pmin, pmax)-triplet if there exists

pmin ≤ p ≤ q ≤ pmax (25)

such that

1.
∫
|t|≥1|t|pV (dt) < ∞,

2.
∫
|t|<1|t|qV (dt) < ∞,

3. pmin = inf(p, 1) if V is non-symmetric or μ 
= 0, and
4. pmax = 2 if σ2 
= 2.

If f is the Lévy exponent associated to (μ, σ2, V ), then one also says that f is a (pmin, pmax)-exponent.

If V is symmetric, then (0, 0, V ) is a (pmin, pmax)-triplet if and only if
∫

|t|≥1

|t|pminV (dt) and
∫

|t|<1

|t|pmaxV (dt) < ∞. (26)

The other conditions are added to deal with the presence of a Gaussian part (for which pmax = 2) and the 
existence of asymmetry (for which pmin ≥ 1). Note, moreover, that every Lévy exponent is a (0, 2)-exponent 
and that a Lévy exponent satisfies the Schwartz condition if and only if it is an (ε, 2)-exponent for some 
0 < ε ≤ 2.

Definition 6. Let L be a spline-admissible operator and w a Lévy white noise with Lévy exponent f . One 
says that (L, w) is compatible if there exists

0 < pmin ≤ pmax ≤ 2 (27)

such that

• the function f is a (pmin, pmax)-exponent; and
• the adjoint L∗ of L admits a left inverse T such that

TL∗{ϕ} = ϕ, ∀ϕ ∈ S(Rd) (28)

is linear and continuous from S(Rd) to Lpmin(Rd) ∩ Lpmax(Rd).

We know especially that, if (L, w) is compatible, then the functional ϕ �→ P̂w(T{ϕ}) is a valid char-
acteristic functional on S(Rd) [59, Theorem 5]. Hence, there exists a generalized random process s with 
P̂s(ϕ) = P̂w(T{ϕ}). Moreover, we have by duality that 〈Ls, ϕ〉 = 〈s, L∗ϕ〉 and, therefore, that
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P̂Ls(ϕ) = P̂s(L∗{ϕ}) = P̂w(TL∗{ϕ}) = P̂w(ϕ) (29)

or, equivalently, that Ls (d)= w. When (L, w) is compatible, we formally denote it by

s = L−1w, (30)

which implicitly means that we fix an operator T satisfying the conditions of Definition 6 and that the 
characteristic functional of s is ϕ �→ P̂w(T{ϕ}).

Definition 7. Let (L, w) be compatible. The process s = L−1w is called a generalized Lévy process.

The family of generalized Lévy processes includes generalized Gaussian processes for which the underlying 
white noise is Gaussian. As explained in the introduction, the non-Gaussian members of the family appears 
to be more compressible than their Gaussian counterpart, and are called sparse stochastic processes for this 
reason [20]. Our analysis however applies for both Gaussian and sparse processes, and we shall mostly refer 
to the broad family of generalized Lévy processes, which includes both of them, in our results.

The inequality of Proposition 3 will be useful in the sequel.

Proposition 3 (Corollary 1, [59]). Let f be a (pmin, pmax)-exponent with 0 < pmin ≤ pmax ≤ 2. Then, there 
exist constants ν1, ν2 > 0 such that, for every ξ ∈ R,

|f(ξ)| ≤ ν1|ξ|pmin + ν2|ξ|pmax . (31)

Strictly speaking, Corollary 1 in [59] states that the non-Gaussian part of f , denoted by g = f(ξ) − iμξ+
σ2ξ2

2 , satisfies

|g(ξ)| ≤ κ1|ξ|pmin + κ2|ξ|pmax (32)

for some constants κ1, κ2 > 0. We easily propagate this inequality to f by exploiting that pmin ≤ 1 (pmax = 2, 
respectively) when μ 
= 0 (σ2 
= 0, respectively).

Proposition 3 allows us to extend the domain of continuity P̂w(ϕ) from S(Rd) to Lpmin(Rd) ∩Lpmax(Rd). 
Indeed, (31) implies that

|log P̂w(ϕ)| ≤
∫
Rd

|f(ϕ(x))|dx ≤ ν1‖ϕ‖pmin
pmin

+ ν2‖ϕ‖pmax
pmax

. (33)

Therefore, P̂w is well-defined over Lpmin(Rd) ∩ Lpmax(Rd) and continuous at ϕ = 0. Since characteristic 
functionals are positive-definite, the continuity at 0 implies the continuity over Lpmin(Rd) ∩ Lpmax(Rd) [61].

Corollary 1. With the notations of Proposition 3, the characteristic functional P̂w(ϕ) of the Lévy white noise 
w on S ′(Rd) with Lévy exponent f , which is a priori defined for ϕ ∈ S(Rd), can be extended continuously 
to Lpmin(Rd) ∩ Lpmax(Rd).

4. Generalized Poisson processes: a bridge between L-splines and generalized Lévy processes

Generalized Poisson processes are generalized Lévy processes driven by impulsive noise. They can be 
interpreted as random L-splines, which makes them conceptually more accessible than other generalized 
Lévy processes.
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Definition 8. Let λ > 0 and let P be a probability law on R\{0} such that there exists ε > 0 for which ∫
R\{0}|t|εP (dt) < ∞. The impulsive noise w with rate λ > 0 and amplitude probability law P is the process 

with characteristic functional

P̂w(ϕ) = exp

⎛
⎝λ

∫
Rd

∫
R

(
eiϕ(x)t − 1

)
P (dt)dx

⎞
⎠ . (34)

According to [7, Theorem 1], one has that

w =
∑
n∈Z

anδ(· − xn), (35)

where the sequence (an) is i.i.d. with law P and the sequence (xn), independent of (an), is such that, for 
every finite measure Borel set A ⊂ R

d, card{n ∈ Z, xn ∈ A} is a Poisson random variable with parameter 
λL(A), L being the Lebesgue measure on Rd.

Proposition 4. An impulsive noise with rate λ > 0 and jump-size probability law P is a Lévy white noise 
with triplet (λμP , 0, λP ), where μP =

∫
|t|<1 tP (dt). Moreover, its Lévy exponent is given by

f(ξ) = λ(P̂ (ξ) − 1) (36)

with P̂ the characteristic function of P .

Proof. This result is obvious by comparing (34) with the general form of a Lévy exponent (20). �
Definition 9. Let (L, w) be compatible with w an impulsive noise. Then, the process s = L−1w is called a 
generalized Poisson process.

Proposition 5. A generalized Poisson process s is almost surely a nonuniform L-spline.

Proof. Let s = L−1w be a generalized Poisson process, with w an impulsive noise and L a spline-admissible 
operator. Then, according to (35), we have that

Ls (d)= w =
∑
n∈Z

anδ(· − xn). (37)

Based on Definition 1, the function s is therefore an L-spline almost surely. �
This connection with spline theory gives a very intuitive way of understanding generalized Poisson pro-

cesses: their realizations are nonuniform L-splines.

5. Generalized Lévy processes as limits of generalized Poisson processes

This section is dedicated to the proof of Theorem 1. We start with some notations. The characteristic 
function of a compound-Poisson law with rate λ and jump law P is given by

eλ(P̂ (ξ)−1) (38)
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with P̂ the characteristic function of P . If f is a Lévy exponent, then one denotes by Pf the compound-
Poisson probability law with rate λ = 1 and by law of jumps the infinitely divisible law with characteristic 
function ef . The characteristic function of Pf is therefore P̂f (ξ) = eef(ξ)−1 and the Lévy exponent of Pf is

ef(ξ) − 1. (39)

5.1. Compatibility of impulsive noises

First of all, we show that, if an operator L is compatible with a Lévy noise w whose Lévy exponent is f , 
then it is also compatible with any impulsive noise with the law of jumps Pf .

Proposition 6. If f is a (pmin, pmax)-exponent, then, for every λ > 0 and τ 
= 0, the Lévy exponent

fλ,τ (ξ) = λ(eτf(ξ) − 1) (40)

associated with the generalized Poisson process of rate λ and law of jumps Pτf is also a (pmin, pmax)-exponent.

We shall make use of Lemma 1, which provides a result on infinitely divisible law and is proved in [21, 
Theorem 25.3].

Lemma 1. For Z an infinitely divisible random variable with Lévy measure VZ and 0 < p ≤ 2, we have the 
equivalence

E[|Z|p] < ∞ ⇐⇒
∫

|t|≥1

|t|pVZ(dt) < ∞. (41)

Proof of Proposition 6. Note first that both τf and fλ,τ are Lévy exponents. Let (μ, σ2, V ) be the 
(pmin, pmax)-triplet associated with f . The Lévy triplet of fλ,τ is

(λμPτf
, 0, λPτf ), (42)

where we recall that Pτf is the compound-Poisson law with rate λ = 1 and law of jumps corresponding to 
the infinitely divisible random variable with Lévy exponent τf . In addition,

μPτf
=

∫
0<|t|<1

tPτf (dt). (43)

Let X (respectively, Y ) be an infinitely divisible random variable with Lévy exponent f (fλ,τ , respec-
tively).

Let μ = σ2 = 0 and V be symmetric. In this case, we have that μPτf
= 0 and Pτf is symmetric, so that fλ,τ

is a (pmin, pmax)-exponent if and only if
∫

|t|≥1

|t|pminPτf (dt) < ∞ (44)

∫
0<|t|<1

|t|pmaxPτf (dt) < ∞. (45)

Because Pτf is a probability measure, (45) is obvious. Based on Lemma 1, (44) is equivalent to the condition
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E[|Y |pmin ] < ∞. (46)

The random variable Y being compound-Poisson, we have that

Y
(d)=

N∑
i=1

Xi (47)

with N a Poisson random variable of parameter λ and (Xi)i∈N an i.i.d. vector with common law Pτf .
Let us fix x, y ∈ R. If 0 < p < 1, then we have that

|x + y|p ≤ |x|p + |y|p. (48)

On the contrary, if 1 ≤ p ≤ 2, then the inequality
∣∣∣∣x + y

2

∣∣∣∣
p

≤ |x|p + |y|p
2 (49)

follows from the convexity of x �→ xp on R+. From these two inequalities, we see that for any 0 < p ≤ 2 and 
(xi)1≤i≤N ,

∣∣∣ N∑
i=1

xi

∣∣∣p ≤ Nmax(p−1,0)
N∑
i=1

|xi|p ≤ N
N∑
i=1

|xi|p. (50)

Therefore, we have that

E[|Y |pmin ] = E

[∣∣∣ N∑
i=1

Xi

∣∣∣pmin]
≤ E

[
N

N∑
i=1

|Xi|pmin
]

=
∑
n≥0

nP(N = n)E
[ n∑

i=1
|Xi|pmin

]
=

⎛
⎝∑

n≥0
n2

P(N = n)

⎞
⎠× E [|X1|pmin ]

= E[N2] × E [|X1|pmin ] < ∞. (51)

This shows that fλ,τ is a (pmin, pmax)-exponent.

General case. By assumption, (μ, σ2, V ) is a (pmin, pmax)-triplet, so that there exist p, q such that pmin ≤
p ≤ q ≤ pmax and

∫
|t|≥1

|t|pV (dt) < ∞ and
∫

|t|<1

|t|qV (dt) < ∞. (52)

As we did for Case a), we deduce that
∫

|t|≥1

|t|pPτf (dt) < ∞ and
∫

|t|<1

|t|qPτf (dt) < ∞. (53)

This means that the Lévy measure Pτf of fλ,τ satisfies the first and second conditions in Definition 5. 
Moreover, if either V is non-symmetric or μ 
= 0, then either Pτf is not symmetric or μPτf


= 0. However, in 
this case pmin ≤ 1, so that the third condition in Definition 5 is satisfied. Similarly, if σ2 
= 0, then pmax = 2
and the fourth condition in Definition 5 is satisfied. Hence, fλ,τ is a (pmin, pmax)-exponent. �



JID:YACHA AID:1293 /FLA [m3L; v1.246; Prn:25/10/2018; 8:49] P.14 (1-21)
14 J. Fageot et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
Corollary 2. Let L be a spline-admissible operator and w a Lévy white noise with Lévy exponent f . Then, L
is compatible with any impulsive noise with rate λ > 0 and jump-size law Pτf for τ > 0.

Proof. Knowing that fλ,τ is a (pmin, pmax)-exponent, we deduce from Definition 6 that (L, wλ,τ ) is compat-
ible, where wλ,τ is the impulsive noise with Lévy exponent fλ,τ . �
5.2. Generalized Lévy processes as limits of generalized Poisson processes

Lemma 2. Let f be a (pmin, pmax)-exponent for some 0 < pmin ≤ pmax ≤ 2 and let w be the associated Lévy 
white noise. Let fn be the Lévy exponent defined by

fn(ξ) = n
(
ef(ξ)/n − 1

)
(54)

and let wn be the impulsive noise with exponent fn. Then, for every ϕ ∈ Lpmin(Rd) ∩ Lpmax(Rd), we have 
that

P̂wn
(ϕ) −→

n→∞
P̂w(ϕ). (55)

Proof. First of all, the function fn is the Lévy exponent associated to the compound-Poisson law with 
rate n and jump-size law with Lévy exponent f/n. Let ϕ ∈ Lpmin(Rd) ∩ Lpmax(Rd). According to Corol-
lary 1, P̂w(ϕ) is well-defined. From Proposition 6 (applied with λ = 1/τ = n), we also know that fn is a 
(pmin, pmax)-exponent, so that P̂wn

(ϕ) is also well-defined. We can now prove the convergence. For every 
fixed x ∈ R

d, we have that

fn(ϕ(x)) = n
(
ef(ϕ(x))/n − 1

)
−→
n→∞

f(ϕ(x)). (56)

The goal is now to show that

∫
Rd

fn(ϕ(x))dx →
n→∞

∫
Rd

f(ϕ(x))dx. (57)

From (20), we readily see that

� (f(ϕ(x))) =
∫
R

(cos(tϕ(x)) − 1)V (dt) − σ2ϕ(x)2

2 ≤ 0. (58)

Let x ≤ 0 and y ∈ R. Due to the convexity of the exponential, |ex − 1| ≤ |x|. Moreover, |eiy − 1| =
2|sin(y/2)| ≤ |y|. Thus, for z = x + iy,

|ez − 1| = |eiy(ex − 1) + eiy − 1| ≤ |x| + |y| ≤
√

2|z|. (59)

We now apply (59) to z = f(ϕ(x))/n, whose real part is negative due to (58), and deduce that

|fn(ϕ(x))| = n|ef(ϕ(x))/n − 1| ≤ n
√

2|f(ϕ(x))|/n =
√

2|f(ϕ(x))|. (60)

The function x �→ |f(ϕ(x))| is in L1(Rd) according to Proposition 3. We thus apply the Lebesgue dominated-
convergence theorem to deduce (57) and, as a consequence, (55) holds. �
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Theorem 5. Let (L, w) be compatible and let s = L−1w. The Lévy exponent of w is denoted by f . For 
n ≥ 1, we set wn the impulsive noise with Lévy exponent fn defined in (54) and sn = L−1wn the associated 
generalized Poisson process. Then,

sn
(d)−→

n→∞
s. (61)

We note that Theorem 5 is a reformulation—hence implies—Theorem 1, in which we explicitly state the 
way we approximate the process s with generalized Poisson processes sn.

Proof. We fix an operator T defined as a left inverse of L∗ associated with the compatible couple (L, w) as 
in Definition 6. For every n ≥ 1, (L, wn) is compatible by applying Corollary 2 with λ = 1/τ = n. Hence, 
the process sn with characteristic functional P̂wn

(T{ϕ}) is well-defined for every n.
Then, for every ϕ ∈ S(Rd), we have by compatibility that

T{ϕ} ∈ Lpmin(Rd) ∩ Lpmax(Rd). (62)

By applying Lemma 2 to T{ϕ}, we deduce that

P̂wn
(T{ϕ}) −→

n→∞
P̂w(T{ϕ}). (63)

For ϕ ∈ S(Rd), we have therefore that

P̂sn(ϕ) = P̂wn
(T{ϕ}) −→

n→∞
P̂w(T{ϕ}) = P̂s(ϕ). (64)

Finally, Theorem 3 implies that

sn
(d)−→

n→∞
s. � (65)

6. Simulations

Here, we illustrate the convergence result of Theorem 1 on generalized Lévy processes of three types, 
namely

• Gaussian processes based on Gaussian white noise, which are non-sparse;
• Laplace processes based on Laplace noise, which are sparse and have finite variance;
• Cauchy processes based on Cauchy white noise, our prototypical example of infinite-variance sparse 

model.

For a given white noise w with Lévy exponent f , we consider compound-Poisson processes that follow the 
principle of Lemma 2. Therefore, we consider compound-Poisson white noises with parameter λ and law of 
jumps with Lévy exponent fλ , for increasing values of λ.

In Table 2, we specify the parameters and Lévy exponents of six types of noise: Gaussian, Laplace, 
Cauchy, and their corresponding compound-Poisson noises. We name a compound-Poisson noise in relation 
to the law of its jumps (e.g., the compound-Poisson noise with Gaussian jumps is called a Gauss–Poisson 
noise). As λ increases, the associated compound-Poisson noise features more and more jumps on average 
(λ per unit of volume) and is more and more concentrated towards 0. For instance, in the Gaussian case, the 
Gauss–Poisson noise has jumps with variance σ

2

λ −→
λ→∞

0. To illustrate our results, we provide simulations 
for the 1-D and 2-D settings.
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Table 2
Examples of white noises with their Lévy exponent.

White noise Parameters Lévy exponent

Gaussian σ2 > 0 −σ2ξ2

2
Laplace σ2 > 0 − log

(
1 + σ2ξ2

2
)

Cauchy c > 0 −c|ξ|
Gauss–Poisson λ, σ2 > 0 λ

(
e−

σ2ξ2

2λ − 1
)

Laplace–Poisson λ, σ2 > 0 λ
(

1
1+ σ2ξ2

2λ

− 1
)

Cauchy–Poisson λ, c > 0 λ
(
e−

c|ξ|
λ − 1

)

Fig. 2. Processes generated by D +αI, α = 0.1, so that s = (D +αI)−1w. In (a)–(c), w is a Poisson noise with Cauchy jumps, with 
increasing λ. In (d), w is a Cauchy white noise.

The main purpose of the simulations is to give a visual illustration of our main result (Theorem 5). We 
shall see that typical values of λ = 100 for d = 1 (Section 6.1) and λ = 50 for d = 2 (Section 6.2) are sufficient 
to generate generalized random processes that are virtually indistinguishable from their Lévy counterparts. 
The next step will be to investigate the speed of convergence in (61), which would give mathematical 
guarantees for the convergence result. We postpone this theoretical question to future work. We however 
observe that the choice of the Lévy white noise qualitatively impact the approximation. Non-Gaussian white 
noises have a compound Poisson part, resulting in the presence of jumps [21]. A faithful approximation of the 
corresponding generalized Lévy process by generalized compound Poisson processes is therefore expected 
to be obtained with a lower value of λ when the jumps are dominating.

6.1. Simulations in 1-D

We illustrate two families of 1-D processes, as given by

• (D + αI)s = w, with parameter α > 0;
• Ds = w.

All the processes are plotted on the interval [0, 10]. We show in Fig. 2 a Cauchy process generated by D +αI. 
In Fig. 3 and 4, we show a Gaussian and a Laplace process, respectively. Both of them are whitened by D. 
In all cases, we first plot the processes generated with an appropriate Poisson noises with increasing values 
of λ. Then, we show the processes obtained from the corresponding Lévy white noise.

Interestingly, we observe that the processes obtained with Poisson noises of small λ in Figs. 3 and 4
are very similar. However, their asymptotic processes (large λ) differ, as expected from the fact that they 
converge to processes obtained from different Lévy white noises. Moreover, for intermediate values of λ
(typically, λ = 3 in this case), the Laplace–Poisson process is visually much closer to its Laplace limit 
than the Gauss–Poisson process from its Gaussian limit. We empirically deduce that generalized compound 
Poisson processes approximate sparse processes better than Gaussian processes, as discussed above.
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Fig. 3. Processes whitened by D. In (a)–(c), w is a Poisson noise with Gaussian jumps, with increasing λ. In (d), w is a Gaussian 
white noise.

Fig. 4. Processes generated by D, so that s = D−1w. In (a)–(c), w is a Poisson noise with Laplace jumps, with increasing λ. In (d), 
w is a Laplace white noise.

6.2. Simulations in 2-D

We illustrate three families of 2-D processes s, given as

• DxDys = w;
• (Dx + αI)(Dy + αI)s = w, with parameter α > 0;
• (−Δ)γ/2s = w, with parameter γ > 0.

We represent our 2-D examples in two ways: first as an image, with gray levels that correspond to the 
amplitude of the process (lowest value is dark, highest value is white); second as a 3-D plot. All processes are 
plotted on [0, 10]2. In Figs. 5 and 6, we show a Gaussian process with D as whitening operator. A Gaussian 
process generated by the fractional Laplacian (−Δ) γ

2 is illustrated in Figs. 7 and 8. Finally, we plot in Figs. 9
and 10 a Laplace process generated by (Dx +αI)(Dy +αI). We always first show the process generated with 
an appropriate Poisson noise with increasing λ and then plot the processes obtained from the corresponding 
Lévy white noise.

7. Conclusion

Our main result in this work is the proof that any generalized Lévy process s = L−1w is the limit in law 
of generalized Poisson processes obeying the same equation, but where w corresponds to an appropriate 
impulsive Poisson noises. In addition, we showed that generalized Poisson processes are random L-splines. 
In the asymptotic regime, generalized Lévy processes can thus conveniently be described using splines.

Theorem 1 is interesting in practice as it provides a new way of generating approximations of broad classes 
of sparse processes s = L−1w as soon as one is able to generate the infinitely divisible random variable that 
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Fig. 5. Processes generated by D, so that s = D−1w. In (a)–(c), w is a Poisson noise with Gaussian jumps, with increasing λ. In (d), 
w is a Gaussian white noise.

Fig. 6. 3-D representation of processes generated by D, so that s = D−1w. In (a)–(c), w is a Poisson noise with Gaussian jumps, 
with increasing λ. In (d), w is a Gaussian white noise.

Fig. 7. Processes generated by (−Δ)
γ

2 , γ = 1.5, so that s = ((−Δ)
γ

2 )−1w. In (a)–(c), w is a Poisson noise with Gaussian jumps, 
with increasing λ. In (d), w is a Gaussian white noise.

Fig. 8. 3-D representation of processes generated by (−Δ)
γ

2 , γ = 1.5, so that s = ((−Δ)
γ

2 )−1w. In (a)–(c), w is a Poisson noise 
with Gaussian jumps, with increasing λ. In (d), w is a Gaussian white noise.

drives the white noise w. This confirms the remarkable intuition that Bode and Shannon enunciated decades 
before the formulation of the mathematical tools needed to prove their claims. A precise estimation of the 
speed of convergence of generalized Poisson processes should moreover give theoretical guarantees that the 
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Fig. 9. Processes generated by (Dx +αI)(Dy +αI), α = 0.1, so that s = ((Dx + αI)(Dy + αI))−1 w. In (a)–(c), w is a Poisson noise 
with Laplace jumps, with increasing λ. In (d), w is a Laplace white noise.

Fig. 10. 3-D representation of processes generated by (Dx+αI)(Dy +αI), α = 0.1, so that s = ((Dx + αI)(Dy + αI))−1 w. In (a)–(c), 
w is a Poisson noise with Laplace jumps, with increasing λ. In (d), w is a Laplace white noise.

approximation and the original process s are statistically identical. We keep this research endeavors for 
future work.
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