MESSAGE-PASSING DE-QUANTIZATION 1

Message-Passing De-Quantization
with Applications to Compressed Sensing

Ulugbek S. Kamilov,Sudent Member, IEEE, Vivek K Goyal, Senior Member, |IEEE, and
Sundeep Rangamember, IEEE

Abstract—Estimation of a vector from quantized linear mea- I. INTRODUCTION
surements is a common problem for which simple linear tech-
niques are suboptimal—sometimes greatly so. This paper de- STIMATION of a signal from quantized samples is a
velops message-passing de-quantization (MPDQ) algorittenfor fundamental problem in signal processing. It arises both

minimum mean-squared error estimation of a random vector . R N .
from quantized linear measurements, notably allowing theihear from the discretization in digital acquisition devices ahe

expansion to be overcomplete or undercomplete and the scala duantization performed for lossy compression.
guantization to be regular or non-regular. The algorithm is This paper considers estimation of an i.i.d. vectofrom

based on generalized approximate message passing (GAMP)quantized transformed samples of the fof@z) wherez =
a recently-developed Gaussian approximation of loopy bedf Ax is a linear transform ok andQ is a scalar (component-

propagation for estimation with linear transforms and nonlinear . ..
componentwise-separable output channels. For MPDQ, scala wise separable) quantization operator. Due to the tramsfoy

quantization of measurements is incorporated into the outpt the components of may be correlated. Even though the tradi-
channel formalism, leading to the first tractable and effecive tional transform coding paradigm demonstrates the adgasta
method for high-dime_nsipnal estimation_ probl_ems invoIvir_g non-  of expressing the signal with independent components fior
regular scalar quantization. The algorithm is computationally coding [1], quantization of vectors with correlated comeois

simple and can incorporate arbitrary separable priors on the thel . . f i t E |
input vector including sparsity-inducing priors that arise in nevertheless arises In a range or circumstances. For egamp

the context of compressed sensing. Moreover, under the as-{0 model oversampled analog-to-digital conversion (AD),
sumption of a Gaussian measurement matrix with i.i.d. entrés, may write a vector of time-domain sampleszas Ax, where

the asymptotic error performance of MPDQ can be accurately the entries of the vectox are statistically independent Fourier
predicted and tracked through a simple set of scalar state qmnonents and is an oversampled inverse discrete Fourier

evolution equations. We additionally use state evolutiona design .
MSE-optimal scalar quantizers for MPDQ signal reconstrucion transform. The oversampled ADC quantizes the correlated

and empirically demonstrate the superior error performance of ti_me—domai_n s_ample&, as opposed to th? Fourier CQEfﬁ_'
the resulting quantizers. In particular, our results show that cients x. Distributed sensing also necessitates quantization
non-regular quantization can greatly improve rate—distotion of components that are not independent since decorrelating
performance in some problems with oversampling or with un-  yansforms may not be possible prior to the quantization.
dersampling combined with a sparsity-inducing prior. . L
More recently, compressed sensing has become a motivation t
Index Terms—analog-to-digital conversion, approximate mes- consider quantization of randomly linearly mixed inforioat
sage passing, belief propagation, compressed sensing, rfres, and several sophisticated reconstruction approachestiesre
non-regular quantizers, overcomplete representations, ISpian— proposed [2]-[4]

Wolf coding, quantization, Wyner-Ziv codin . . .
9.9 b 9 Estimation of a vectorx from quantized samples of the

form Q(Ax) is challenging because the quantization function
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regular quantization in a compressive acquisition settihg the quantizer to minimize the asymptotic distortion after
present paper provides extensive explanations and simula- the reconstruction by MPDQ. Note that our use of random
tions for both overcomplete and undercomplete settingt) wi A is for rigor of the SE formalism; the effectiveness of
both regular and non-regular quantization. MPDQ is the first MPDQ does not depend on this.
computationally-tractable method for settings with negular

quantization. B. Outline
The remainder of the paper is organized as follows. Sec-
A. Contributions tion Il provides basic background material on quantization

Gaussian approximations of loopy BP have previously be@fd compressed sensing. Section Ill introduces the problem
shown to be effective in several other applications [169}[1 ©f estimati_ng a random vector from quantizeql Ii.negr trans-
[21], [22]; for our application to estimation from quantize form coefficients. It concentrates on geometric |nS|ghu§ fo
samples, the extension to general output channels [14], [@th the oversampled and undersampled settings. Section IV
is essential. Using this extension to nonlinear output nbtmy  Presents the MPDQ algorithm by formulating the reconstruc-

we show that MPDQ estimation offers several key benefitstion problem in Bayesian terms. Note that this Bayesian
formulation does not require sparsity of the signal nor gpec

» General quantizers: The MPDQ algorithm permits essen_undersampling or oversampling. Section V describes the use

tially arbitrary quantization function§) including non- 2 . .
uniform and even non-regular quantizers (i.e. quantizcjf} SE to optimize the quantizers for MPDQ reconstruction.

with cells composed of unions of disjoint intervals) use ’xperimental results are presented in Section VI. Sectiin V
for example, in Wyner-Ziv coding [23] and muItipIeconCIUdes the paper.
description coding [24]. In Section VI, we will demon-
strate that a non-regular modulo quantizer can provide Notation
performance improvements for correlated data. We be-Vectors and matrices will be written in boldface typ&,(
lieve that the MPDQ algorithm provides the first tractablg, y, ...) to distinguish from scalars written in normal
estimation method that can exploit such quantizers. weight (n, n, ...). Random and non-random quantities (or
« General priors: MPDQ estimation can incorporate a larggandom variables and their realizations) are not dististges
class of priors on the componentsxafprovided that the typographically since the use of capital letters for random
components are independent. For example, in Section Vériables would conflict with the convention of using cabita
we will demonstrate the algorithm on recovery of vectorgtters for matrices (or in the case of quantization, an ajoer
with sparse priors arising in quantized compressed sei$r a vector rather than a scalar). The probability density
ing [2]-{4]. function (p.d.f.) of random vectox is denotedpy, and the
« Exact characterization with random transforms: In the conditional p.d.f. ofy givenx is denotedp, . When these
case of certain large random transformMs the com- densities are separable and identical across componeats, w
ponentwise performance of MPDQ can be preciselysep, for the scalar p.d.f. ang,, for the scalar conditional
predicted by a so-calledtate evolution (SE) analysis p.d.f. Writing + ~ A(a,b) indicates thatr is a Gaussian
presented in Section V-A. From the SE analysis, onandom variable with mean and varianceh. The resulting
can precisely evaluate any componentwise performangel.f. is written ag,.(t) = ¢(¢; a, b).
metric, including mean-squared error (MSE). In contrast,
works such as [5]-[13] mentioned above have only ob- Il. BACKGROUND

Eelrr}sg bozgdsool:rsiai\::]nuglalg(\;vnss. indicate sianificantl This section establishes concepts and notations centite to
* mance: 9 y aper. For a comprehensive tutorial history of quantirgtio

'T“p“?"ed performapce over trad|-t|onal methods for ®%We recommend [26]; and for an introduction to compressed
timating from quantized samples in a range of scenarigs

« Computational smplicity: The MPDQ algorithm is com- sensing, [27]
putationally extremely fast. Our simulation and SE anal- o
ysis indicate good performance with a small numbéy Scalar Quantization
of iterations (10 to 20 in our experience), with the A K-level scalar quantizer: R — R is defined by itsout-
dominant computational cost per iteration simply beingut levels or reproduction points C = {c¢;}X£ ; and (partition)
multiplication by A and AT cells {g~1(c;)}£,. It can be decomposed into a composition
« Applicationsto optimal quantizer design: When quantizer of two mappingsy = S o« wherea : R — {1,2, ..., K}
outputs are used as inputs to a nonlinear estimatian the (lossy) encoder and 8 : {1,2,..., K} — C is
algorithm, minimizing the MSE between quantizer inputthe decoder. The boundaries of the cells are calldetision
and outputs is generally not equivalent to minimizinghresholds. One may allowK = oo to denote thatC is
the MSE of the final reconstruction [25]. To optimizecountably infinite.
the quantizer for the MPDQ algorithm, we use the fact A quantizer is calledegular when each cell is a convex set,
that the MSE under large random mixing matricAs i.e., a single interval. Each cell of a regular scalar quanti
can be predicted accurately from a set of simple SfBus has a boundary of one point (if the cell is unbounded)
equations [14], [15]. We use the SE formalism to optimizer two points (if the cell is bounded). When the input to a
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guantizer is a continuous random variable, it suffices taifpe n. Such linear transforms can thus be used as a form of
the cells of aK-point regular scalar quantizer by its decisioficompression” onx, reducing the vector’s dimension from

thresholds{b; } £, with by = —oo andby = oo; the encoder n to a smaller valuen. Since many signals are naturally
satisfies sparse in some domain, there are now a large number of
alz) =1 for z € (b;j_1, b;), works advocating CS methods in analog front ends prior to

and the outout for boundary points can be safely ianored guantization to reduce the overall acquisition bit ratewHo
P yp Y9 " ever, properly understanding the rate—distortion peréoroe

The lossy encoder of a non-regular quantizer can be decor?- . .
. : of, such approaches requires that we analyze and design CS
posed into the lossy encoder of a regular quantizer followed

by a many-to-one integer-to-integer mapping. Suppése reconstruction methods precisely accounting for the &ffet
level non-regular scalar quantizet has decision thresholdsquantlzat.'on on the t.ransform—domam measurements [33] .
()X’ "and leta be the lossy encoder of a regular quans Analysis and design of CS reconstruction algorithms is
1J1=0" i I i i -
tizer with these decision thresholds. Singeis not regular, challenging, even in the absence of quantization. Most ap

K' > K. Leta' : R — {1,2, ..., K} denote the lossy proac_hes are bgsed on e|th_er greedy he_uns_ucs (matching
, ) pursuit [34] and its variants with orthogonalization [3[#
encoder ofy’. Thena/ = A o «, where

and iterative refinement [38], [39]) and convex relaxations
A:{1,2,...,K'} = {1,2,..., K} (basis pursuit [40], LASSO [41], Dantzig selector [42], and
others). These methods are all nonlinear and their perfacsa
can be difficult to precisely characterize, particularlythwi
guantization. Some initial performance bounds for CS recon
struction with quantization can be found in [33], [43]. IM]4
high-resolution functional scalar quantization theoryswaed

D =E[(z — q(z))?]. to design quantizers for LASSO estimation. The papers [2]-
[4] consider alternate reconstruction algorithms that tee
the partition cells of the quantizers that comp@seAnalyses

of these methods produce performance bounds that are not

is called abinning function, labeling function, or index assign-
ment. The binning function is not invertible.

The distortion of a quantizerq applied to scalar random
variablex is typically measured by the MSE

A quantizer is called optimal at fixed rafe = log, K when
it minimizes distortionD among all K-level quantizers. To

optlmcljze scalllar qu?nUzers u.nder' MSE dlstort||0n, I sui?‘!gm generally tight. Moreover, the results are generally kdito
consider only regular quantizers; a non-regular quantagr specific sparsity priors as well as regular quantizers.

ne\\//\%llperforrT strlctlytpetter. timal for the standard | We will show here that the MPDQ framework enables CS
e regular quantizers are optimal for the standard 10Ssy sty ction for a large class of sparse priors and aalignt
compression problem, non-regular quantizers are someti

ful wh inf i de f . abl rTé?bitrary guantization functions. Moreover, the methodaom-
usetul- when some information aside ropa) is avariable putationally simple and, for certain large random transigr
when estimatinge. Two key examples are Wyner—Ziv cod-

ing [23] and multiple description coding [24]. One methoélOlmItS an exact performance analysis.
for Wyner—Ziv coding is to apply Slepian—Wolf coding across
a block of samples after regular scalar quantization [28}; t
Slepian-Wolf coding is binning, but across a block rather This paper focuses on the general quantized measurement
than for a single scalar. In multiple description scalarrguaabstraction of

tization [29], two binning functions are used that together y = Q(Ax), (1)

are invertible but individually are not. In these uses of -non . . . . .
regular quantizers, side info)r/mation aids in recoveringith Wwherex € R" is a signal of interestA € R™*" is a linear

resolution commensurate witlk’ while the rate is only wgmg_”mzt:x, r?r\‘zgrﬁz .'n[igeres; an '(S :r_igﬂagggri?t'fﬂesrt
commensurate withi<, with K’ > K. wi pri 1 n P P

R - . . -
A quantizerQ : R™ — R™ is called a scalar quantizer” =X —X|"] forvarious estimatorg that depend oy, A,

when it is the Cartesian product ef scalar quantizers; : \E/l&ldQ. Tht_e cases Oini ntanqlm ﬁ n are both of interest.
R — R. In this paperQ always represents a scalar quantizer ¢ sometimes use = Ax 1o SImplly expressions.

with identical component quantizegs

I1l. QUANTIZED LINEAR EXPANSIONS

A. Overcomplete Expansions
B. Compressed Sensing Let A € R™*" have rankn. Then{a;}7, is aframe in

An important value of the proposed MPDQ framework i&”, wherea] is row i of A. Rankn can occur only with
that it can exploit non-Gaussian priors on the input vestor ™ = n, SO Ax is called anovercomplete expansion of x. In
To illustrate this feature, we will apply the MPDQ algorithmSOme cases of interest, the frame mayuneform, meaning
to quantization problems icompressed sensing (CS) [30]- |lai[| =1 for each:.

[32], which considers the reconstruction of sparse vectors Commonly-usedinear reconstruction forms estimate
through ran(_jomized _Iin_ear transform_s. %= Aly = ATQ(Ax), @)

A vector is sparse if it has a relatively small number of
nonzero components. A central principle of CS is that sparatiere AT = (AT A)~'AT is the pseudoinverse of. Linear
vectorsx can be reconstructed from certainderdetermined reconstruction generally has MSE inversely proportiooaht
linear transformsz = Ax, where A € R™*" andm < For example, suppose the frame is uniforh¥, A = mL, /n,
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and x is an unknown deterministic quantity. By modelingaw number of bits produced by the acquisition system: com-
scalar quantization as the addition of zero-mean whiteenoidining the proportionality of bit rat&? to number of samples
one can compute the MSE to be?/m [45]. m with the best-cas®(m~2) MSE, we obtaind(R~2) MSE;
Even when an additive white noise model is accurate [48his is poor compared to the exponential decrease of MSE with
the linear reconstruction (2) may be far from optimal. AR obtained with scalar quantization of Nyquist-rate samples

nonlinear estimate may exploit the boundedness o#ittgte- Ordinarily, the bit-rate inefficiency of the raw output is
sample consistent sets made irrelevant by recoding, at or near Nyquist rate, soon
after acquisition or within the ADC. An alternative expldre
Si(yi) = {x € R" [ 4i(zi) = vi}, i=12...,m in this paper is to combat this bit-rate inefficiency throulé

Assuming for now that scalar quantizgr is regular and its use of non-regular quantization.

cells are bounded, the boundary &f(y;) is two parallel
hyperplanes. The full set of hyperplanes obtained for om Non-Regular Quantization

index i by varyingy; over the output levels of; is called  The pit-rate inefficiency of the raw output with regular
a hyperplane wave partition [47], as illustrated for a umiio o ;antization is easily understood with reference to Fidifc.
quantizer in Figure 1(a). The set enclosed by two neighboridtier o, andys, are fixed;x is known to lie in the intersection

hyperplanes in a hyperplane wave partition is calleil; one ¢ the shaded strips. Only four values®f are possible (i.e.,

slab is shaded in Figure 1(a). Intersectifigy;) for n distinct e sojig hyperplane wave breaRs(1)nSs (0) into four cells),

indexes specifies an-dimensional parallelotope as illustrated,,§ pits are wasted if this is not exploited in the represinta

in Figure 1(b). Using more tham of these single-sample ¢ .

consistent sets restricte to a finer partition, as illustrated Recall the discussion of generating a non-regular quantize

in Figure 1(c) form = 3. by using a binning function in Section 1I-A. Binning does
The intersection not change the boundaries of the single-sample consistts)t s

m but it makes these sets unions of slabs that may not even
S(y) = ﬂ Si(yi) be connected. Thus, while binning reduces the quantization
i=1 rate, in the absence of side information that specifies which

is called theconsistent set. Since eachS;(y;) is convex, slab containsx (at least with moderately high probability),
one may reachS(y) asymptotica”y through a sequence Oft increases distortion Significantly. The increase indisbn
projections ontaS;(y;) using each infinitely often [5], [6]. IS due toambiguity among slabs. Taking: > n quantized

In a variety of settings, nonlinear estimates achieve MSEmples together may provide adequate information to disam
inversely proportional tom?2, which is the best possible biguate among slabs, thus removing the distortion penalty.
dependence onn [47]. The first result of this sort was The key concepts in the use of non-regular quantization
in [5]. When A is an oversampled discrete Fourier transforf@re illustrated in Figure 2. Suppose one quantized sample
matrix and Q is a uniform quantizerz = Ax represents ¥1 Specifies a single-sample consistent Sety:) composed
uniformly quantized samples above Nyquist rate of a peciod®f two slabs, such as the shaded region in Figure 2(a). A
bandlimited signal. For this case, it was proven in [5] th&econd quantized samplg will not disambiguate between
any X € S(y) hasO(m~2) MSE, under a mild assumptionthe two slabs. In the example shown in Figure 2®)y-2) is
on ||x|. This was extended empirically to arbitrary unifornfomposed of two slabs, arl (y1) N Sz(y2) is the union of
frames in [7], where it was also shown that consistent estismafour connected sets. A third quantized sampiemay now
can be computed through a linear program. The technigqu@¥npletely disambiguate; the particular exampleSafys)
of alternating projections and linear programming suffenf shown in Figure 2(c) makeS = S (y1) N S2(y2) N Ss(ys) @
high computational complexity; yet, since they generalhgfi Single convex set.

a corner of the consistent set (rather than the centroi@), th When the quantized samples together completely disam-
MSE performance is suboptimal. biguate the slabs as in the example, the rate reduction from
Full consistency is not necessary for optimal MSE ddunning comes with no increase in distortion. The price tg pa

pendence onm. It was shown in [8] thatO(m~2) MSE comes in complexity of estimation.

is guaranteed for a simple algorithm that uses e&g;) The use of binned quantization of linear expansions was

only once, recursively, under mild conditions on randomizéntroduced in [49], where the only reconstruction method

selection of{a;}”,. These results were strengthened arfoposed is intractable in high dimensions because it is

extended to deterministic frames in [13]. combinatorial over the binning functions. Specificallyjngs
Quantized overcomplete expansions arise naturally in 4B€ notation from Section II-A, let the quantizer forming

quisition subsystems such as ADCs, wheugn represents e defined bya;, 5, Ai). ThenA7 (87 (y:)) will be a set of

oversampling factor relative to Nyquist rate. In such syste POossible values ofv(z;) specified byy;. One can try every

high oversampling factor may be motivated by a trade-ofembination, i.e., element of

between MSE and power consumption or manufacturing cost;—1, 5—1 —1/p-1 R V|

within certain bounds, faster sampling is cheaper than hehig AT ) <7 B ) X X N (B (), @)

number of quantization bits per sample [48]. However, higio seek a consistent estimate. If the binning is effectivestm

oversampling does not give a good trade-off between MSE acmimbinations yield an empty consistent set; if the slabs are
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Fig. 1: Visualizing the information present in a quantizeg@omplete expansion of € R? wheng; is a regular quantizer. (a)
A single hyperplane wave partition with one single-samplasistent set shaded. (b) Partition boundaries from tweipipne
waves;x is specified to the intersection of two single-sample cdestssets, which is a bounded convex cell. (c) Partition
from part (b) in dashed lines with a third hyperplane waveealith solid lines.

(@)

Fig. 2: Visualizing the information present in a quantizegm@omplete expansion of € R? when using non-regular (binned)
guantizers. (a) A single hyperplane wave partition with @nggle-sample consistent set shaded. Note that binningesnak
the shaded set not connected. (b) Partition boundaries finmrhyperplane wavest is specified to the intersection of two
single-sample consistent sets, which is now the union of fmmvex cells. (c) A third sample now specifigsto within a
consistent sef that is convex.

disambiguated, exactly one combination yields a nonempghose depicted in Figures 1(a) and 2(a). However, as destrib
set, which is then the consistent st This technique has in Section II-B, knowledge that is sparse or approximately
complexity exponential inn (assuming non-trivial binning). sparse could be exploited to enable accurate estimation of
The recent paper [50] provides bounds on reconstructiar erfrom Q(Ax).
for consistent estimation with binned quantization; it sloet For ease of explanation, consider only the case wikeise
address algorithms for reconstruction. known to bek-sparse withk < m. Let 7 c {1, 2, ..., n} be
This paper provides a tractable and effective method fegie support (sparsity pattern) &f with |7| = k. The product
reconstruction from a quantized linear expansion with noixx is equal to A ;x, wherex; denotes the restriction
regular quantizers. To the best of our knowledge, this is tia¢ the domain ofx to 7 and A s is the m x k submatrix

first such method. of A containing the7-indexed columns. Assumingd.; has
_ rank k (i.e., full rank), Q(Ax) = Q(Asx7) is a quantized
C. Undercomplete Expansions overcomplete expansion ofx . All discussion of estimation

Maintaining the quantized measurement model (1), let @ x7 from the previous subsections thus applies, assuming
turn to the case ofn < n. Since the rank of\ is less tham, J is known.
A is a many-to-one mapping. Thus, even without quantization,The key remaining issue is th&(Ax) may or may not
one cannot recovex from Ax. Rather,Ax specifies a proper provide enough information to infef/. In an overcomplete
subspace oR"™ containingx; when A is in general position, representation, most vectors of quantizer outputs careatrp
the subspace is of dimension— m. Quantization increasesthis redundancy was used to enable binning in Figure 2, and
the ambiguity in the value af, yielding consist sets similar to it can be used to show that certain subs@tare inconsistent



6 MESSAGE-PASSING DE-QUANTIZATION

/

\ \
é \\/ T \\/ i

g Ty Ty

(@)

\

\

Fig. 3: Visualizing the information present in a quantizetercomplete expansioQ(Ax) of a 1-sparse signat € R?
when Ax € R2. The depicted 2-dimensional plane represents the vectoreafsurements = Ax. Sincex is 1-sparse, the
measurement lies in a union of 1-dimensional subspacesfthled solid lines); since is 3 dimensional, there are three such
subspaces. (a) Scalar quantizatiorzpfdivides the plane of possible values faiinto vertical strips. One particular value of
y1 = ¢q1(z1) does not specify which entry of is nonzero since the shaded strip intersects all the anglétiimes. For each
possible support, the value of the nonzero entry is specifieah interval. (b) Scalar quantization of both componeffiitz o
specifiesz to a rectangular cell. In most cases, including the one lyptéd, the quantized values specify which entryxof
is nonzero because only one angled solid line intersectsdtheThe value of the nonzero entry is specified to an inteea

In many cases, including the one highlighted, the quargizan be non-regular (binned) and yet still uniquely speaifiych
entry of x is nonzero.

H H . . ]R" R’m Rm c Cm
with the sparse signal model. In principle, one may enuraerat L A i ,®S < > Q y—>
the setsJ of size k and apply a consistent reconstruction T
method for eaclyy. If only one candidate/ yields a nonempty cR™

W

consistent set, thef is determined. This is intractable except

for small problem sizes because there gt candidates for Fig. 4: Quantized linear measurement model consideredsn th
J. _ o work. Vectorx € R™ with an i.i.d. prior is estimated from
The key concepts are illustrated in Figure 3. To have agalar quantized measurememtss C™. The quantizer input

interpretable diagram witlk < m < n, we let (k,m,n) = is the sum ofz = Ax € R™ and an i.i.d. Gaussian noise
(1,2,3) and draw the space of unquantized measurenzeats vectorw € R™.

R2. (This contrasts with Figures 1 and 2 where the space of
x € R? is drawn.) The vectok has one of(}) = () = 3
possible supports7. Thus,z lies in one of 3 subspaces ofappeared in the literature, first in [49] and later in [50], to
dimension 1, which are depicted by the angled solid line#e best of our knowledge this paper is the first to provide a
Scalar quantization af corresponds to separable partitioningractable and effective reconstruction method.
of R? with cell boundaries aligned with coordinate axes, as
shown with lighter solid lines. IV. ESTIMATION FROM QUANTIZED SAMPLES
Only one quantized measurement is not adequaté 10 |, yhis section, we provide the Bayesian formulation of

specify 7, as shown in Figure 3(a) by the fact that & Singe yeconstruction problem from quantized measurements an

gle shaded cell intersects all the subspac@ao quantized jroquce the MPDQ algorithm as a low complexity alternativ
measurements together will usually specify as shown in 114 pelief propagation

Figure 3(b) by the fact that only one subspace intersects the
specified square cell; for fixed scalar quantizers, ambjiguit _ _
becomes less likely as decreases; increasesm increases, A Bayesian Formulation
or ||z|| increases. Figure 3(c) shows a case where non-regulawe now specify more explicitly the class of problems for
(binned) quantization still allows unambiguous deterrtiora  which we derive new estimation algorithms. Generalizing (1
of J. let

The naive reconstruction method implied by Figure 3(c) is y=Q(z+ w) where  z = Ax, 4)
to search combinatorially over botii and the combinations
in (3); this is extremely complex. While the use of binnin

%s depicted in Figure 4. The input vectore R™ is random
for quantized undercomplete expansions of sparse sigasls

ith i.i.d. entries with prior p.d.fp,.. The linear mixing matrix
A € R™ " is random with i.i.d. entries;; ~ N(0,1/m).

lintersections with two subspaces are shown within the ramigéhe .T.he (pre-guantlzatlon) additive noise Rm 1S ra_‘ndom with
diagram. iid. entriesw; ~ N(0,02). The quantizerQ is a scalar
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guantizer with identical component quantizer&and haskK only approximate — the reader is referred to the references
output levels. Note that, the mapping franto y is a separable above for a general discussion on the performance of loopy
probabilistic mapping with identical marginals. Speciliiga BP. We will discuss the performance of the specific variant
quantized measurement indicatess; € ¢ '(y;), so each of loopy BP used in MPDQ in detail in Section V-A. What is

componenbutput channel can be characterized as important here is the computational complexity of loopy BP:
Direct implementation of loopy BP is impractical for the de-
pyiz(y | 2) = / ¢ (L‘; Z, 02) dt, guantization problem unlegs is very sparse. For dengg, the
a ' (y)

algorithm must compute the marginal of a high-dimensional
where¢ is the Gaussian p.d.f. We then construct the followindistribution at each measurement node; i.e., the intemgrati
conditional probability distribution over random vectogiven in (7b) is over many variables. Furthermore, integratiorstnu
the measurements be approximated through some discrete quadrature rule.

C. Message-Passing De-Quantization

Px|y (X | Y) X Py|z (y | Z) Px (X)
x pr‘z (i | ) Hp””(xj)’ To overcome the computational complexity of loopy BP, the
=t =1 proposed MPDQ algorithm uses a Gaussian approximation.
where o denotes identity after normalization to unity andsaussian approximations of loopy BP have been used in
zi = (Ax);. The posterior distribution (5) of the signalsuccessfully in CDMA multiuser detection [15], [17], [18]
provides a complete statistical characterization of thibl@m. and, more recently, in compressed sensing [14], [16], [2#&].
In particular, we wish to obtain a tractable approximation tapply the specific generalized approximate message passing
the MMSE estimator ok specified by (GAMP) method in [14], which allows for nonlinear output
©6) channels. The approximations are based on a Central Limit
Theorem and other second-order approximations at the mea-
surement nodes. Details can be found in [14]. Here, we simply
B. Loopy Belief Propagation restate the algorithm as applied to the specific de-quaittiza
Loopy BP [51], [52] is a popular computational methogbroblem.
to approximate the MMSE estimatén sk iteratively. The Given the measuremengse C™, the measurement matrix
method is based on computation of marginal probabilith € R™*", the noise variance?, the mapping; of the scalar
distributions ofpy,. To apply loopy BP to the quantizationquantizer, and the prigr., the MPDQ estimation proceeds as
reconstruction problem, construct a bipartite factor gragdollows:
G = (V, F, F) whereV denotes the set of variable or input 1) Initialization: Sett =1 and evaluate

xvuse = E [x]y].

nodes associated with transform inputs j = 1,...,n, and I
F is the set ofm factor or output nodes associated with the x'=Elx], (10a)
transform outputsy;, i = 1,...,m. The set of (undirected) v0 = var[x], (10b)
edgesE consist of the pairgi, j) such thatAd;; # 0. Loopy & —0 (10c)
BP passes the following messages along the edges the ’
graph: where the expected value and the variance are with
. . respect to the priopy.
piej(5) pm(zi)gﬂéﬂ(%)’ (7a) 2) Factor update: First, compute the linear step
£33
A1 ot—1 t at—1
" —1 PP=AX""—v, e8" (11a)
psle) o [ ) T]ntche) ey, 70 G
—j\j vl ]g —k\ g \J V;t) —(AeA) vifl, (11b)
where integration is over all the elementssoexceptz;. We wheree denotes the Hadamard product (i.e. component-
refer to message$ui.;},jcr as variable updates and to wise multiplication). Then, evaluate the nonlinear step
messageq /1 ; }i,j)er as factor updates. BP is initialized ¥ ey )
by setting uf, ;(z;) = p.(z;). The approximate marginal ' =Ei1 (y,p", v, + 07e;q), (122)
distribution is computed as vi =V (y.p", v, + e q), (12b)
¢ _ (s E ), 8 wheree is an aI_I—ones vector. Th_e scalar functio‘ﬂg
Pyl (%5 | ¥) < p (IJ)EHHJ () (®) andV; are applied component-wise and given by
; t ; ot . 1 _ .
Finally, the component; of the estimatex’ is computed as Ei(y, p,vp;q) = — (E [Z|Z €q 1(y)} _p), (13a)
p
8= [ oo ) ©) A 1 (. var[Hzeq i)
I R Vily, p,vpiq) = {1~ [ » } - (13b)
p p

When the grapltz induced by the matribA is cycle free,
the BP outputs will converge to the true marginals of the = The expected value and the variance are evaluated with
posterior density,,. However, for general, loopy BP is respect toz ~ N (p, vp).



8 MESSAGE-PASSING DE-QUANTIZATION

3) Variable update: First, compute the linear step pe- The expectation in (18b) is taken ovgy. and (z,p) ~
=214 vhe (ATSY), (14a) N(0,C(v)), where covariance matrix is given by
vi=(aea)yv) (14b) Cv) = < mﬁoTi , g:g - ) : (19)

Then, evaluate the nonlinear step Similarly, the expectation in (18c) is taken over the scalar
X' =Es (2, vi:pa), (15a) random variable® = z + w, with z ~ p, andw ~ N (0, v).

. o One of the main results of [14], which is an extension of the
Vi = Va (£, vi:pa), (15b) analysis in [19], was to demonstrate the convergence of the
where the scalar function&, and V, are applied error performance of the GAMP algorithm to the SE equations.

component-wise and given by Specifically, these works consider the case wieris an i.i.d.
R . Gaussian matrixx is i.i.d. with a priorp, andm,n — oo with
Eo (7, vr;pz) = Efz | 7], (162) ;,/m — . Then, under some further technical conditions, it
Va7, vp; pg) = var [x | 7). (16b) is shown that for any fixed iteration numbgrthe empirical

. joint distribution of the components:;, z%) of the unknown
The expected value and the variance are evaluated. P &;, 7;)

With respect top,s(- | #) o ¢(-i7, v )ps(-). This is vector x and its estimatex! converges to a simple scalar
'SP Pa| AT . equivalent model parameterized by the outputs of the SE
essentially a scalar AWGN denoising problem with noise : :
equations. From the scalar equivalent model, one can camnput

w ~ N(0,vr). any asymptotic componentwise performance metric. It can be
4) Sett + t+ 1 and proceed to step 2). ; . . o X
. . shown, in particular, that the asymptotic MSE is given simpl

For each iterationt = 1,2,3,..., the proposed update rulesDy +t That is

produce estimates® of the true signak. Thus the algorithm '

reduces the mtr_actable high-dimensional |ntegrat|or_1 tseg_ St i L Z ;- FP = lim Sx— =% (20)
guence of matrix-vector products and scalar nonlinearitie n—roo 1 £ J noo n

J:

Note that scalar inequalities (13a) and (13b) are easy to
evaluate since they admit closed-form expressions in tefmsThus, " can be used as a metric for the design and analysis
erf (z) = % foz et dt. Depending on the prior distribution of the quantizer, although other non-squared error distust
P2, the scalar inequalities (16a) and (16b) either admit clesecould also be considered. Although our simulations will -con
form expressions or can be implemented as a look-up tablgider dense transform, similar SE equations can be derived
for certain large sparse matrices [15]—[18]. In this cadeenv
V. QUANTIZER OPTIMIZATION the fixed points of the SE equations are unique, then, it can in

A remarkable fact about MPDQ is that, under large rando,fﬁCF be shown that the approximat.e message passing method
transforms, the MPDQ performance can be precisely preﬂicﬂé’ in fact, mean-squa_lred error optimal. )
by a scalar state evolution (SE) analysis presented in this® conclude, despite the fact that the prior ermay be
section. One can then apply the SE analysis to the designgf"Gaussian and the quantizer functigris nonlinear, one
MSE optimal quantizers under MPDQ reconstruction. SuperiG@n Precisely characterize the exact asymptotic behadior o
reconstruction performance of MPDQ with such quantizers MPDQ at least for large random transforms.
numerically confirmed in the Section VI.

B. Optimization

A. Sate Evolution for MPDQ Ordinarily, quantizer designs depend on the distribution

The equations (10)—(16) are easy to implement, howeWr the quantizer input, with an implicit aim of minimizing
they provide us no insight into the performance of the alg#he MSE between the quantizer input and output. Often,
rithm. The goal of the SE equation is to describe the asympaly uniform quantizers are considered, in which case the
totic behavior of MPDQ under large random measuremerftesign” is to choose the loading factor of the quantizerewh

matricesA. Fort¢ > 1, it is defined as a recursion guantized data is used as an input to a nonlinear function,
. i 9 overall system performance may be improved by adjusting
T =Fsp (7711 B, par 0, 07) (17 the guantizer designs appropriately [25]. In the presetinge

where the scalar functidfsg, implicitly depends ors = n/m, ~conventional quantizer design minimiz&§j|z — Q(z)[|*], but

the prior distributiorp,, the mapping; of the scalar quantizer, Minimizing E[||x — x[|?] is desired instead. N
AWGN varianceo?, and is given by The SE description of MPDQ performance facilitates the

desired optimization. By implementing the SE equations for

Fr(7: 8, pos 4, 0%) = Va (ﬁ;p””) . (18a) MPDQ, we can _maI_<e use of the convergence result (20) to
_ Vi (r:8,q,0%) recast our optimization problem to
Vi(v;8,q,0%) =E [V1 (y,p, v + 0%;q)],  (18b) . (e,
Va(vipa) = EVa (7, v pa)] (180) Q" = argmin { Jim 7'} ()

whereV; andV, are defined in (13b) and (16b), respectivelywhere minimization is done oveKk-level scalar quantizers.
The recursion is initialized by setting® = var[x], with x ~ Based on (20), the optimization is equivalent to finding the
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Fig. 5: Performance comparison for oversampled obsenvatibig. 6: Performance comparison of MPDQ with optimal uni-
of a jointly Gaussian signal vector (no sparsity). MPD@rm quantizers under Gaussian prior for regular and binned
outperforms linear MMSE and MAP estimators. guantizers.

quantizer that minimizes the asymptotic MSE. In the optfunction of ||x||, the MAP estimatex is the vector consistent
mization (21), we have considered the limit in the iterasionwith Q(AX) of minimum Euclidean norm. In the earlier
t — oo0. One can also consider the optimization with &orks, it is argued that consistent reconstruction methods
finite ¢, although our simulations exhibit close to the limitingoffer improved performance over linear estimation, partic
performance with a relatively small number of iterations. larly at high oversampling factors. We see in Figure 5 that
It is important to note that the SE recursion behaves wéllAP estimation does indeed outperform linear MMSE at
under quantizer optimization. This is due to the fact that Stigh oversampling. However, MPDQ offers significantly bett
is independent of actual output levels and small changesparformance than both LMMSE and MAP, with more than
the gquantizer boundaries result in only minor change in tfedB improvement for many values of/n. In particular, this
recursion (see (18b)). Although closed-form expressians freinforces that MAP is suboptimal because it finds a corner
the derivatives ofr? for large t's are difficult to obtain, we of the consistent set, rather than the centroid. Moreober, t
can approximate them by using finite difference methodsIPDQ method is actually computationally simpler than MAP,
Finally, the recursion itself is fast to evaluate, which m&k which requires the solution to a quadratic program.
the scheme in (21) practically realizable under standatd op With Figure 6 we turn to a comparison among quantizers,

mization methods. all with MPDQ reconstructiong = 100, m = 200, andx and
A distributed as above. To demonstrate the improvement in
VI. EXPERIMENTAL RESULTS rate—distortion performance that is possible with nonitag

A. Overcomplete Expansions guantizers, we consider simplmiform modulo quantizers

Consider overcomplete expansionxofs discussed in Sec- Q(z) = {iJ mod N, (22)
tion 1lI-A. We generate the signat with i.i.d. elements from A
the standard Gaussian distributian ~ A(0,1). We form whereA is the size of the quantization cells. These quantizers
the measurement matriA from i.i.d. zero-mean Gaussianmap the entire real lin® to the set{0, 1,..., N — 1} in a
random variables. To concentrate on the degradation dueptriodic fashion.
guantization we assume noiseless measurement modek(l); i. We compare three types of quantizers: those optimized
o2 =0in (4). for MSE of the measurementadt the overall reconstruction
Figure 5 presents squared-error performance of three eMiSE) using Lloyd’s algorithm [26], regular uniform quargiz
mation algorithms while varying the oversampling ratign ~ with loading factors optimized for reconstruction MSE ggin
and holdingn = 100. To generate the plot we consideredsE analysis, and (non-regular) uniform modulo quantizéits w
estimation from measurements discretized by6devel reg- A optimized for reconstruction MSE using SE analysis. The
ular uniform quantizer. We set the granular region of thlast two quantizers were obtained by solving (21) via the
quantizer to[—30,,30.], whereo? = n/m is the variance standard SQP method found in MATLAB. The uniform mod-
of the measurements. For each valuenofn, 200 random ulo quantizer achieves the best rate—distortion perfooman
realizations of the problem were generated; the curves shaile the performance of the quantizer designed with Lleyd’
the median-squared error performance over these 200 Moalgorithm is comparatively poor. The stark suboptimalify o
Carlo trials. We compare error performance of MPDQ agairtte latter is due to the fact that it optimizes the MSE only
two other common reconstruction methods: linear MMSE arigtween quantizer inputs and outputs, ignoring the noatine
maximum a posteriori probability (MAP). The MAP estimatoestimation algorithm following the quantizer.
was implemented using quadratic programming (QP). It is important to point out that, without methods such as
The MAP estimation is type otonsistent reconstruction MPDQ, estimation with a modulo quantizer such as (22) is not
method proposed in [5]-[13]; since the prior is a decreasimyen computationally possible in works such as [5]-[13i¢si
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Fig. 7: Performance comparison of MPDQ with LMMSEFig. 8: Performance comparison of MPDQ with optimal uni-
BPDN, and BPDQ (with moment = 4) for estimation from form quantizers under Gauss-Bernoulli prior for regulad an
compressive measurements. binned quantizers.

the consistent set is non-convex and consists of a disjoiohu ~ The figure plots the median of the squared error from 1000
of convex sets. Beyond the performance improvements, Wonte Carlo trials for each value ofi/n. For basis pursuit
believe that MPDQ provides the first computationally-tadt¢ methods we optimize the parametdor the best squared error
and systematic method for such non-convex quantization gerformance; in practice this oracle-aided performanceldvo

construction problems. not be achieved. The top curve (worst performance) is for
linear MMSE estimation; and middle curves are for the basis
B. Compressive Sensing with Quantized Measurements pursuit estimators BPDN and BPDQ with moment 4. As

expected, BPDQ achieves a notaBlelB reduction in MSE

signalx from m < n random measurements—a problem Cor{:_.ompared to BPDN for high values ok, however MPDQ

‘ : : : ificantly outperforms both methods over the whole range
sidered in quantized compressed sensing [2]-[4]. We assuﬁ?-:!" S
that the signalx is generated with i.i.d. elements from the> m/n. Note also that MPDQ is significantly faster than both
Gauss—Bernoulli distribution BPDN and BPDQ. For example, in Figure 7 the average re-

_ . construction times—across all realizations and under§agp
)~ { N(0,1/p), with probability p; (23) rates—were 7.45, 19.95, and 4.52 seconds for BPDN, BPDQ,
0, with probability 1 — p, and MPDQ, respectively.
wherep is the sparsity ratio that represents the average fractionin Figure 8, we compare the performance of MPDQ under
of nonzero components &f. In the following experiments we three quantizers consider before: those optimized for MSE
assumep = 1/32. Similarly to the overcomplete case, weof the measurements using Lloyd’'s algorithm, and regular
form the measurement matrix from i.i.d. Gaussian random and non-regular quantizers optimized for reconstructid®gv
variables and we assume no additive nois& £ 0 in (4)). using SE analysis. Note that MPDQ is the first tractable re-
Figure 7 compares MSE performance of MPDQ with thregonstruction method for compressive sensing that handles n
other standard reconstruction methods. In particular, @re c regular quantizers. We assume the sanand A distributions
sider linear MMSE and the Basis Pursuit DeNoise (BPDNjs above. We plot MSE of the reconstruction against the rate
program [53] measured in bits per component »f For each rate and for
each quantizer, we vary the ratin/n for the best possible
performance. We see that, in comparison to regular quastize
@inned quantizers with MPDQ estimation achieve much lower
gistortions for the same rates. This indicates that binning
can be an effective strategy to favorably shift rate—digior
d?erformance of the estimation.

We next consider estimation of amdimensional sparse

X = argmin ||x[|; S.t. |ly — Ax||, <,
xeR'ﬂ

wherep = 2 ande € R, is the parameter representing th
noise power. In the same figure, we additionally plot thererr
performance of the Basis Pursuit DeQuantizer (BPDQX)
momentp, proposed in [3], which solves the problem above f
p > 2. It has been argued in [3] that BPDQ offers better error

performance compared to the standard BPDN as the number VII. CONCLUSIONS
of samplesm increases with respect to the spardityf the

S|gvr\1/alxb in th b ina th . 4 holdi effective and efficient algorithm for estimation from quiaatl
_el%ila'rw € cu][ves y varying tfe ratio/n and holding linear measurements. The proposed methodology is general,
"= - Ve periorm est|ma_t|on rom measu_rements Oba'llowing essentially arbitrary priors and quantizatiomdu
taln_ed from &l6-level regular uniform quantlge_r with granulartions_ In particular, MPDQ is the first tractable and effeeti
region of length2|| Ax|ls centered at the origin. method for high-dimensional estimation problems invodvin

2The source codes for the BPDQ algorithm can be downloadenh fronon'reQUI.ar scalar quantiza_tion- In addition, the algonitis
http://wiki.epfl.ch/bpdg computationally extremely simple and, in the case of lagge r

We have presented message-passing de-quantization as an



KAMILOV, GOYAL, AND RANGAN

11

dom transforms, admits a precise performance charadierniza[12] B. G. Bodmann and S. P. Lipshitz, “Randomly dithered rgization
using a state evolution analysis.

The problem formulation is Bayesian, with an i.i.d. pri0f13]
over the components of the signal of interestthe prior
may or may not induce sparsity of. Also, the number of
measurements may be more or less than the dimensian 01[14]

and the quantizers applied to the linear measurements nesy

be regular or not. Experiments show significant performance
improvement over traditional reconstruction schemes,esof (¢,
which have higher computational complexity. Moreoverngsi
extensions of GAMP such as hybrid approximate mess
passing [54], [55], one may also in the future be able to coh-
sider quantization of more general classes of signals itbestr
by general graphical models. MATLAB code for experimentd8l
with GAMP is available online [56].

Despite the improvements demonstrated here, we are not
advocating quantized linear expansions as a compression
technique—for the oversampled case or the undersampﬂgﬁ
sparse case; thus, comparisons to rate—distortion boumasl w
obscure the contribution. For regular quantizers and soxad fi

aﬁ %

oversamplings = m/n > 1, the MSE decay with increasing[21]
rate is ~ 272%/8 worse than the~ 2-2F distortion—rate
bound. For a discussion of achieving exponential decay of
MSE with increasing oversampling, while the quantizatioﬁz]

step size is held constant, see [57]. For the undersampled

sparse case, [33] discusses the difficulty of recovering tHél
support from quantized samples and the consequent difficult
of obtaining near-optimal rate—distortion performanoerféy-
mance loss rooted in the use of a random transformaios
discussed in [58].

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[20]

[11]

REFERENCES

V. K. Goyal, “Theoretical foundations of transform cadi” |EEE Sgnal
Process. Mag., vol. 18, no. 5, pp. 9-21, Sep. 2001.

A. Zymnis, S. Boyd, and E. Candes, “Compressed sensiitig guan-
tized measurementsfEEE Sgnal Process. Lett., vol. 17, no. 2, pp.
149-152, Feb. 2010.

L. Jacques, D. K. Hammond, and J. M. Fadili, “Dequantizioom-
pressed sensing: When oversampling and non-Gaussianraiotsst
combine,” IEEE Trans. Inform. Theory, vol. 57, no. 1, pp. 559-571,
Jan. 2011.

J. N. Laska, P. T. Boufounos, M. A. Davenport, and R. G.aBauk,
“Democracy in action: Quantization, saturation, and caapive sens-
ing,” Appl. Comput. Harm. Anal., vol. 31, no. 3, pp. 429-443, Nov.
2011.

N. T. Thao and M. Vetterli, “Reduction of the MSE iR-times
oversampled A/D conversion fro@(1/R) to O(1/R?),” |EEE Trans.
Sgnal Process., vol. 42, no. 1, pp. 200-203, Jan. 1994.

——, “Deterministic analysis of oversampled A/D conviers and de-
coding improvement based on consistent estimat&&E Trans. Sgnal
Process., vol. 42, no. 3, pp. 519-531, Mar. 1994.

V. K. Goyal, M. Vetterli, and N. T. Thao, “Quantized overmplete
expansions inRY: Analysis, synthesis, and algorithmdFEE Trans.
Inform. Theory, vol. 44, no. 1, pp. 16-31, Jan. 1998.

S. Rangan and V. K. Goyal, “Recursive consistent esionatwvith
bounded noise,lEEE Trans. Inform. Theory, vol. 47, no. 1, pp. 457—
464, Jan. 2001.

Z. Cvetkovi¢, “Resilience properties of redundant ampions under
additive noise and quantizationlEEE Trans. Inform. Theory, vol. 49,
no. 3, pp. 644-656, Mar. 2003.

J. J. Benedetto, A. M. Powell, an®. Yilmaz, “Sigma—Delta XA)
quantization and finite frameslEEE Trans. Inform. Theory, vol. 52,
no. 5, pp. 1990-2005, May 2006.

B. G. Bodmann and V. |. Paulsen, “Frame paths and errands for
sigma-delta quantizationAppl. Comput. Harm. Anal., vol. 22, no. 2,
pp. 176-197, Mar. 2007.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

(34]

[35]

[36]

[37]

and sigma—delta noise shaping for finite frameéghl. Comput. Harm.
Anal., vol. 25, no. 3, pp. 367-380, Nov. 2008.

A. M. Powell, “Mean squared error bounds for the Rangaoyal soft
thresholding algorithm,Appl. Comput. Harm. Anal., vol. 29, no. 3, pp.
251-271, Nov. 2010.

S. Rangan, “Generalized approximate message passingsfimation
with random linear mixing,” arXiv:1010.5141v1 [cs.IT].,c® 2010.

D. Guo and C.-C. Wang, “Random sparse linear systemerobd via
arbitrary channels: A decoupling principle,” ifroc. |IEEE Int. Symp.
Inform. Theory, Nice, France, Jun. 2007, pp. 946-950.

S. Rangan, “Estimation with random linear mixing, bélpropagation
and compressed sensing,” iroc. Conf. on Inform. ci. & Sys.,
Princeton, NJ, Mar. 2010, pp. 1-6.

J. Boutros and G. Caire, “Iterative multiuser joint dding: Unified
framework and asymptotic analysis/EEE Trans. Inform. Theory,
vol. 48, no. 7, pp. 1772-1793, Jul. 2002.

D. Guo and C.-C. Wang, “Asymptotic mean-square opfityaif belief
propagation for sparse linear systems,”Rroc. |[EEE Inform. Theory
Workshop, Chengdu, China, Oct. 2006, pp. 194-198.

M. Bayati and A. Montanari, “The dynamics of messagespas on
dense graphs, with applications to compressed sensiB&E Trans.
Inform. Theory, vol. 57, no. 2, pp. 764-785, Feb. 2011.

U. Kamilov, V. K. Goyal, and S. Rangan, “Optimal quasatipn for
compressive sensing under message passing reconstfudtioRroc.
IEEE Int. Symp. Inform. Theory, St. Petersburg, Russia, Jul.—Aug. 2011,
pp. 390-394.

T. Tanaka and M. Okada, “Approximate belief propagati@ensity
evolution, and neurodynamics for CDMA multiuser detectiotEEE
Trans. Inform. Theory, vol. 51, no. 2, pp. 700-706, Feb. 2005.

D. L. Donoho, A. Maleki, and A. Montanari, “Message-paxgy algo-
rithms for compressed sensind?toc. Nat. Acad. ci., vol. 106, no. 45,
pp. 18914-18919, Nov. 2009.

A. D. Wyner and J. Ziv, “The rate-distortion functionrfeource coding
with side information at the decodetEEE Trans. Inform. Theory, vol.
IT-22, no. 1, pp. 1-10, Jan. 1976.

V. K. Goyal, “Multiple description coding: Compressiomeets the
network,” IEEE Sgnal Process. Mag., vol. 18, no. 5, pp. 74-93, Sep.
2001.

V. Misra, V. K. Goyal, and L. R. Varshney, “Distributeccaar quan-
tization for computing: High-resolution analysis and esiens,”|EEE
Trans. Inform. Theory, vol. 57, no. 8, pp. 5298-5325, Aug. 2011.

R. M. Gray and D. L. Neuhoff, “Quantization/EEE Trans. Inform.
Theory, vol. 44, no. 6, pp. 2325-2383, Oct. 1998.

E. J. Candés and M. B. Wakin, “An introduction to congmige
sampling,”|EEE Sgnal Process. Mag., vol. 25, no. 2, pp. 21-30, Mar.
2008.

Z. Liu, S. Cheng, A. D. Liveris, and Z. Xiong, “Slepian-&if coded
nested lattice quantization for Wyner—Ziv coding: Higlerperformance
analysis and code desigiEEE Trans. Inform. Theory, vol. 52, no. 10,
pp. 4358-4379, Oct. 2006.

V. A. Vaishampayan, “Design of multiple descriptionagar quantizers,”
IEEE Trans. Inform. Theory, vol. 39, no. 3, pp. 821-834, May 1993.
E. J. Candés, J. Romberg, and T. Tao, “Robust uncéytarnnciples:
Exact signal reconstruction from highly incomplete fregge informa-
tion,” IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489-509, Feb.
2006.

E. J. Candés and T. Tao, “Near-optimal signal recovieoyn random
projections: Universal encoding strategied®EE Trans. Inform. The-
ory, vol. 52, no. 12, pp. 5406-5425, Dec. 2006.

D. L. Donoho, “Compressed sensindEEE Trans. Inform. Theory,
vol. 52, no. 4, pp. 1289-1306, Apr. 2006.

V. K. Goyal, A. K. Fletcher, and S. Rangan, “Compresssampling
and lossy compressionlEEE Sgnal Process. Mag., vol. 25, no. 2, pp.
48-56, Mar. 2008.

S. G. Mallat and Z. Zhang, “Matching pursuits with tirfrequency
dictionaries,” |[EEE Trans. Sgnal Process., vol. 41, no. 12, pp. 3397-
3415, Dec. 1993.

S. Chen, S. A. Billings, and W. Luo, “Orthogonal leastiates methods
and their application to non-linear system identificatidmf. J. Control,
vol. 50, no. 5, pp. 1873-1896, Nov. 1989.

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Ogthnal matching
pursuit: Recursive function approximation with applicat to wavelet
decomposition,” inConf. Rec. 27th Asilomar Conf. Sg., Sys., & Compit.,
vol. 1, Pacific Grove, CA, Nov. 1993, pp. 40-44.

G. Davis, S. Mallat, and Z. Zhang, “Adaptive time-fremey decompo-
sition,” Optical Eng., vol. 33, no. 7, pp. 2183-2191, Jul. 1994.



12

(38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

D. Needell and J. A. Tropp, “CoSaMP: lterative signataeery from
incomplete and inaccurate sample&ghl. Comput. Harm. Anal., vol. 26,
no. 3, pp. 301-321, May 2009.

W. Dai and O. Milenkovic, “Subspace pursuit for comige sensing
signal reconstruction,TEEE Trans. Inform. Theory, vol. 55, no. 5, pp.
2230-2249, May 2009.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic deposition
by basis pursuit,9AM J. Sci. Comp., vol. 20, no. 1, pp. 33-61, 1999.
R. Tibshirani, “Regression shrinkage and selectioa the lasso,"J.
Royal Sat. Soc., Ser. B, vol. 58, no. 1, pp. 267-288, 1996.

E. J. Candes and T. Tao, “The Dantzig selector: Stegisestimation

MESSAGE-PASSING DE-QUANTIZATION

Ulugbek S. Kamilov (S'11) received his M.Sc.
degree in Communications Systems from the
Ecole Polytechnique Fédérale de Lausanne (EPFL),
Switzerland, in 2011.

In 2007-08, he was an exchange student in Elec-
trical and Computer Engineering at Carnegie Mellon
University. In 2008, he worked as a research intern at
the Telecommunications Research Center in Vienna,
Austria. In 2009, he worked as a software engineer-
ing intern at Microsoft. In 2010-11, he was a visiting
student at the Massachusetts Institute of Technology.

whenp is much larger tham,” Ann. Sat., vol. 35, no. 6, pp. 2313-2351, In 2011, he joined the Biomedical Imaging Group at EPFL wheeeis
Dec. 2007. currently working toward his Ph.D. His research interestduide message-
E. J. Candés and J. Romberg, “Encoding theball from limited passing algorithms and the application of signal processéthniques to
measurements,” iroc. |[EEE Data Compression Conf., Snowbird, UT, various biomedical problems.

Mar. 2006, pp. 33-42.

J. Z. Sun and V. K. Goyal, “Optimal quantization of ramdaneasure-
ments in compressed sensing,’Rroc. |EEE Int. Symp. Inform. Theory,
Seoul, Korea, Jun.—Jul. 2009, pp. 6-10.

V. K. Goyal, J. Kovatevi¢, and J. A. Kelner, “Quantizérame expan-
sions with erasures,Appl. Comput. Harm. Anal., vol. 10, no. 3, pp.
203-233, May 2001.

H. Viswanathan and R. Zamir, “On the whiteness of highelution
quantization errors,1EEE Trans. Inform. Theory, vol. 47, no. 5, pp.
2029-2038, Jul. 2001.

Vivek K Goyal (S'92-M’'98-SM’'03) received the
B.S. degree in mathematics and the B.S.E. degree in
electrical engineering from the University of lowa,

N. T. Thao and M. Vetterli, “Lower bound on the mean-seagerror in
oversampled quantization of periodic signals using vegtantization

where he received the John Briggs Memorial Award
for the top undergraduate across all colleges. He
received the M.S. and Ph.D. degrees in electri-

analysis,”|EEE Trans. Inform. Theory, vol. 42, no. 2, pp. 469-479, Mar. | |
1996. '
R. H. Walden, “Analog-to-digital converter survey aadalysis,”|EEE
J. Sd. Areas Comm,, vol. 17, no. 4, pp. 539-550, Apr. 1999.

R. J. Pai, “Nonadaptive lossy encoding of sparse sihdflaster’s
thesis, Massachusetts Inst. of Tech., Cambridge, MA, A0§62

P. T. Boufounos, “Universal rate-efficient scalar ctigation,” |EEE

cal engineering from the University of California,
Berkeley, where he received the Eliahu Jury Award
for outstanding achievement in systems, communi-
cations, control, or signal processing.

He was a Member of Technical Staff in the
Mathematics of Communications Research Department of [Bdibratories,
Trans. Inform. Theory, vol. 58, no. 3, pp. 1861-1872, Mar. 2012. Lucent Technologies, 1998—-2001; and a Senior Researcmé&argior Digital
J. Pearl,Probabilistic Reasoning in Intelligent Systems: Networks of  Foyntain, Inc., 2001-2003. He has been with the Massadhusstitute of
Plausible Inference. ~ San Mateo, CA: Morgan Kaufmann Publ., 1988.7echnology since 2004. He is coauthor of the forthcomingptaoks Founda-

C. M. Bishop, Pattern Recognition and Machine Learning, ser. Infor-  ions of Sgnal Processing and Fourier and Wavelet Signal Processing (both
mation Science and Statistics. New York, NY: Springer, 2006 Cambridge University Press). His research interests drecloomputational
E. J. Candes, J. K. Romberg, and T. Tao, “Stable sige@very from jmaging, sampling, quantization, and source coding theory

incomplete and inaccurate measuremer®ainmun. Pure Appl. Math., Dr. Goyal is a member of Phi Beta Kappa, Tau Beta Pi, Sigma ¥, E
vol. 59, no. 8, pp. 1207-1223, Aug. 2006. _ _ Kappa Nu and SIAM. He was awarded the 2002 IEEE Signal Primgess
S. Rangan, A. K. Fletcher, V. K. Goyal, and P. Schniterybrid  gociety Magazine Award and an NSF CAREER Award. As a research
approximate message passing with applications to stedttsparsity,” sypervisor, he is co-author of papers that won student baserpawards
arXiv:1111.2581 [cs.IT], Nov. 2011. - ) at IEEE Data Compression Conference in 2006 and 2011 and H&or
— "Hybrid generalized approximate message passiith applica-  Array and Multichannel Signal Processing Workshop in 204€.served on
tions to structured sparsity,” iRroc. IEEE Int. Symp. Inform. Theory,  the [EEE Signal Processing Society’s Image and Multiple ®isional Signal
Cambridge, MA, Jul. 2012, pp. 1241-1245. . Processing Technical Committee 2003-2009. He is a TedhRioagram
S. Ranganet al, “Generalized approximate message passing¢ommittee Co-chair of IEEE ICIP 2016 and a permanent ConéereCo-

SourceForge.net  project gampmatlab, available on-line  hajr of the SPIE Wavelets and Sparsity conference series.
http://ganmpmat| ab. sourceforge. net/.

Z. Cvetkovic and M. Vetterli, “Error-rate charactgtics of oversampled
analog-to-digital conversion/EEE Trans. Inform. Theory, vol. 44, no. 5,
pp. 1961-1964, Sep. 1998.

A. K. Fletcher, S. Rangan, and V. K. Goyal, “On the ratstattion
performance of compressed sensing,Piroc. |EEE Int. Conf. Acoust.,
Soeech, and Sgnal Process., vol. lll, Honolulu, HI, Apr. 2007, pp. 885—
888.

Sundeep Rangan(M’02) received the B.A.Sc. de-
gree from the University of Waterloo, Canada, and
the M.S. and Ph.D. degrees from the University of
California, Berkeley, all in electrical engineering. He
held postdoctoral appointments at the University of
Michigan, Ann Arbor, and Bell Labs. In 2000, he
co-founded (with four others) Flarion Technologies,
a spin-off of Bell Labs, that developed Flash OFDM,
one of the first cellular OFDM data systems. In 2006,
Flarion was acquired by Qualcomm Technologies,
where Dr. Rangan was a Director of Engineering
involved in OFDM infrastructure products. He joined the Bement of
Electrical and Computer Engineering at the Polytechniditlie of New
York University in 2010, where he is currently an Associatef€ssor.
His research interests are in wireless communicationgjabkigrocessing,
information theory and control theory.




