Biomedical Imaging GroupSTI
English only   BIG > Publications > Nuclear Convolutions

 Home Page
 News & Events
 Tutorials and Reviews
 Download Algorithms

 All BibTeX References

Beyond Wiener's Lemma: Nuclear Convolution Algebras and the Inversion of Digital Filters

J. Fageot, M. Unser, J.P. Ward

Journal of Fourier Analysis and Applications, in press.

Please do not bookmark the "In Press" papers as content and presentation may differ from the published version.

A convolution algebra is a topological vector space 𝓧 that is closed under the convolution operation. It is said to be inverse-closed if each element of 𝓧 whose spectrum is bounded away from zero has a convolution inverse that is also part of the algebra. The theory of discrete Banach convolution algebras is well established with a complete characterization of the weighted ℓ1 algebras that are inverse-closed—these are henceforth referred to as the Gelfand-Raikov-Shilov (GRS) spaces. Our starting point here is the observation that the space 𝓢(ℤd) of rapidly decreasing sequences, which is not Banach but nuclear, is an inverse-closed convolution algebra. This property propagates to the more constrained space of exponentially decreasing sequences 𝓔(ℤd) that we prove to be nuclear as well. Using a recent extended version of the GRS condition, we then show that 𝓔(ℤd) is actually the smallest inverse-closed convolution algebra. This allows us to describe the hierarchy of the inverse-closed convolution algebras from the smallest, 𝓔(ℤd), to the largest, ℓ1(ℤd). In addition, we prove that, in contrast to 𝓢(ℤd), all members of 𝓔(ℤd) admit well-defined convolution inverses in 𝓢'(ℤd) with the "unstable" scenario (when some frequencies are vanishing) giving rise to inverse filters with slowly-increasing impulse responses. Finally, we use those results to reveal the decay and reproduction properties of an extended family of cardinal spline interpolants.

© 2019 Birkhäuser. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Birkhäuser.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.