Autofocus for Digital Fresnel Holograms by Use of
a Fresnelet-Sparsity Criterion

Michael Liebling and Michael Unser

michael.liebling@a3.epfl.ch

Biomedical Imaging Group,
École Polytechnique Fédérale de Lausanne, Bâtiment de Microtechnique 4.127,
CH-1015 Lausanne, Switzerland

June 8, 2004

Abstract

We propose a robust autofocus method for reconstructing digital Fresnel holograms. The numerical reconstruction involves simulating the propagation of a complex wavefront to the appropriate distance. Since the latter value is difficult to determine manually, it is desirable to rely on an automatic procedure for finding the optimal distance to achieve high quality reconstructions. Our algorithm maximizes a sharpness metric related to the sparsity of the signal’s expansion in distance-dependent wavelet-like Fresnelet bases. We show results from simulations and experimental situations that confirm its applicability. © 2004 Optical Society of America

OCIS codes: 090.0090, 100.3010, 100.7410, 110.3000, 090.1000
1. Introduction

The computerized reconstruction of complex-valued object waves from Fresnel holograms\(^1\) acquired electronically and digitized\(^2-8\) relies on the numerical computation of wave propagation. A possible approach for a wide variety of setups is to consider the free-space propagation formula in the Fresnel approximation, which relates the complex values of a propagating complex scalar wave measured in two planes perpendicular to the direction of propagation and separated by a distance \(d\) (see Fig. 1). It is defined\(^9\) as

\[
f_d(x) = \mathcal{R}_d\{f\}(x) = \frac{\exp(ik\lambda d)}{i\lambda d} \iint f(x') \exp\left(\frac{i\pi}{\lambda d} \|x - x'\|^2\right) \, dx'
\]

(1)

where \(\lambda\) is the wavelength of the light, and \(k_\lambda = 2\pi/\lambda\) its wavenumber, and \(x = (x, y)\).

In a holography experiment, the interference of the diffracted wave with a reference wave is recorded on a CCD and can be written as

\[
I(x) = |f_d(x) + R(x)|^2.
\]

(2)

The reconstruction of the complex-valued wave \(f\) in the object’s vicinity from one or several measurements of \(I\) may conveniently be accomplished in two steps: First, one reconstructs the wave \(f_d\) in the CCD-plane from \(I\), for example by use of a parametric phase retrieval procedure,\(^10\) and second, one computes \(f\) through an appropriate discretization of Eq. (1). To perform the latter operation, the distance parameter \(d\) in Eq. (1) must be set accurately. We have proposed elsewhere\(^11\) a numerical multiresolution reconstruction implementation for evaluating Eq. (1) based on a Fresnelet decomposition. Here, we show how this procedure can also be used advantageously to
adjust the focusing parameter d in an accurate, robust and fast manner. Our method is based on the maximization of the sparsity of the Fresnelet representation, which appears to be a natural choice in the light of the multiresolution, wavelet-transform-like reconstruction method we have adopted.

The paper is organized as follows. In Section 2, we list a number of possible approaches to autofocusing. In Section 3, we emphasize the concept of sparse image representations, which is central to our approach. In Section 4, we give the formal definition of distance-dependent Fresnelet bases and of the Fresnelet-based propagation algorithm. In Section 5, we introduce the autofocus algorithm and its underlying sparsity measure. In Section 6, we illustrate and validate the method using both synthetic (simulated) and true measurement data.

2. Existing methods

A. Image Quality Functionals

Although our algorithm is specifically designed for the reconstruction of complex Fresnel fields, it is in keeping with applications that aim at synthesizing and acquiring images, as well as assessing their quality through the evaluation (and eventually the determination of an extremum) of an image quality functional that depends on some imaging parameter to be optimized—here, the distance. More specifically, such procedures are used for providing feedback to acquisition devices for automatically setting the distance and alignment between their constituents as in optical imaging,12,13 electronic microscopy14 and holography15 or for the optical reconstruction of acoustic holograms.16 They also appear in devices that actively correct the incoming
wavefront to overcome aberrations in astronomical imaging17,18 or microscopy.19 Yet another use of such functionals is image quality assessment of acquisition devices and displays.20 They are central for local sharpness evaluation in the case of image fusion and depth evaluation in images of three-dimensional scenes21,22 as well as for determining particle location. They are also instrumental for the estimation of unknown imaging parameters for degraded image restoration,23 digital aberration correction and deconvolution, and for computerized image reconstruction for various modalities, including coherent imaging.24,25 The automatic setting of the distance parameter for numerical reconstruction of complex wave fields from digitally acquired holograms (digital holography) also falls into this last category.26

The selection of a suitable image quality metric is usually an \textit{ad hoc} choice, driven by the imaging system’s characteristics. Insensitivity to specific conditions and invariance with respect to diverse transforms27,28 constitute another goal. The perfect functional should be an unimodal function over a wide range of parameter values with a low computational cost.29 Also, defining sharpness in the first place implies agreement on some \textit{a priori} knowledge on the image to reconstruct. Possible requirements might be to achieve images with high contrast, sharp edges, or crisp details. Such criteria are highly application-dependent and possibly difficult to apply in the presence of noise.

B. Related Work

Gillespie \textit{et al.}26 have proposed to use the reconstructed image’s self-entropy, for measuring the focus, albeit with quantized levels of gray. Ferraro \textit{et al.}30 have recently
proposed an autofocus algorithm for digital in-line holography that tracks the axial displacement of the sample in real time by measuring the phase shift of the hologram fringes. The use of an autofocus method has also been reported by Hobson et al.31 although they do not give details on its implementation.

We are aware of at least three occurrences of wavelets for focus estimation and/or holographic reconstruction, albeit unrelated to the method we propose. Widjaja \textit{et al.}32 have proposed to improve a focus measure based on the autocorrelation of an image whose edges have been enhanced using a continuous wavelet transform (CWT). Rooms \textit{et al.}33 estimate image blur by analyzing the sharpness of its sharpest edges by evaluating the Lipschitz exponent based on the analysis of the scalogram, obtained by CWT. Onural \textit{et al.}34 have proposed methods for hologram reconstruction and space-depth analysis for the three-dimensional determination of particle location by use of scaling-chirp functions. Their formulation of the Fresnel diffraction formula makes it isomorphic to the continuous wavelet transform formulation, provided the commonly-used admissibility condition is extended appropriately.

3. Sparse image representations

A standard approach in image processing and optics is to express the signal of interest as a weighted sum of basis functions. Fourier, Hermite-Gauss or wavelet bases are among the most popular candidates for such expansions. Although it is possible, in theory, to express a finite energy signal in any of these bases, in practice, the choice for one or the other is usually dictated by specific properties of the basis functions. A family might be selected, for example, because it diagonalizes an operator that is
relevant to the application at hand (e.g. the Hermite-Gauss modes for fiber-optics problems). Another reason for choosing a specific basis is that it may yield a sparse representation of the signal; i.e., most of the signal’s energy is packed into a few coefficients only. Local Gabor representations, and in particular wavelet bases, are good candidates to yield sparse representations of natural images. The reason for the wavelet transform’s excellent energy compaction properties for a large palette of images is that wavelets are well-localized and that they yield very small coefficients in smooth signal regions thanks to their vanishing moments properties. This energy-compaction property of the wavelet transform has been recognized early on, and has proven to be useful in a wide variety of applications, ranging from superresolution image restoration, efficient noise reduction algorithms and state of the art image compression algorithms, including the recently adopted JPEG 2000 standard. Sparse representations also play an important role in recently proposed blind source separation algorithms.

Fresnel fields and holograms are not natural images, and their decomposition is sparse only if the basis functions are well-chosen. Our guiding principle to reconstruct focused wavefronts is that their expansion in a distance-dependent basis should be sparse.

4. Fresnelets

A. Definition

We consider the separable orthonormal wavelet basis of $L_2(\mathbb{R}^2)$ [44, p.304–306]

$$\left\{ \psi_{j,m}^1(x), \psi_{j,m}^2(x), \psi_{j,m}^3(x) \right\}_{j \in \mathbb{Z}, m \in \mathbb{Z}^2}$$

(3)
where the two-dimensional wavelets
\[
\psi_{j,m}^p(x) = \frac{1}{2^j} \psi^p \left(\frac{x}{2^j} - m \right)
\]
are constructed with separable products of the cubic Battle-Lemarié scaling function \(\phi(x)\) and wavelet \(\psi(x)\):\(^{45,46}\)
\[
\psi^1(x) = \phi(x)\psi(y), \psi^2(x) = \psi(x)\phi(y), \psi^3(x) = \psi(x)\psi(y).
\]
For the sake of brevity, we index the basis functions with a single index \(k\) that includes the scale \(j \in \mathbb{Z}\), translation \(m \in \mathbb{Z}^2\), and wavelet type \(p \in \{1, 2, 3\}\):
\[
\psi_k(x) = \psi_{j,m}^p(x), \quad k = (p, j, m),
\]
and denote the wavelet basis in Equ. (3) by \(\{\psi_k\}_k\). In practice, one only considers a finite number of scales and translates (because of the finite resolution and support of the image, and appropriate boundary conditions).

A complex wave field \(f(x)\), measured in a plane perpendicular to propagation, may be decomposed in this basis according to
\[
f(x) = \sum_k c_k \psi_k(x),
\]
where the coefficients \(c_k\) are given by the inner-products
\[
c_k = \langle f, \psi_k \rangle = \int_{-\infty}^{\infty} f^*(x)\psi_k(x) \, dx.
\]
Note that we consider integer scale and shift parameters \(j\) and \(m\) which leads to a dyadic multiresolution structure.\(^{35}\) This approach is different from the representation provided by continuous wavelet transforms, which is highly redundant (i.e., not sparse) and does not have an underlying basis.
For any distance $d \neq 0$, an associated Fresnelet basis $\{\psi^d_k(x)\}_k$ of $L_2(\mathbb{R}^2)$ can be constructed by taking the Fresnel transform of the basis $\{\psi_k\}_k$, viz.

$$\psi^d_k(x) = \mathcal{R}_d\{\psi_k\}(x).$$

(9)

The transformed basis functions ψ^d_k are shift-invariant on a level-by-level basis but their multiresolution properties are governed by the special form that the dilation operator takes in the Fresnel domain.11 Such bases have many desirable properties required for the digital processing of holograms: For example, since they are related to splines, whose Fresnel transform may be computed analytically,11 they are well-defined in both time and frequency. Here, we will show that they become particularly useful for reconstructing propagated complex wave fields.

B. Fresnelet-based propagation

The propagating wavefront may be computed at any depth given its wavelet coefficients at the origin by simply replacing the wavelet basis functions in the expansion (7) with the Fresnelets associated to a different depth

$$f_d(x) = \mathcal{R}_d\{f\}(x)$$

$$= \sum_k c_k \psi^d_k(x).$$

(10)

Conversely, the focused wavefront $f(x)$ at the origin, may be reconstructed given complex measurements of the propagated field $f_d(x)$ in a plane at distance \vec{d} as follows

$$f(x) = \sum_k c_k \psi_k(x).$$

(11)
where $c^d_k = \langle f_d, \psi^d_k(x) \rangle$. It is only when the distance is well adjusted ($d = \bar{d}$) that we have $c^d_k = c_k$ and that the reconstruction leads to a focused image. The focus measure that we propose lets us determine the quality of the computed coefficients, that is, the quality of our reconstruction.

5. Sparsity of Fresnelet-Transform-Based Autofocus

Our starting hypothesis is that the wavelet coefficients c_k for focused images are sparse. To decide whether the computed coefficients c^d_k are satisfactory, we need a measure that depends on their sparsity. We define the focus measure $S(d)$ as follows. For a test depth d, we compute the Fresnelet coefficients $c^d_k = \langle f_d, \psi^d_k(x) \rangle$. The coefficients are sorted: we define a mapping $k = k(l)$ such that

$$ |c^d_{k(l-1)}| \geq |c^d_{k(l)}| \geq |c^d_{k(l+1)}|, $$

(12)

with $0 < l < L$ and where L is the total number of coefficients. The sharpness metric $S(d)$ is the energy of the signal that is reconstructed with the fraction $0 < \alpha < 1$ of highest modulus coefficients viz.

$$ S(d) = \int \int \left| \sum_{l=0}^{\lfloor \alpha L \rfloor} c^d_{k(l)} \psi_{k(l)}(x) \right|^2 \, dx $$

$$ = \sum_{l=0}^{\lfloor \alpha L \rfloor} |c^d_{k(l)}|^2. $$

(13)

The second equality is a consequence of the basis functions $\psi_{k(l)}$ being orthonormal. In practice, we typically set $\alpha \approx 1\%$. An initial depth range is defined for example by rough measurements or estimates made on the experimental setup. For a lensless digital holography setup the distance is usually known within 0.1 m, i.e. the distance
range to be considered is approximately 0.2 m. Our autofocus algorithm then maximizes the $S(d)$ criterion. Since computing $S(d)$ is costly, it should be evaluated as few times as possible during maximization. We relied on the MATLAB implementation \texttt{fminbnd}48,49 of a derivative-free algorithm due to Brent50 which finds local extrema on a bounded interval. At every iteration, depending on the outcome of a suitable test, it switches from a golden section search (that handles the worst possible case of function maximization) to a parabola fit through three points that leads to the maximum in a single leap (when the function is parabolic, which is more likely if it is sufficiently smooth) and vice versa \cite[p. 397–405]{47}.

The focusing problem may be summarized as follows: we aim at finding the best Fresnelet basis such that as much of the image energy is encoded with as few coefficients as possible. This idea is very similar to the following problem of linear algebra in a two-dimensional Cartesian vector space. On the road map shown in Fig. 2, we determine the highway's direction (the reconstruction distance) by using an instrument that is initially oriented toward the north pole and that measures a test car's two coordinates in an orthonormal basis but only displays the highest (the quality metric). The instrument, hence the basis, is rotated until the device displays the maximum value, which gives us the orientation we are after. Some \textit{a priori} knowledge is however required for this method to be effective: the car should be driving on the highway (but not at the origin) and the initial guess should be no more that 45 degrees away from the true value. It is noteworthy that all the rotated bases—like the Fresnelet bases for different distance parameter d—are equivalent in that they all allow to express the position of any car on the map.
A. Computational complexity

The cost for sorting the L coefficients is $O(L \log L)$.51 The cost for computing a Fresnelet transform, which relies on fast Fourier transforms (FFT), is of similar complexity, i.e. $O(L \log L)$. The maximization algorithm usually converges in less than 10 iterations. The whole autofocusing procedure for a 512×512 pixels images takes around 9 s on a PowerPC G5 1.8 GHz computer, but we believe that the implementation may be optimized for specific applications and allow to perform real-time processing.

6. Results and Discussion

A. Sparsity Illustration

We have simulated the propagation of a coherent monochromatic scalar complex wave. The diffracted wave was computed at a distance of $d = 0.1$ m using a procedure we described elsewhere.11 Its intensity and phase is shown in Figs. 3(a) and (b). We then applied the Fresnelet decomposition with bases of different distance parameters d, ranging from 0.01 m to 0.19 m. In Figs. 3(c) and (d), the positions of the wavelet coefficients that account for 95\% of the signal’s energy are shown. More than one and a half times as many coefficients are required when the Fresnelet parameter $d = 0.086$ m is used than when the correct parameter $d = 0.1$ m is applied. In Fig. 4, we show the Fresnelet coefficient’s energy packing for different distances; we have sorted the Fresnelet coefficients in decreasing order, and reported their relative cumulated energy. From the inset, it is clearly visible that the larger the distance difference between the Fresnelet parameter and the focus distance, the weaker the
energy packing. We show the sharpness metric $S(d)$ in Fig. 5(a) along with two other metrics, the fourth power of the wave’s modulus and the squared modulus of the intensity’s Laplacian computed as follows:

$$S_4(d) = \int \int |R_{-d}\{f_d\}(x)|^4 dx,$$

$$S_L(d) = \int \int |\Delta R_{-d}\{f_d\}(x)|^2 dx.$$ \hspace{1cm} (14)

The maximum is reached for the optimal distance $d = 0.1$ m for all three sharpness metrics. However, the Laplacian and squared intensity metrics exhibit local maxima, even in our ideal, noiseless situation. In Fig 5(b), we show the same curves in the case where 10% gaussian random noise was added to the propagated wave field before reconstruction.

Since Fresnelet coefficients—like wavelet coefficients—may be assimilated to the derivatives of the two-dimensional function along the horizontal, vertical and diagonal directions, they are also related to quantities that appear in the computation of the Laplacian sharpness metric. For the latter, they would mostly correspond to the high-pass coefficients of the Fresnelet transform. However, these are highly sensitive to noise which make the Laplacian sharpness metric useless in noisy conditions (see Fig. 5(b)). Conversely, these coefficients do not contribute to our sparsity metric, since they carry little energy and are removed—similarly to wavelet-based noise reduction algorithms. For this reason, our method is robust to noise, i.e. suitable for experimental situations.

In this experiment, the autofocus algorithm converged to a relative precision of 10^{-3} in as few as 9 iterations.
B. Experimental Measurements

We have tested our autofocusing algorithm on experimental digital holography data. The (unfocused) amplitude and phase in the camera plane was computed from the holograms by use of a phase retrieval algorithm presented elsewhere.10 We then applied our autofocus algorithm to determine the focusing distance.

In the left column of Fig. 6 (a)–(c), we show the amplitude of the unfocused wave fields for three different samples recorded in similar conditions.8 In the center column we present the reconstructed amplitude which is properly focused, using the distance returned by the autofocus.

To better understand how the Fresnelet metric behaves compared to other metrics, we have computed $S(d)$ over an extended range of distances along with the Laplacian-based and intensity-based metrics \cite{Eq. (14)}. The corresponding curves are shown in the right column of Fig. 6 (a)–(c). We can see that our proposed sparsity metric behaves well, even in experimental conditions. Conversely, the two other metrics are unreliable, since they, at best, only exhibit a local maximum for the proper distance. As a consequence, any maximization procedure inevitably gets trapped in one of these false maxima.

Although the S_L and S_4 metrics may be used successfully in incoherent imaging systems—where the defocus aberration has an effect comparable to blurring or local averaging—they are inappropriate in our case: images with higher contrast and possibly sharper or enhanced edges may be obtained away from proper focus as a result of constructive and destructive interferences produced by the diffraction of coherent
waves. This effect is more noticeable for objects that have sharp features as it depends on the local spatial frequencies. It also explains why the resulting curves in Fig. 6 (a)–(c) are very different from each other despite the similarity of experimental conditions.

Since the proposed $S(d)$ metric is intrinsically based on the (coherent) reconstruction model, it avoids the shortcomings of other metrics. However, local maxima may still occur, as can be seen in Fig. 6 (a): the wave diffracted by this regular pattern, generates sparse representation at two different distances. A priori knowledge of the initial distance range is usually sufficient to overcome such situations. If such information lacks, one may also find local extrema starting from varying initial distances (possibly chosen randomly) and then pick the highest of these or perturb a local maximum by re-running the maximization procedure, starting at a finite distance step away from it and check if the result remains the same.

7. Conclusion

We have proposed a novel sharpness metric for the reconstruction of digital holograms based on the computation of the sparsity of a Fresnelet decomposition. The global maximum of this functional corresponds to a sharp reconstruction. Because it is smooth and unimodal even in the presence of noise, the localization of its maximum may be carried out without an exhaustive search but only by evaluating it for a limited number of distances. This is a crucial aspect of our metric since the computational cost of computing the wavefront at many distance can become important. Other simple metrics that exhibit local maxima are useless because finding the
global maximum requires exhaustive search. The sharpness measure has indeed all
the characteristic of a good functional; in particular, it is robust and does not require
a large computational overhead, since it is tightly related to our reconstruction tech-
nique. Although a wide-variety of wavelets (Daubechies, etc.) may be considered for
building Fresnelets, we advise the use of cubic Battle-Lemarié wavelets, since these
may be constructed using B-splines, which have closed-form expressions in both time
and frequency and yield a simple implementation. It is important, however, that the
wavelet basis be orthonormal to ensure the validity of Equation (13).

Finally, we have confronted our technique to both synthetic (simulated) and ex-
perimental data and observed that it is suitable for real applications.

Acknowledgments

The authors thank E. Cuche and Ch. Depeursinge, École Polytechnique Fédérale de
Lausanne, Switzerland, for providing the experimental holograms.

Corresponding author M. Liebling’s e-mail address is michael.liebling@a3.epfl.ch.

Supplementary movies to Fig. 6 are available at

References

2. J. W. Goodman and R. W. Lawrence, “Digital image formation from electroni-

33. F. Rooms, A. Pizurica, and W. Philips, “Estimating image blur in the wavelet do-

http://www.iso.org/

Fig. 1. Fresnel propagation.

Fig. 2. The orientation of the highway is given by the orientation of the basis in which the representation of a car’s position is sparsest.

Fig. 3. Sparsity of wavelet coefficients. (a) Intensity and (b) phase of measured complex field at a distance $d = 0.1$ m. (c) Positions of the 5% highest Fresnelet coefficients for parameter $d = 0.09$ m that make up 95% of the signal’s energy. (d) The same energy is packed in only 3.1% of the coefficients when $d = 0.1$ m. The respective reconstructions are given in (e) and (f).

Fig. 4. Wavelet coefficient energy for several Fresnelet bases and detail (inset).

Fig. 5. Sharpness metrics as a function of the distance. (a) Ideal noiseless data (b) Noise corrupted data: 10% gaussian random noise was added to the complex valued propagated wave of Fig. 3(a). The sparsity of the Fresnelet transform is given by the energy of $\alpha = 1\%$ Fresnelet coefficients.

Fig. 6. Out-of-focus and focused modulus of wavefront, and sharpness metrics (Laplacian of intensity (dashed), squared intensity (dashed-dotted) and Fresnelet sparsity (bold)). The experimental data was kindly provided by E. Cuche and Ch. Depeursinge, École Polytechnique Fédérale de Lausanne, Switzerland. Movies that supplement this figure are available at

Fig. 1. A9229
Fig. 2. A9229
Fig. 3. A9229
Fig. 4. A9229
Fig. 5. A9229
Fig. 6. A9229