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ABSTRACT

We propose here a new pointwise wavelet thresholding func-
tion that incorporates inter-scale dependencies. This non-linear
function depends on a set of four linear parameters per sub-
band which are set by minimizing Stein’s unbiased MSE esti-
mate (SURE). Our approach assumes additive Gaussian white
noise.

In order for the inter-scale dependencies to be faithfully
taken into account, we also develop a rigorous feature align-
ment processing, that is adapted to arbitrary wavelet filters
(e.g. non-symmetric filters).

Finally, we demonstrate the efficiency of our denoising
approach in simulations over a wide range of noise levels for
a representative set of standard images.

1. INTRODUCTION

Over the past fifteen years, the wavelet transform (whether re-
dundant or not) has been shown to be particularly efficient in
image denoising, because of its energy compaction and sub-
band decorrelation properties [2, 4, 5, 6]. Here, we will only
consider critically-sampled orthonormal transforms for three
main reasons:

• computation time;

• minimal memory occupation (a critical point when deal-
ing with volumes and higher dimensional signals);

• MSE preservation (justifies independent processing of
the subbands).

Previous studies [5, 6] have demonstrated that the denois-
ing quality can be slightly improved by taking into account
the scale dependencies between the wavelet coefficients (known
as the parent-child relationship). Although within-scale de-
pendencies seem to bring substantially larger denoising gain,
this is done at the expense of a much heavier computation
load [6], which is why we will stick to a simpler pointwise
approach in this paper. Indeed, we will show that an adequate
choice of the threshold function brings denoising results that
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are competitive with the best state-of-the-art non-redundant
techniques.

This paper is organized in three parts: first, we will work
out a new processing algorithm for aligning parent and child
subbands. Then, we will present our new threshold func-
tion and show how to optimize for its free parameters using
Stein’s unbiased MSE estimate (SURE) principle. Finally, we
demonstrate the superior performance of our approach.

2. INTER-SCALE DEPENDENCIES

2.1. Features alignment between adjacent scales

In a critically sampled orthonormal wavelet decomposition,
the parent subband is half-size the child subband (see Figure
1). The usual way of putting the two subbands in correspon-
dence is simply to expand the parent by a factor two.
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Fig. 1. Three stages of a fully decimated orthogonal wavelet
transform and the so-called parent-child relationship.

Here, we propose a more sophisticated solution, which
ensures the image features alignment between the child and
its parent. Our idea is to filter the low-pass subband at scale
j by a suitable filter W along the corresponding high-pass fil-
tered rows or columns in order to obtain images of the same
size as HLj , LHj and HHj , as depicted in Figure 2. Con-
sidering the filterbank of Figure 3, we say that the prediction
map z(k) is aligned with yh(k) if and only if:

• H(z−1)W (z2) = G(z−1)Q(z), where Q(z) is a sym-
metric (zero phase) filter;



• the alignment filter, of impulse response {wn}n∈Z, pre-
serves the signal energy, i.e.:∑

n

w2
n = 1

In addition, the filter has to be high-pass.
We can prove that the general form of such a filter is given

by:

Theorem 1 In order for the output of the dyadic filterbank of
Figure 3 to be aligned, it is necessary and sufficient that:

W (z2) = G(z−1)G(−z−1)(ε + z−2)R(z2) (1)

where ε = ±1 and R(z) = R(z−1) is arbitrary.

Fig. 2. Obtaining the whole parent information out of the
low-pass subband.
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Fig. 3. One iteration of a dyadic orthonormal filterbank,
where G(z) = −z−1H(−z−1).

From a practical point of view, we aim at using the short-
est possible W . It is easy to see that in the case of symmetric
or nearly symmetric —such as the Daubechies symlets [3]—
filters, the shortest W satisfying the perfect alignment condi-
tion is in fact the simple gradient filter: W (z) = 1− z. If the
symmetry or the quasi-symmetry is not centered at the origin
but at a position n0, then W (z) = z−n0(1 − z). When the
low-pass filter is asymmetric, we can simply take R(z2) = 1
in (1).

Additionally, in order to increase the homogeneity inside
regions of similar magnitude coefficients, we apply a 2D-
smoo-thing filter by a normalized Gaussian kernel.

Figure 4 shows the whole construction of the final inter-
scale prediction, to which we will refer from now on as Y .

Fig. 4. Building an efficient interscale predictor, illustrated
with a particular subband (HL1) of the noise-free Peppers
image.

3. A NEW DATA-DRIVEN THRESHOLDING
FUNCTION

Let us denote by y = (yn)n∈[1;N ] the noisy image:

y = x︸︷︷︸
noise-free image

+ b︸︷︷︸
Gaussian white noise

(2)

The noise samples bn are assumed to follow a normal law
N (0, σ2) with known σ.

Due to orthonormality, this noise model carries over to
the wavelet domain, i.e. yj = xj + bj , with bj

n ∼ N (0, σ2).
Thanks to orthonormality again, the MSE can be written as a
weighted sum of the MSE in every subband j:

MSE = < |x− y|2 >

=
J∑

j=1

N j

N
< |xj − yj |2 >︸ ︷︷ ︸

MSEj

(3)

where we have introduced the notation:

< u >=
1
N

N∑
n=1

un (4)

The denoising process can therefore be applied indepen-
dently in each wavelet subband j. For the next part, we will
thus drop any reference to j.

3.1. Stein’s unbiased MSE estimate

The main difficulty of the image denoising problem is that
we have to minimize a quantity —the MSE— that we can-
not compute, because in practice we do not have access to the



noise-free image. Fortunately, this difficulty has been over-
come by Stein in [1] who has proposed an unbiased estimate
of the MSE —or ”risk”, in the statistical literature. Our aim
is to find the best estimate x̃ = θ(y, Y ) of the noise-free data
x using the noisy data y and the noisy parent information Y .
For this purpose, we can apply the following theorem which
is a consequence of [1, Theorem 1]:

Theorem 2 The following random variable:

ε = < θ(y, Y )2 − 2yθ(y, Y ) + 2σ2θ′(y, Y ) >

+ < y2 > −σ2

=
1
N

N∑
n=1

(
θ2(yn, Yn)− 2ynθ(yn, Yn) + 2σ2θ′(yn, Yn)

)
+

1
N

N∑
n=1

y2
n − σ2 (5)

is an unbiased estimator of the MSE, i.e.:

E {ε} = E {< |θ(y, Y )− x|2 >}
where E {·} stands for the expectation operator.

The result given by Theorem 2 is particularly interesting
in image denoising applications because the number of sam-
ples is large. In that case the standard deviation of ε is small;
i.e., close to its expectation which is the MSE of the denois-
ing procedure. As a result, we can use ε as if it were the true
MSE.

3.2. Construction of a parametric thresholding function

We propose now the construction of an efficient parameter-
ized wavelet denoising function θ. For this purpose, we want
it to be differentiable (necessary condition to apply Theorem
2) and anti-symmetric (the wavelet coefficients are not sup-
posed to exhibit a preference of sign). Moreover, we want a
non-linear transition between low-magnitude and high-magni-
tude coefficients. Without consideration of the inter-scale pre-
dictor Y , these requirements are satisfied by the following
parametric thresholding function:

θ0(y; u, T ) =
(
u1 + u2e

− y2

T2

)
y (6)

where: u =
[

u1

u2

]
and T are parameters.

The role of the exponential is crucial, because it rules the
non-linear transition between low-SNR and high-SNR wavelet
coefficients. The inter-scale predictor developed in section 2
can be integrated into this denoising function by using two
different θ0 depending on whether the parent is large or not:

θ(y, Y ; u, v, T ) = e−
Y 2

T2 θ0(y; u, T )

+
(
1− e−

Y 2

T2

)
θ0(y; v, T ) (7)

where: u, v and T are some parameters that are determined
by minimizing (5) as shown in the next section.

θ(y, Y ; u, v, T ) |Y | >> T|Y | >> T|Y | >> T |Y | << T|Y | << T|Y | << T

|y| >> T|y| >> T|y| >> T v1y u1y

|y| << T|y| << T|y| << T (v1 + v2)y (u1 + u2)y

Table 1. Limit behavior of the pointwise thresholding func-
tion (7).

3.3. Parameters optimization

The parameter T of our function (6) and (7) can be viewed
as a threshold, in the same way as in the well-known soft-
thresholding function developed by Donoho et al. in [2]. But
in our case, its sensitivity is really small and thus there is no
need to optimize it in each wavelet subband. We have ex-
perimentally found that it can be directly linked to the noise
standard deviation σ according to T = 3.5σ.

In order to find the optimal parameters u and v, we can
simply apply Theorem 2 by introducing our pointwise inter-
scale dependent thresholding function θ(y, Y ; u, v, T ) into (5).
Since ε is quadratic in u1, u2, v1 and v2, minimizing it leads
to a linear system of equations:2664

m11 m12 m13 m14

m12 m22 m23 m24

m13 m23 m33 m34

m14 m24 m34 m44

3775
| {z }

M

2664
u1

u2

v1

v2

3775
| {z }

p

=

2664
c1

c2

c3

c4

3775
| {z }

c

p = M−1c (8)

where:
m11 =< f2

p y2 > m33 =< f̄2
p y2 >

m12 =< f2
p fy2 > m34 =< f̄2

p fy2 >
m13 =< fpf̄py2 > m44 =< f̄2

p f2y2 >
m14 =< fpf̄pfy2 > c1 =< fpy2 − σ2fp >
m22 =< f2

p f2y2 > c2 =< fpfy2 − σ2fp(f + f ′y) >
m23 =< fpf̄pfy2 > c3 =< f̄py2 − σ2f̄p >
m24 =< fpf̄pf2y2 > c4 =< f̄pfy2 − σ2f̄p(f + f ′y) >

where: f = e−
y2

T2 ; f̄ = 1− f ; fp = e−
Y 2

T2 ; f̄p = 1− fp.
The optimal set of parameters p is thus the solution of a

linear system of equations, which makes our approach very
simple to implement.

4. METHOD EVALUATION

We propose now to compare our pointwise inter-scale depen-
dent thresholding function (7) with some of the best state-of-
the-art denoising procedures. The first one, by Sendur et al.
[5], is known as the BiShrink. The second one, by Portilla et
al. [6], is known as the BLS-GSM and gives the best state-of-
the-art results. Contrary to our approach, these two methods
require an explicit prior to model the noise-free coefficients.
Moreover, besides integrating the parent-child dependency,
they both take into account the local neighborhood to better
estimate the child coefficient, which is not yet the case of our
approach. We have also added in our comparison the popular
BayesShrink [4] which is a Bayesian soft-thresholding rule.



We have applied four decomposition stages of a critically-
sampled orthonormal (symlet with eight vanishing moments)
filterbank and denoise all the high-pass wavelet subbands us-
ing the respective Matlab codes of the authors, kindly pro-
vided on their respective webpages. Their parameters have
been chosen accordingly to what was suggested in their re-
ferred papers. To perform a reliable PSNR1 comparison, we
have then averaged the results over ten noise realizations in an
input PSNR range of 8.13−34.15 dB. In Figure 5, we have re-
ported the PSNR differences between our method (reference)
and the other ones and, in Figure 6, we show a visual result.
As one can observe, our method is really competitive (aver-
age gain of: 0.2 dB towards the BLS-GSM; 0.6 dB towards
the BiShrink and up to 1 dB towards the BayesShrink). This
lead has been confirmed over most standard test images, to
the notable exception of Barbara; this may suggest that with
textured images, the integration of local neighborhood infor-
mation is probably important.

The computation time of our method is below 1s for 256×
256 images and about 3s for 512 × 512 images, which is ap-
proximately four times faster than the BLS-GSM.

Peppers 256× 256 Lena 512× 512

Fig. 5. PSNR comparison between some of the best state-
of-the-art methods and our pointwise inter-scale dependent
thresholding function (7).

5. CONCLUSION

We have proposed a new parametric thresholding function,
whose parameters can be solved for by minimizing an unbi-
ased estimate of the MSE. In order to take inter-scale depen-
dencies into account, we have devised a new way of build-
ing the parent subband used to predict its child. By appro-
priately integrating this inter-scale predictor into the thresh-
olding function, we have demonstrated that our approach fa-
vorably compares to the other non-redundant state-of-the-art
methods.
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