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Abstract

Localization microscopy relies on computationally efficient Gaussian approximations of the point

spread function (PSF) for the calculation of fluorophore positions. Theoretical predictions show that un-

der specific experimental conditions, localization accuracy is significantly improved when the localization

is performed using a more realistic model. Here, we show how this can be achieved by considering

3-D PSF models for the widefield microscope. We introduce a least-squares PSF fitting framework

that utilizes the Gibson and Lanni model and propose a computationally efficient way for evaluating

its derivative functions. We demonstrate the usefulness of the proposed approach with algorithms for

particle localization and defocus estimation, both implemented as plugins for ImageJ.

I. INTRODUCTION

Localization-based fluorescence microscopy relies on sparse activation of individual fluo-

rophores within a sample (Betzig et al., 2006; Hess et al., 2006; Rust et al., 2006). The activated

fluorophores are spatially well separated and can be imaged individually. This activate-and-

image process is then repeated over many frames, after which the coordinates of each detected
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fluorophore are determined computationally and combined to yield the final super-resolved image.

The PSF model of the microscope plays a key role in these techniques. Every point-source

fluorophore gives rise to a PSF pattern in the image domain, and a localization procedure is

applied to the individual patterns. The PSF model that is being used for the localization task

determines the accuracy that can be achieved in describing the examined biological structure

(Manley et al., 2008; Hedde et al., 2009; Märki et al., 2010; Geissbühler et al., 2011).

Localization accuracy is also determined by the level and type of noise. Poisson noise may

appear in the acquired image due to the photon emission characteristics of the fluorophore

and due to scattering background noise. Gaussian additive noise, introduced by the imaging

sensors, may further reduce the localization accuracy. This matter has been investigated within

the context of estimation theory, giving rise to Cramér-Rao lower bounds on the achievable

localization accuracy of the Gaussian, the Airy pattern and the Gibson and Lanni models (Ober

et al., 2004; Aguet et al., 2005). Many of the currently available localization algorithms utilize

the Gaussian model (Bobroff, 1986; Betzig et al., 2006; Hess et al., 2006; Rust et al., 2006;

de Moraes Marim et al., 2008; Hedde et al., 2009; Henriques et al., 2010; Wolter et al., 2010).

The Gaussian function provides a reasonable approximation of the main lobe of the Airy

pattern while introducing relatively low computational complexity. Such approximation, however,

discards the side-lobes of the PSF, which are particularly important in 3-D PSF modeling (Zhang

et al., 2007). The trade-off between choosing realistic- and simplified PSF models is execution

time, and we propose here to apply a two-stage approach: fast algorithms that rely on simplified

PSF models can be used to obtain preliminary results as well as immediate feedback about the

quality of the experiment while more realistic 3-D PSF models can be used for a more accurate

analysis, performed at a later stage.

In this work we introduce a least-squares PSF fitting framework that utilizes realistic 3-D PSF

models. In particular, the Gibson and Lanni model was shown to be very useful for restoration

problems in microscopy (Markham and Conchello, 2001; Preza and Conchello, 2004), and we

demonstrate its usefulness for particle localization and for defocus estimation, too. The least-

squares localization approach is likely to yield less accurate results than the maximum-likelihood

approach in the presence of non-Gaussian noise sources (Aguet, 2009), and a quantitative

comparison of these two criteria was carried out in Abraham et al. (2009) for the Gaussian and for

the Airy disk patterns. It was shown there that in terms of performance, the least-squares fitting
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method follows the maximum-likelihood method quite closely, introducing standard deviations

that are larger by no more than 2[nm] for the estimated lateral position of a particle. An exception

to that is the case of relatively strong mismatch between the width values of the simulated and

the fitted PSFs. This can, however, be taken into account by estimating this parameter from the

data itself, or by optimizing for it, too.

These findings make the least-squares criterion an attractive and nearly optimal method for

PSF fitting tasks. It is a simple yet powerful tool that depends on the fitted model only. Its

additional advantage is that it lends itself to a fast minimization using the Levenberg-Marquardt

algorithm. The maximum-likelihood criterion, on the other hand, requires additional knowledge

on the noise sources and relies on optimization procedures that are in many cases more involved

in terms of the cost function and in terms of the numerical implementation of the minimization

procedure (Aguet et al., 2005; Abraham et al., 2009).

The paper is organized as follows: in Section II we describe the Gibson and Lanni model and

compute its partial derivative functions while taking into account the stage displacement, the

particle axial position and the defocus measure of the detector plane. In section III we introduce

an efficient way of evaluating these functions. In Section IV we utilize the 3-D PSF model for

localizing particles in a z-stack. We fit the data with the 3-D position coordinates and with an

amplitude value that accounts for the random nature of the photon emission rate. Our algorithm

uses adaptive threshold values for local maxima identification, and an adaptive window size for

the least-squares fit. Motivated by multi-plane imaging (Prabhat et al., 2004; Ram et al., 2008),

we also introduce an algorithm for estimating the defocus distance of the detector plane. All of

our algorithms were implemented as ImageJ plugins1; they are briefly described in the Appendix.

II. GIBSON AND LANNI MODEL

The Gibson and Lanni model generalizes the Born and Wolf model by accommodating for a

refractive index mismatch between the three imaging layers (Appendix A). It assumes an optical

path that includes a biological sample, a coverslip layer and an immersion layer (Figure 1). It

relies on the Li and Wolf approximation of the Kirchhoff diffraction integral

h (θ) =
(
ka2A0

z2
d

)2 ∣∣∣∣∣
∫ 1

0

J0

(
kar(θ)ρ
zd

)
eiW (ρ;θ)ρ dρ

∣∣∣∣∣
2

, (1)

1The software is available at http://bigwww.epfl.ch/algorithms/psfgenerator
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Fig. 1. The Gibson and Lanni model assumes three layers for the optical path.

where θ is a set of parameters given in Table I, J0 is the Bessel function of the first kind of

order zero and k = 2π/λ is the wave number of the emitted light. a is the radius of the circular

aperture at the back focal plane and it can be approximated by

a ∼= NAz∗d/M. (2)

W (ρ; θ) describes the optical path difference

W (ρ; θ) = knszp

√
1−

(
NAρ
ns

)2
+ kni∆ti

√
1−

(
NAρ
ni

)2
+
ka2(z∗d − zd)

2z∗dzd
ρ2, (3)

and r(θ) is the lateral distance between the particle position and the detector in the image domain

r(θ) =
√

(xp − xd)2 + (yp − yd)2. (4)

The original expression of W (ρ; θ) in Gibson and Lanni (1992) distinguishes between nominal

and actual refractive indices values of the immersion layer. Here, we assume that they are both

equal, and nominal conditions are also applied to the coverslip thickness value. The Gibson and

Lanni model assumes a homogenous sample layer and this is one of its limitations. Variations

in refractive index values can be measured by differential interference contrast techniques (Kam

et al., 2001) or be modeled as a stochastic process (Schmitt and Kumar, 1996). This means that

W (ρ; θ) is no longer a deterministic function, so one can interpret ns as an effective refractive

index value.
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The optical path difference (3) can be alternatively expressed by means of the defocus measure

in the object space (Aguet et al., 2005). The advantage of expressing W (ρ; θ) by means of stage

displacement values, as done here, is the straight-forward calculations for z-stack acquisitions.

We also included a defocus measure in the image space, allowing one to compute the PSF pattern

of the multi-plane design (Prabhat et al., 2004).

One of the advantages of the The Gibson and Lanni model is its ability to predict non-

symmetric PSF patterns. Such patterns occur due to refractive index mismatch between the

sample layer and the immersion layer (Figure 2). Another advantage is the distinction between

stage displacements, detector location and particle depth. Each parameter has a different effect

in terms of defocusing. The defocus measure can be approximated by the value of the Taylor

coefficient of ρ2 in W (ρ; θ), giving rise to the following relation

zp
ns

+
∆ti
ni

=
a2(z∗d − zd)
NA2z∗dzd

. (5)

This criterion implies that focusing can be achieved by either moving the stage, the detector, or

the particle itself.

III. NUMERICAL EVALUATION AND FITTING

We consider the task of fitting the Gibson and Lanni PSF model to light patterns that originate

from single point sources. We minimize the least-squares criterion by using the Levenberg-

Marquardt method. To this aim we express (1) as follows

h(θ) = C(θ)
[(
I1(θ)

)2
+
(
I2(θ)

)2]
, (6)

where

C(θ) =
(
ka2A0

z2
d

)2
(7)

I1(θ) =

∫ 1

0

J0

(
kar(θ)ρ
zd

)
cos
(
W (ρ; θ)

)
ρ dρ, (8)

I2(θ) =

∫ 1

0

J0

(
kar(θ)ρ
zd

)
sin
(
W (ρ; θ)

)
ρ dρ. (9)

This, in turn, allows one to write

∂h(θ)

∂υ
=
∂C(θ)

∂υ

[(
I1(θ)

)2
+
(
I2(θ)

)2]
+ C(θ)

[
2I1

∂I1(θ)

∂υ
+ 2I2

∂I2(θ)

∂υ

]
, (10)
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Fig. 2. A cross-section the Gibson and Lanni PSF pattern. The PSF parameters θ are: NA = 1.4, ni = 1.5, ns = 1.33, λ =

520[nm], xp = yp = 0, zp = 1000[nm], zd = z∗d , xd = 0. The horizontal axis is ∆ti and the vertical one is yd. The upper left

corner is (∆ti, yd) = (−12775,−12275) in [nm] and both the pixel size and the z-step value are 50[nm]. Pixel values are in

the range [0, 1] and the saturation level was set to 0.001 (left) and to 0.1 (right) as to demonstrate the non-symmetric nature of

the PSF due to the refractive index mismatch. The focal plane corresponds to ∆ti = −1350 which is approximately zpni/ns.

where υ is one of the parameters of θ. The work of Ram et al. (2005) introduces generalized

expressions for the Fisher information matrix with respect to the 3D particle position. Starting

from the Kirchhoff diffraction integral (1), the authors computed the partial derivative of the PSF

as a function of W (ρ; θ). We apply these results to the Gibson and Lanni model and provide in

Table II explicit expressions for ∂I1(θ)/∂υ, ∂I2(θ)/∂υ.

To evaluate such integrals accurately, one needs to adapt the integration step to the oscillatory

nature of the integrands. For example, as the particle is located deeper into the sample, the

integrands in Table II oscillate more rapidly, requiring more sampling points for the numerical

approximation. A possible approach for the integral calculation was suggested in Aguet et al.

(2005). There, the number of sampling points was determined by the highest possible oscillation

rate of either the optical path difference or the Bessel function. Such a Nyquist-based approach

assumes that the integrands are essentially band-limited, although they are better modeled as



7

chirp functions. For this reason, the band-width values of the integrands are relatively large and

so is the required number of sampling points. We therefore take a different point of view that

relies on approximation theory.

We approximate the integrals in a progressive manner. Let the sampling interval at the n-th

iteration be (1/2)n, and let ĥn(θ) be the approximated value for h(θ). The integrands that appear

in I1, I2 are smooth functions and we approximate them by a piecewise quadratic function using

the Simpson method. This means that the approximation error εn(θ) = h(θ)− ĥn(θ) has a certain

rate of decay. In particular, there exists N > 0 for which for all n > N

|εn(θ)| ≤ D(θ)
(
2−n
)L
. (11)

D(θ) does not depend on n, nor does the decay rate L which reflects the approximation order

of the Simpson method. We define

ηn(θ) = ĥn−1(θ)− ĥn(θ), (12)

and observe that

|ηn(θ)| = |εn−1(θ)− εn(θ)| (13)

≤ 3

2
D(θ)

(
2−n
)L
. (14)

This means that ηn(θ) has a decay rate that is not larger than the decay rate of εn(θ). As L and

D(θ) are not known in practice, we extract them from ηn(θ) as demonstrated in Figure 3. In

particular, we can find D̃(θ) and L̃ such that

|ηn| ≤ D̃(θ)
(
2−n
)L̃
. (15)

Now,

|εn(θ)| =
∣∣∣h(θ)− ĥn(θ)

∣∣∣ (16)

=

∣∣∣∣∣
∞∑

k=n+1

ηk(θ)

∣∣∣∣∣ (17)

≤
∞∑

k=n+1

D̃(θ)
(

2−L̃
)k

(18)

≤ D̃(θ)
(
2−n
)L̃ 2−L

1− 2−L
. (19)
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We approximate D̃(θ) (2−n)
L̃ by |ηn(θ)| and have |εn(θ)| ∼= |ηn(θ)| 2−L

1−2−L .

In order to express the error in terms of percentage, we use the relative error measure |ηn(θ)|
ĥn(θ)

as

a stopping criterion. The number of iterations is determined by a threshold on the relative error,

say 1%. To ensure that the approximation error is governed by the decay rate (11), we require

it to meet this threshold for at least three consecutive iterations. The numerical evaluation of

the Bessel functions impose no limitation on εn(θ); the Bessel functions J0 is evaluated up to

an accuracy of 5 · 10−8 and the J1 function up to 5 · 10−8 times its argument (Abramowitz and

Stegun, 1972).

The advantage of such progressive evaluation resides in the fact that less computational time

is spent on calculating integrals of low W (ρ; θ) values while controlling the accuracy level of

their numerical approximation (Figure 4). Extensions to other 3-D PSF designs are possible, too.

In particular, to the biplane setup (Prabhat et al., 2004; Juette et al., 2008; Kirshner et al., 2012),

to the astigmatic PSF (Huang et al., 2008), and to the double helix pattern (Pavani and Piestun,

2008). The only modification is in the expression of the phase term W (ρ; θ). The Kirchhoff

diffraction integral remains the same so our numerical implementation can still be used for these

cases.

IV. APPLICATIONS

We consider two applications: 3-D particle localization, and misalignment estimation. We

introduce a least-squares fitting algorithm and analyze its performance in the presence of Poisson

and Gaussian noise sources. The description of the software that was developed for this work

is described in Appendix B.

A. 3-D particle localization

One possible way of determining the 3-D location of a particle is by acquiring several PSF

images that correspond to different sets of PSF parameters θ. A z-stack, for example, provides

PSF images with different thickness values of the immersion layer. Another option is to have

several detector planes located at different positions along the optical path in the image domain.

The former corresponds to different values of ∆ti while the latter to different values of zd.

Assuming a z-stack of fixed point sources, we introduce the following algorithm (Figure 5).

Normalization: The z-stack is normalized to have a unit maximum value.
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Fig. 3. Converging properties of the PSF numerical approximation. Shown here on the left column are PSF values for two

sets of parameters θ1, θ2. The following parameters are common to both of them: NA = 1.4, ni = 1.5, ns = 1.33, λ =

520[nm],M = 100, xp = yp = 0, zd = z∗d , yd = 0. The point source depth value zp is 200[nm] for θ1 and 800[nm] for θ2.

The detector lateral position xd is 0 and 1500 [nm] respectively. The right column depicts relative difference values between

every two consecutive iterations. All figures indicate logarithmic values, and the decay rate of the relative error is L̃ ∼= 1/ ln 2.

Local maxima identification: We use different threshold values for the different slices. This

is because the amplitude of the focused pattern fades away as the particle moves deeper into the

sample. The ∆ti parameter of a given slice provides us with an initial estimation of the particle

depth by means of (5). We then calculate a PSF value for r(θ) = 0, denoted h(θslice), and a

PSF value for the global maximum, denoted h(θmax). The ratio between these two PSF values

approximates the expected ratio between a local maximum at a particular slice and the global

maximum. Deviations from this ratio may occur due to sub-pixel axial and lateral positions,

random nature of the emission rate, and noise. For these reasons we choose the threshold to be

τslice =
1

2
· h(θslice)

h(θmax)
. (20)
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Fig. 4. A cross-section the Gibson and Lanni PSF pattern. Pixel values denote the number of sampling points that were required

for calculating the PSF value. The minimum value is 8 (dark) and the maximum value is 65535 (bright). Similar to Figure 2,

the PSF parameters θ are: NA = 1.4, ni = 1.5, ns = 1.33, λ = 500[nm], xp = yp = 0, zp = 1000[nm], zd = z∗d , xd = 0. The

horizontal axis is ∆ti and the vertical one is yd. The upper left corner is (∆ti, yd) = (−12775,−12275) in [nm] and both the

pixel size and the z-step value are 50[nm]. The focal plane corresponds to ∆ti = −1350 which is approximately zpni/ns.

Input:
z-stack

Normalization

local maxima 
identification

Least-squares 
fitting

Goodness of fit

output:
3-D position for 

every point source

Fig. 5. Main stages of the localization algorithm.
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For large stage displacement values, τslice may be lower than the mean noise level, and for that

reason the local maxima should be higher than the noise level, too. We estimate the mean m

and variance σ of the noise from the z-stack itself and set this threshold value to be m+ 3σ. In

addition to the voxel value, the local maxima should be higher than its 26 3-D neighbors.

Least-squares fitting: The 3-D neighborhood of each local maxima is fitted with the Gibson

and Lanni model, where the size of the fitting window is 2r× 2r× 2d. We set r = 7
k
M
NA

1
pixel size

to be the distance to the second minimum of the Airy pattern. This distance captures 90% of

the energy of the Airy pattern and we use the same criterion for determining the axial parameter

d by numerical means. For the PSF parameters of Figure 2, the values of r and d are 8[pixels]

and 9[pixels], respectively. Initial values for (xp, yp) are the coordinates of the local maximum

and the initial value for zp is given by (5). The initial value for A0 is the ratio between the pixel

value of the local maximum and the value of the PSF model for (xd, yd) = (xp, yp). Derivative

values of the PSF model are given in Table II and (10).

Goodness of fit: We use several criteria for accepting the fitted parameters: the lateral position

should be close to the local maximum, the axial position should be close to the initial guess and

the SNR (Signal to Noise Ratio) value of the fit should be above a certain threshold.

Simulated z-stack data is shown in Figure 6 and least-squares localization performance is

demonstrated in Figures 7–9. The fitting window was 6×6×6 pixels. Our performance analysis

included several particle depth values, several lateral positions, and several noise levels. Each

setup was repeated 20 times. Following Ober et al. (2004), the noise sources are Poisson-

distributed scatter noise and Gaussian-distributed readout noise. The emission rate of every point

source is a Poisson random number. Our results suggest that the lateral localization accuracy

is less sensitive to the particle depth value, compared with the axial localization accuracy. The

relatively low localization accuracy for the depth value of 200[nm] follows from the smaller

number of data points that can be used in the fitting process. This is due to the fact that the

z-stack consists of positive stage displacement values only, demonstrating the importance of the

fitting window size for the axial localization. We also observe that the sub-pixel lateral positions

have minor effect on the lateral and axial localization accuracies.
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ti = 0 ti = 400[nm] ti = 800[nm]

ti = 1200[nm] ti = 1600[nm] ti = 2000[nm]

ti = 2400[nm] ti = 2800[nm] ti = 3200[nm]

Fig. 6. Simulated z-stack. Ten particles were randomly located in a 3-D volume and the their PSF image were calculated

based on the Gibson and Lanni model for different stage displacement values. The PSF parameters θ are: NA = 1.4, ni =

1.5, ns = 1.33, λ = 520[nm]. The noise parameters are: mean emission rate of 2 ·106[photons/sec], optical efficiency of 0.033,

acquisition time of 0.1[sec], readout rms noise of 6[electrons/pixel], and mean scattering rate of 660[photons/sec]. The depth

values of the particle are in the range of [0, 2000][nm].

A B C

D E

F

Fig. 7. Lateral positions within a pixel. Position A is located at the center of the pixel and positions C, E and F are at the

boundaries. These sub-pixel positions were used for evaluating the performance of the proposed PSF fitting algorithms.

B. Misalignment estimation

Motivated by the calibration stage of multiplane microscopic design (Prabhat et al., 2004;

Juette et al., 2008), we suggest here a fitting algorithm that allows for the determination of the

axial position, zd, of the defocused detector plane. The input data is a z-stack of fixed point-
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Fig. 8. Lateral (left) and axial (right) localization accuracy for various particle depth values and for several lateral positions.

Every localization accuracy value was computed by averaging over 20 realizations. The acquisition parameters θ are: NA =

1.4, ni = 1.5, ns = 1.33, λ = 520[nm]. The pixel size is 150[nm] and the z-step size is 100[nm]. The noise parameters

are: mean emission rate of 2 · 106[photons/sec], optical efficiency of 0.033, acquisition time of 0.1[sec], readout rms noise

of 6[electrons/pixel], and mean scattering rate of 660[photons/sec]. The sub-pixel lateral positions A, B, C, D, E and F are

described in Figure 7. The axial localization error (right) is taken in the absolute value sense, as to comply with the positive

values of the lateral localization error (left). The highest standard deviation value for the lateral position was 0.2[nm], and for

the axial position – 1.4[nm].

sources that lie on the coverslip zp = 0. Stage displacement values are both positive and negative

with respect to the working distance. The output of the algorithm are the estimated values of

xp, yp, zd and A0. The algorithm follows the stages of Figure 5 with the modification that the

initial parameter for zd is determined by sweeping over several possible values and choosing

the one that maximizes the PSF value at the particular slice of the z-stack. The threshold value

is set to τ = 0.5 accounting for the Poisson distribution of the emission rate and for the noise.

If all of the particles lie at the same depth position, then local maxima should appear in the

same frame. Due to noise, the local maxima may appear in neighboring slices and this does

not require re-calculating τ , as was done in the previous algorithm. Fitting results are depicted

in Figures 10-11. They suggest that the least-squares criterion provides an unbiased estimation

with a relatively low variance value for the axial position of the detector plane.
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Fig. 9. Lateral (left) and axial (right) localization accuracy for various particle depth values and for several lateral positions.

Every localization accuracy value was computed by averaging over 20 realizations. The acquisition parameters θ are: NA =

1.4, ni = 1.5, ns = 1.33, λ = 520[nm]. The pixel size is 150[nm] and the z-step size is 100[nm]. The noise parameters differ

from the parameters of Figure 8: mean emission rate of 2 · 106[photons/sec], optical efficiency of 0.033, acquisition time

of 0.1[sec], readout rms noise of 36[electrons/pixel], and mean scattering rate of 6600[photons/sec]. The highest standard

deviation value for the lateral position was 1.1[nm], and for the axial position – 8.1[nm].
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Fig. 10. Lateral (left) and defocus (right) localization accuracy for various defocus values of the detector plane and for several

particle lateral positions. Every localization accuracy value was computed by averaging over 20 realizations. The acquisition

parameters θ are: NA = 1.4, ni = 1.5, ns = 1.33, λ = 520[nm]. The pixel size is 150[nm] and the z-step size is 100[nm]. The

nominal value for zd is z∗d = 0.2[m]. The noise parameters are: mean emission rate of 2 · 106[photons/sec], optical efficiency

of 0.033, acquisition time of 0.1[sec], readout rms noise of 6[electrons/pixel], and mean scattering rate of 660[photons/sec].

The sub-pixel lateral positions A, B, C, D, E and F are described in Figure 7. The highest standard deviation value for the

lateral position was 0.28[nm], and for the axial position – 0.17 · 10−4[m].
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Fig. 11. Lateral (left) and defocus (right) localization accuracy for various defocus values of the detector plane and for several

particle lateral positions. Every localization accuracy value was computed by averaging over 20 realizations. The acquisition

parameters θ are: NA = 1.4, ni = 1.5, ns = 1.33, λ = 520[nm]. The pixel size is 150[nm] and the z-step size is 100[nm].

The nominal value for zd is z∗d = 0.2[m]. The noise parameters differ from the parameters of Figure 10: mean emission rate of

2 · 106[photons/sec], optical efficiency of 0.033, acquisition time of 0.1[sec], readout rms noise of 36[electrons/pixel], and

mean scattering rate of 6600[photons/sec]. The highest standard deviation value for the lateral position was 2[nm], and for the

detector plane position – 1.35 · 10−4[m].

V. CONCLUSIONS

In this work, we provided a general approach to 3-D PSF fitting applications, while introducing

an efficient and accurate evaluation of the PSF function. We focused on the Gibson and Lani

model and showed its usefulness in particle localization and in defocus estimation. Our fitting

algorithm relies on the least-squares error measure, and we provided analytical expressions

for the required partial derivative functions. We then introduced an efficient and accurate way

for evaluating the Kirchhoff diffraction integral. Our fitting algorithm includes local maxima

identification with adaptive threshold values and window size for the least-squares fit. The

algorithm utilizes the Levenberg-Marquardt minimization method and the initial values we use for

it rely on the PSF model. Simulation results with z-stack data indicate that the lateral localization

accuracy is less sensitive to the particle depth value, compared with the axial localization

accuracy. It was also shown that axial localization accuracy can be improved substantially by

taking more data points in the axial direction. We also observed that sub-pixel lateral positions

have minor effect on the lateral and axial localization accuracies when using the least-squares
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criterion. Our results also suggest that this criterion provides an unbiased estimation with a

relatively low variance value for the axial position of the detector plane.

APPENDIX

A. The relation between the Gibson – Lanni and the Born–Wolf models

The Born and Wolf model is

h (θ) =
(
ka2A0

z2
d

)2 ∣∣∣∣∣
∫ 1

0

J0

(
kar(θ)ρ
zd

)
e
−ika2ρ2

2z2
d

(z∗d−zd)
ρ dρ

∣∣∣∣∣
2

. (21)

We set the aperture, a, to be the back focal plane of the microscope and rely on the sine condition

n sin θ = M sinφ to have the following relation (Figure 12)

NA = n sin θmax = M sinφmax =
Ma√

a2 + (zd − f)2
, (22)

The parameter zd denotes the distance of the focused image from the back principle plane, and

z∗d denotes the distance of the detector from the same plane. In practice, zd � f and M � NA

which leads to
a

zd
∼=

NA

M
. (23)

We express the defocusing measure ∆z = z∗d − zd in the image domain in terms of defocusing

∆z′ = zd
′ − z∗d

′
in the object domain by relying on the analysis of Gibson (Gibson, 1990,

Chapter 3). z∗d
′

is the distance from the front focal plane for which a particle would be focused

on the detector plane z∗d , i.e. just beneath the coverslip. z′d is the distance for which a particle

will be focused at zd in the image domain. The two pairs of similar triangles in Figure 13 yield

zd
′

f ′
=

f

zd
∼=

1

M
, (24)

where f ′ = n · f . Assuming small defocusing values, ∆z′ � z
′

d,

∆z = z∗d − zd (25)

= f f ′
(

1

z∗d
′ −

1

z
′
d

)
=

(f ′)2

n

(
zd
′ − z∗d

′

z∗d
′
z
′
d

)
∼=

M2

n
∆z′.
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Fig. 12. Geometric description of the sine law in a microscope n sin θ = M sinφ. f is the focal length of the microscope in

the image domain and f ′ is the focal length in the object domain. a is the radius of the circular aperture of the microscope at the

back focal plane. zd is the distance of the detector plane from the back principle plane and z′d is the distance of a point-source

from the front focal plane for which its focused image will located at the detector plane. It is assumed here that the immersion

layer, the coverslip and the sample layer share the same refractive index value n.

Substituting (23) and (25) in (21) results in

h (θ) =
(
ka2A0

z2
d

)2 ∣∣∣∣∣
∫ 1

0

J0

(
kNAr(θ)ρ

M

)
e
−ikNA2ρ2∆z′

2n ρ dρ

∣∣∣∣∣
2

, (26)

which is the Born and Wolf model for the wide field microscope.

The Gibson and Lanni model generalizes the model of Born and Wolf in the following manner.

Assume that all the layers have the same refractive indices ns = ni = n. It then follows that

OPD(ρ) = n∆z′
[
1− (NAρ/n)2

] 1
2 where the defocus measure in the object domain is due to

the particle’s depth and stage displacement ∆z
′
= zp + ∆ti. The Taylor series for the OPD is

OPD(ρ) = n∆z
′ − NA2∆z

′
ρ2

2n
− NA4∆z

′
ρ4

8n3
+O(ρ)6, (27)

and the coefficient of ρ2 which amounts to defocusing coincides with the phase term of (26).

B. Software description

The Gibson and Lanni PSF model was implemented in Java, and it can be used with a variety

of software packages. As an example application, we developed the ImageJ plugin PSFGenerator,

which evaluates and visualizes the 3D pattern of the Gibson and Lanni model2. It is fast and easy

2The software is available at http://bigwww.epfl.ch/algorithms/psfgenerator
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Fig. 13. The Gaussian image of a defocused object in a widefield microscope. z∗d
′

denotes the nominal location of an object for

which its focused image is located at the detector plane z∗d . These values are measured relative to the front and back principle

planes, respectively. z′d is the axial position of a particle for which its focused image is located at zd. f and f ′ are the focal

lengths at the image domain and at the object domain , respectively. They are given by f ′ = nf where n is the refractive index

of the object domain. The lateral magnification is M ; drawing not shown to scale.

to use, requiring only few input parameters that are readily available for microscopy practitioners.

The output of the plugin is a z-stack of any chosen size, which can also be visualized with

orthogonal views. The plugin also provides a table that calculates the maximum value, the

proportional energy, and the effective radius of each slice (Figure 14). The open architecture

of the plugin allows for easy incorporation of additional PSF models, and the current version

includes the Born & wolf and the Richards & Wolf models.

We also used our Gibson and Lanni Java implementation for simulating datasets of photo-

activated fluorophores3. To this aim, a user-dependent biological structure is described by a 3-D

density map of fluorophores (Figure 15). Every fluorophore is assigned a random position (based

on the density map), a random excitation time instant, and a random photon emission rate value.

We then use the Gibson and Lanni model to determine the image of each fluorophore and add

the image to the time frame it belongs to. Background scatter noise and readout noise are added,

too. The output of our software is a sequence of frames, composed of images of photo-activated

fluorophores. We also provide the (xp, yp, zp, frame number) indices of every fluorophore, which

3The software is available at http://bigwww.epfl.ch/palm/
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Fig. 14. Screen shot of our ImageJ plugin that generates PSF models. Shown are the interface (right top), the z-stack and its

orthogonal views (left top), as well as the statistical analysis of the PSF (right bottom). The acquisition parameters are given in

the interface itself.

can be used as a validation tool for other localization algorithms.
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(a) (b) (c) (d) 

Fig. 15. An example of a simulated photo-activated fluorophores sequence. The 3-D structure (a) is described by a density

map (b, shown is a maximum z-projection). Point sources are then generated based on the density map (c). Every point-source

is then excited at a random time frame, giving rise to a set of frame sequence (d). We use the Gibson and Lanni model to

determine the image of each fluorophore and we also account for background scatter and readout noise sources.
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TABLE I

PARAMETERS OF THE GIBSON AND LANNI MODEL

Name Description

NA Numerical aperture of the microscope

ns Refractive index of the specimen layer

ni Refractive index of the immersion layer

λ Emission wavelength in vacuum

∆ti Stage displacement relative to the nominal working distance of the objective lens, i.e. axial step size

A0 average magnitude of the spherical wave that impinges on the back focal plane of the microscope

xp, yp Lateral position of the point source relative to the optical axis

zp Axial location of the point-source fluorophore in the specimen layer relative to the coverslip

xd, yd Lateral position of a pixel in the image domain relative to the optical axis

zd, z
∗
d Axial distance of the detector plane from the back principle plane. The nominal value z∗d can be approximated by

the tube length value of the microscope
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TABLE II

DERIVATIVE EXPRESSIONS FOR THE GIBSON AND LANNI PSF MODEL

Parameter Derivative expressions

xp

∂I1(θ)
∂xp

= ka
zd

xd−xp
r(θ)

∫ 1

0
J1

(
kar(θ)ρ
zd

)
cos
(
W (ρ; θ)

)
ρ2 dρ

∂I2(θ)
∂xp

= ka
zd

xd−xp
r(θ)

∫ 1

0
J1

(
kar(θ)ρ
zd

)
sin
(
W (ρ; θ)

)
ρ2 dρ

∂C(θ)
∂xp

= 0

yp

∂I1(θ)
∂yp

= ka
zd

yd−yp
r(θ)

∫ 1

0
J1

(
kar(θ)ρ
zd

)
cos
(
W (ρ; θ)

)
ρ2 dρ

∂I2(θ)
∂yp

= ka
zd

yd−yp
r(θ)

∫ 1

0
J1

(
kar(θ)ρ
zd

)
sin
(
W (ρ; θ)

)
ρ2 dρ

∂C(θ)
∂xp

= 0

zp

∂I1(θ)
∂zp

= −kns
∫ 1

0

√
1 −

(
NAρ
ns

)2

J0

(
kar(θ)ρ
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)
sin
(
W (ρ; θ)

)
ρ dρ

∂I2(θ)
∂zp

= kns
∫ 1

0

√
1 −

(
NAρ
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)2

J0

(
kar(θ)ρ
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)
cos
(
W (ρ; θ)

)
ρ dρ

∂C(θ)
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= 0

zd
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z2
d
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0
J1

(
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cos
(
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ρ2 dρ+ ka2

2z2
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0
J0
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zd
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(
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ρ3 dρ

∂I2(θ)
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z2
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∫ 1

0
J1
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kar(θ)ρ
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2z2
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0
J0
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)
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= − 4C(θ)
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= 2C(θ)
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