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Maximally Localized Radial Profiles for Tight
Steerable Wavelet Frames

Pedram Pad, Virginie Uhlmann, and Michael Unser

Abstract—A crucial component of steerable wavelets is the
radial profile of the generating function in the frequency domain.
In this work, we present an infinite-dimensional optimization
scheme that helps us find the optimal profile for a given criterion
over the space of tight frames. We consider two classes of
criteria that measure the localization of the wavelet. The first
class specifies the spatial localization of the wavelet profile, and
the second that of the resulting wavelet coefficients. From these
metrics and the proposed algorithm, we construct tight wavelet
frames that are optimally localized and provide their analytical
expression. In particular, one of the considered criterion helps
us finding back the popular Simoncelli wavelet profile. Finally,
the investigation of local orientation estimation, image recon-
struction from detected contours in the wavelet domain, and
denoising, indicate that optimizing wavelet localization improves
the performance of steerable wavelets, since our new wavelets
outperform the traditional ones.

Index Terms—Isotropic wavelets, filter design, steerable
wavelets, localization, denoising, image reconstruction.

I. INTRODUCTION

ISOTROPIC wavelets are purely radial functions that allow
for an orientation-free decomposition of images, while

retaining all other popular features of classical wavelet bases
such as multiresolution analysis. The steerable pyramid [1],
[2], [3], [4], [5] is a well-known construction that relies on
such wavelets. In this setting, a purely angular element is
included in order to rotate derivatives of the wavelets and im-
pose a preferred directionality. Some well-known algorithms
for denoising ([6], including the widely-used Bayesian least-
squares Gaussian-scale-mixture (BLS-GSM) algorithm [7]),
texture analysis (or synthesis) [8], [9], and regularization with
sparsity constraints for inverse problems [10], [11] rely on
the steerable pyramid, although methods that do not exploit
steerability are also available for these tasks. Steerability is
a crucial aspect in many other image-processing applica-
tions such as finding the dominant orientation at each image
location, detecting contours [12], or identifying features in
a rotation-invariant fashion [13]. More recently, algorithms
for image reconstruction from the small subset of wavelet
coefficients called the “primal sketch” have been proposed
relying on the steerable pyramid [14], [15]. In this work, we
study the design of wavelet profiles for use in applications
relying on steerable tight frames. The specification of steerable
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wavelet frames includes two components: a radial profile and
a directional components can be optimized separately. The
angular component is represented using circular harmonics [4].
Here, we concentrate on the radial profile, which determines
the localization.

In order to generate an isotropic wavelet transform, the
underlying basis functions must satisfy several properties, the
main ones being isotropy and perfect reconstruction of the
image. Another desirable feature is that the basis functions
form a tight frame. In this way, the wavelet transform is
self-reversible, enabling simpler and faster algorithms. The
isotropy and perfect-reconstruction conditions are ensured by
choosing a radially bandlimited mother wavelet that satisfies
some partition of unity in the frequency domain [16], [17].
Many such bases have been proposed, which include the
Meyer [18], Papadakis [19], and Simoncelli [20] wavelets. In-
spired by the biological visual system, the Simoncelli wavelet
is the one implemented in the original version of the steerable
pyramid and the BLS-GSM denoising algorithm. Due to its
good performance in a wide range of practical applications, it
remains a commonly used profile.

Localization, either in the spatial or frequency domain, is
an important consideration for specifying such wavelets. On
the practical side, steerable wavelets are bandlimited with
infinitely many vanishing moments, which tends to induce
oscillations that can be visually displeasing. It is observed
that more-localized wavelets result in fewer oscillations and
are less subject to truncation artifacts. Moreover, it has been
theoretically shown that wavelets with better localization are
more efficient for decoupling and sparsifying signals [21]. It
is worth mentioning that the Simoncelli wavelet performs well
in a wide range of applications and is shown to be the most-
localized wavelet in a specific sense [22].

Here, we introduce a method to design radial profiles
for steerable tight frames. Since the frequency response of
steerable wavelets is polar-separable, we can concentrate on
the task of optimizing the radial frequency profile. We focus
on moment-based measures of localization and propose two
different classes of criteria depending on whether we consider
the localization in the spatial domain or in the wavelet domain.
Two criteria can be derived within each class, depending on
whether one wants to consider localization over the whole
space or in each radial direction. Ultimately, the choice of a
particular criterion among these is guided by the application.
We describe an algorithm using the calculus of variations to
optimize the wavelet corresponding to each measure through
gradient descent. We then obtain analytical expressions for the
optimally localized profiles.
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Our preliminary investigations have revealed the practical
benefits of such an optimization [22], [24], [25]. In this work,
we extend the framework and present a unified treatment
that relies on more sophisticated tools and improves on
our previous findings. As a result, we derive new wavelet
profiles that exhibit optimal localization properties. We then
show the benefit of our optimized design in three practical
applications, namely, local orientation estimation, image re-
construction from edges, and denoising. These experiments
highlight different use-cases in which each of the proposed
type of localization (spatial versus wavelet domain) is desir-
able. In particular, we provide additional results on the image-
reconstruction problem compared to [24], as well as further
study of the performance of our wavelets for local orientation
estimation and for the BLS-GSM denoising algorithm.

The organization of the paper is as follows: We review in
Section II some important aspects of the design of isotropic
wavelet frames, both on the theoretical and practical side.
In Section III, we specify our measures of localization and
propose a step-by-step algorithm to design optimally localized
profiles corresponding to each measure. We then provide
the closed-form expression of the resulting optimal wavelets.
Finally, we focus on three practical applications in Sec-
tion IV, namely, local orientation estimation in filamentous
structures, image reconstruction from a primal sketch and
image denoising using BLS-GSM. We use our novel optimally
localized wavelet profiles and compare them against well-
known wavelet profiles such as the Papadakis, Meyer, and
Simoncelli wavelets.

II. PRELIMINARIES ON ISOTROPIC WAVELETS

In this section, we specify the class of wavelets that we
consider and optimize in this paper. Let the mother wavelet ψ
be a function from R2 to R. The complete wavelet frame is
given by

ψi,k(x) = 2−
i
2ψ
( x

2i
− k

)
, (1)

in which i ∈ Z and k ∈ Z2. It has a redundancy factor of 4/3.
Our first assumption is that ψ is isotropic. Thus, we write

ψ(x) = ψ(r), (2)

where r = ‖x‖. Here, for simplicity, we use the notation ψ
both for the wavelet and for the radial profile of the wavelet.
Throughout the paper, we put the arguments of operators in
curly brackets and the arguments of functionals in parentheses.
When there is no ambiguity, we may choose to do away with
brackets and parentheses, a typical case being the gradient
∇. Now, let h be the 2-dimensional Fourier transform of ψ,
defined as

h(ω) = F{ψ}(ω) =
∫
R2

ψ(x) exp(−jω>x) dx. (3)

According to the properties of the Fourier transform, h is also
isotropic. Hence, like (2), we write

h(ω) = h(ρ), (4)

where ρ = ‖ω‖. According to [26], ψ and h are related, for
r ≥ 0, through the Hankel transform as

ψ(r) = H{h}(r) =
∫ ∞
0

h(t) J0(rt) tdt. (5)

The second assumption is that ψ creates a tight-frame
family. This implies the condition [16], [17]∑

i∈Z
|h(2iρ)|2 = 1 for ∀ρ ∈ R+\{0}. (6)

There is an equivalence between stating (6) for all positive ρ
and stating (6) for ρ ∈ [π2 , π] because 2iρ, for i ∈ Z, can reach
any arbitrary positive value.

With these preliminaries, we are ready to give a framework
that allows us to find the most-localized wavelet among the
ones that satisfy the conditions of Section II. The proposed
method can be used for a broad class of measures of localiza-
tion.

III. LOCALIZED ISOTROPIC WAVELETS

In this section, we present a general framework that relies
on the calculus of variations to find the optimal wavelet with
respect to a given localization measure. We restrict ourselves
to wavelets specified in Section II and focus on two natural
classes of moment-based measures.

Assume that the functional V is a given measure of lo-
calization. We shall consider that this measure operates in the
Fourier domain. When V is Gâteaux differentiable, the natural
method of minimizing it would be to use a variation of the
steepest-descent algorithm [27]. To do this, we first need the
gradient of V . As V is a functional on an infinite-dimensional
space, we have to rely on the calculus of variations to obtain
its gradient. The second issue which should be taken care of is
that, during the optimization steps, we have to be careful not
to leave the set of tight frames. Thus, we need to characterize
the projector onto the space of tight wavelet frames. Having
these two major components, the outline of the optimization
algorithm is given in Algorithm 1, in which∇V (h)(ρ) denotes
the gradient of V at ρ, and P denotes the orthogonal projector
onto the space of tight wavelet frames. This corresponds to the
standard projected gradient descent algorithm in an infinite
dimensional space [28].

Algorithm 1: Most Localized Wavelet
1: initialize: h ∈ L2([0,∞])
2: initialize: η > 0
3: repeat
4: h̃← h− η ∇V {h}
5: h← P{h̃}
6: until h converges
7: return h

A. Measures of Localization

We now propose four measures of localization split between
two natural classes. The first class consists of measures of
the variance. Variance is the most well-known measure of
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localization as less variance implies more concentration around
the center. In addition, we know from the uncertainty principle
that the best achievable localization of a function is inversely
proportional to the localization of its Fourier transform, and
vice versa. More precisely, for a function ψ : R2 → R, we
have [29]∫

R2 ‖x‖2ψ(x)2dx∫
R2 ψ(x)2dx

·
∫
R2 ‖ω‖2|F{ψ}(ω)|2dω∫

R2 |F{ψ}(ω)|2dω
≥ 1

16π4
. (7)

The first term of the left-hand side is the variance of the
wavelet itself, and the second term is the variance of its Fourier
transform. Thus, setting an upper bound on the variance in
one domain imposes a lower bound on the variance in the
other domain. In practice, we are interested in bandlimited
wavelets, which implies that the variance of the wavelet in the
Fourier domain is bounded from above. Thus, the variance
of the wavelet in the space domain is bounded from below.
Since we are interested in finding the wavelet profile that
attains the minimum value for the variance, our first measure
of localization is given by

V2D(ψ) =

∫
R2 ‖x‖2ψ(x)2dx∫

R2 ψ(x)2dx
=

∫∞
0
r2ψ(r)2 rdr∫∞

0
ψ(r)2 rdr

. (8)

Isotropic wavelets are often used in a directional framework,
for instance by applying the Riesz transform or by applying
an angular mask. This suggests that the variance of the one-
dimensional radial profile of the isotropic wavelet can also be
a good candidate for the measure of localization. Hence, we
propose the second variance-based measure of localization

V1D(ψ) =

∫∞
0
r2ψ(r)2 dr∫∞

0
ψ(r)2 dr

. (9)

It measures the spread of the wavelet along each radial line.
The second class of measures focuses on the localization

of the wavelet coefficients rather than that of the wavelet
profile. More precisely, the energy of a function computed
over some spatial neighbourhood should be well represented
by the wavelet coefficients associated to that neighbourhood
and its vicinity. According to [22], if f =

∑
m∈Z2 fm is an

L2-function from R2 to R and fm is the restriction of f to
the unit square centered at m, then

|〈fm, ψi,k〉| ≤ Ci
(∫

R2

‖x‖2ψ(x)2dx
)1/2

‖fm‖2 |k−m|−1,
(10)

where Ci is a constant that only depends on the scale i and is
independent of ψ and f . The `1-norm of a vector is denoted as
|·| and the standard L2-norm of a function as ‖·‖2. Thus, as the
wavelet ψi,k gets further from position m, the contribution of
fm in the corresponding wavelet coefficient decays. Moreover,
the rate of decay is controlled by a constant that corresponds to
the unnormalized variance of the wavelet profile ψ. We hence
propose this value as a third measure of localization, this time
for the wavelet coefficients. We define

U2D(ψ) =

∫
R2

‖x‖2ψ(x)2dx =

∫ ∞
0

r2ψ(r)2 rdr. (11)

Accounting for the fact that isotropic wavelets are often used
in a directional setting, we define the unnormalized variance

of the one-dimensional radial profile of the wavelet in analogy
to (9) as our last measure of localization

U1D(ψ) =

∫ ∞
0

r2ψ(r)2 dr. (12)

To summarize, the first class of measures focuses on the
localization of the shape of the wavelet in the space domain
while the second class of measures describes the localization
of the wavelet coefficients. We thus expect the first class to
match applications that benefit from a local wavelet analysis.
The second class should, on the contrary, be more appropriate
in the context of applications that involve some form of
wavelet-domain N -term approximation. For both classes of
measures, the index 2D indicates that the spread of the wavelet
is a measure over the whole space. The index 1D, conversely,
measures the spread in each radial direction. In applications
where a directionality component is imposed on top of the
isotropic profile (e.g., in detection tasks using steerable filters),
we predict that profiles with the best radial localization should
exhibit the best performances.

B. Gradient of the Functionals and Projector onto the Space
of Tight Frames

In this subsection, we give the explicit expressions of the
two major components that are required for implementing
Algorithm 1: the gradient of the localization criterion and the
operator P that projects a solution onto the space of tight
wavelet frames.

For formalization purpose, we consider h as a function in
the weighted L2-space of [0,∞], Lw, whose inner product is
defined as

〈f, g〉w =

∫ ∞
0

f(ρ)g(ρ)w(ρ)dρ, (13)

where w is a strictly positive weighting function.
We shall see that the inclusion of such a weight will pro-

vides us with some degrees of freedom to design the projection
operator, which can then be used advantageously to simplify
the implementation. Since we are operating in a Hilbert space,
the choice of w specifies the metric and hence the form of the
orthogonal projection operator Pw : Lw → T , where T is the
set of functions satisfying the tight frame property (6). Now,
if we switch to another weighting function v, we can define
another “orthogonal” projection operator Pv : Lv → T which
is such that Pvh = h for all h ∈ T as well as PvPvf = Pvf
for all f ∈ Lw. In other words, Pv also constitutes a
valid projector for the space Lw (including L2[0,∞] with
w = 1), albeit not necessarily the one that minimizes the
corresponding approximation error. The important point here
is that using Pv rather than Pw will not modify the outcome
of the optimization process. Another way to put it is that the
underlying Karush-Kuhn-Tucker conditions of optimality in
the Lagrange multiplier method of optimization (see [30]) are
independent of the actual choice of the Hilbert space Lw.

Now, defining

Am(h) =

∫ ∞
0

rmH{h}(r)2dr, (14)
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we see that V2D, V1D, U2D, and U1D can be easily written in
terms of Am for different m. Thus, we only need to compute
the gradient of Am. Using the basic rules of differentiation,
we have

∇V2D{h} =
1

A1(h)
∇A3{h} −

A3(h)

A1(h)2
∇A1{h}, (15)

∇V1D{h} =
1

A0(h)
∇A2{h} −

A2(h)

A0(h)2
∇A0{h}, (16)

∇U2D{h} = ∇A3{h} (17)

and

∇U1D{h} = ∇A2{h}. (18)

The main point for our purpose is that the functional Am :
Lw → R is Gâteaux differentiable and that its infinite-
dimensional gradient can be obtained explicitly as shown in
Appendix A. The ultimate outcome is

∇Am{h}(ρ) =
2ρ

w(ρ)

∫ ∞
0

rmH{h}(r)J0(ρr)dr, (19)

where H{h} is the Fourier-Hankel transform of h. Note that
this functional gradient depends on the weighting function of
the space, w.

The final ingredient for our algorithm is the operator that
projects a function onto the set of tight-frames. Here, unlike
in the case of the gradient, the computational complexity of
the orthogonal projector is strongly dependent on the choice
of w. In fact, in the following theorem, we will see that there
is a very specific weighting function w = v for which we can
have a closed-form formula for the required projector.

Theorem 1: Let Lw be the Hilbert space whose inner
product is specified by (13) and let T be the set of functions in
Lw satisfiying the tight frame property (6). Then, the operator

P{h̃}(ρ) = h̃(ρ)√∑
i∈Z h̃

2(2iρ)
(20)

is a projector from Lw → T . In particular, it is the orthogonal
projector Lv → T for the weighting function

v(t) = 2i for
π

2i+1
≤ t ≤ π

2i
. (21)

The proof is given in Appendix B.
The form (20) of the projector is intuitively very rea-

sonnable. The simplification results from the choice of the
appropriate metric in the proof of the theorem. The result
is non-obvious a priori because this is the only instance of
w for which we are able to carry out the computation to
the end. Constraint (6) is the equation of the unit infinite-
dimensional sphere for each value of ρ. The projector (20) is
therefore projecting h̃ on the unit sphere for each value of ρ.
The theorem ensures that we have an equivalence between the
`2-norm projection in the space of sequences corresponding
to each value of ρ and a projection in the weighted L2-space
of functions on R for the weighting function v specified by
(21).

C. Numerical Optimization

In practice, we are interested in a fast implementation of
wavelet transforms relying filter-banks. Focusing on wavelets
that are supported on [π4 , π] [2], the highpass hH and lowpass
hL filters of the filter-bank are simply given by

hH(ω) =


0 ‖ω‖ ≤ π

4

h(‖ω‖) π
4 < ‖ω‖ <

π
2

1 π
2 ≤ ‖ω‖

, (22)

hL(ω) =


1 ‖ω‖ ≤ π

4

h(2‖ω‖) π
4 < ‖ω‖ <

π
2

0 π < ‖ω‖
, (23)

respectively. According to the tight-frame constraint (6), we
automatically have that

h2L(ω) + h2H(ω) = 1. (24)

Hence, when looking for the minimizer of a given criterion,
we optimize the values of the function h(ρ) on the interval
[π4 , π]. It is worth noting that a filter-bank construction for 1-
dimensional tight wavelet frames with arbitrary dilation has
been proposed in [23]. The resulting wavelets have more
frequency contents than the ones we consider in this work
and are thus more localized in time domain. However, due to
the lack of a simple relation between the filters and the wavelet
profiles, investigation and optimization of the localization of
such profiles is beyond the scope of our paper.

We apply our numerical optimization algorithm for each of
the proposed measures of localization. First of all, it has been
shown analytically [22] that the Simoncelli wavelet minimizes
the criterion U2D. Thus, we already know the optimal profile
with respect to the measure U2D. Regarding V2D, V1D, and
U1D, we run Algorithm 1 by uniformly taking 512 samples
of h(ρ) for ρ in π/4 to π on a logarithmic scale, hence
simplifying the computation of the projection map (20). To
calculate H{h}(r), we compute the integral of (5) from 0 to
300 relying on the trapezoid method with 3,000 intervals. The
algorithm is left to run until absolute variations of V (h) fall
under 10−3.

In this optimization settings, we obtain the minimum values
1.73, 0.39, and 1.64 for V2D(h), V1D(h), and U1D(h), respec-
tively. However, due to the Gibbs phenomenon that results
from the truncation of the Fourier transform, the resulting
wavelets exhibit ringing artifacts. In order to remove these
effects and obtain a smooth profile for practical applications,
we fitted a closed-form formula to the numerically obtained
wavelets. We thus propose four wavelets named hV2D

, hU2D
,

hV1D
, and hU1D

, which correspond to each of the considered
measures of localization. From (22), (23), and (24), it is
sufficient to specify the wavelet profile either on [π4 ,

π
2 ] or

on [π2 , π] to describe it entirely. The expressions of hV2D and
hU2D

are more easily given on the interval [π4 ,
π
2 ] as

hV2D
(ρ)
∣∣
ρ∈[π4 ,

π
2 ]

=

√
6−

√
1 + 20( 2ρπ − 1)2
√
6− 1

, (25)

hU2D
(ρ)
∣∣
ρ∈[π4 ,

π
2 ]

= cos
(π
2
log2

2ρ

π

)
. (26)



MAXIMALLY LOCALIZED RADIAL PROFILES FOR TIGHT STEERABLE WAVELET FRAMES 5

TABLE I: Localization of Different Wavelets Measured by
V2D, V1D, U2D, and U1D (Equations (8)-(9) and (11)-(12))

Wavelet type Localization
V2D V1D U2D U1D

hV2D
(25) 1.74 0.44 3.88 2.19

hV1D
(27) +∞ 0.40 +∞ 2.03

hU2D
(Simonceli) (26)[8] 1.84 0.46 3.55 1.93
hU1D

(28) +∞ 0.52 +∞ 1.65
Papadakis [19] 2.06 0.49 4.93 2.52

Meyer [18] 2.88 0.66 6.04 2.61
Shannon [3] +∞ +∞ +∞ +∞

We recall that hU2D
corresponds to the Simoncelli wavelet.

The profiles hV1D
and hU1D

are better expressed on the interval
[π2 , π] as

hV1D(ρ)
∣∣
ρ∈[π2 ,π]

=
(
log2

π

ρ
− 0.005

√
π

ρ
sin
(
π log2

π

ρ

)) 2
5

,

(27)

hU1D(ρ)
∣∣
ρ∈[π2 ,π]

=

√
(log2

π
ρ + 0.6)4 − 0.64

1.64 − 0.64
. (28)

The radial profiles of these wavelets are shown in Figures 1
and 2 in Fourier and space domains, respectively. We have
that V2D(hV2D) = 1.74, V1D(hV1D) = 0.40, and U1D(hU1D) =
1.65. These values are only marginally suboptimal. The values
of the different measures of localization for each of these
wavelets as well as for more traditional ones are given in Table
I. Moreover, we note that Figure 2 confirms our expectation
that hV1D has the most localized profile shape.

The measures V2D and U2D can also be interpreted as
the normalized and unnormalized third-order moment of the
radial profile of the wavelet, respectively, while V1D and U1D

correspond to its normalized and unnormalized second-order
moment. Furthermore, having finite values for higher-order
moments in the space domain implies being smoother in
the Fourier domain. Thus, the minimiziers of V2D and U2D

necessarily have finite V1D and U1D values. However, the
converse is not always true.

As we see in Table I, the minimizers of V1D and U1D have
infinite values for V2D and U2D. This is in accordance with the
roughness of the profiles at points π

4 , π2 , and π (see Figure 1).
In the case of the Shannon wavelet, the discontinuities of the
frequency-domain profile results in a slow decay in the spatial
domain that brings V1D and U1D to infinity. From Table I,
we observe that the Simoncelli wavelet is not only optimal
for the criterion U2D, but also exhibits reasonable values for
other measures of localization.

IV. APPLICATIONS

We now demonstrate the benefit of well-localized wavelet
profiles for practical applications. In particular, we study the
performance of our wavelets and compare them against other
existing popular profiles for the problems of local orientation
estimation, image reconstruction from edges and denoising.

A. Estimation of Local Orientation
In this section, we focus on the task of estimating the

local orientation of ridge-like objects (e.g., filaments) using
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)

Meyer
Papadakis

(a)

(b)

Fig. 1: Wavelet profiles in Fourier domain for (a) the proposed
optimal profiles, and (b) existing ones (Simoncelli, Meyer, and
Papadakis).

a steerable ridge detector. We construct Hessian-like wavelets,
the design of which is made easy by selecting an isotropic
kernel and applying the generalized Riesz-wavelet transform
using the appropriate shaping matrix, as described in [4,
Section 5.1.3]. We refer the reader to [31] for a detailed
description on how to steer Hessian filters to retrieve the
orientation corresponding to the best response of the ridge
detector at every point of the image. To perform a multiscale
ridge detection at every location using the Hessian filter, we
go through every scale of the wavelet pyramid and select the
one where the strongest filter response can be found. The final
output of our experiment is therefore an angle map with the
same dimensions as the input image, and which contains at
each pixel the estimated local orientation yielding the best
ridge filter response. The Riesz-wavelet transform [4] and the
extraction of local orientation estimation for each point of the
input image have been implemented as a Java-based plug-in
for the open-source image-analysis software ImageJ [32]1.

In our experiment, we rely on a 512 × 512 pixels 8-
bits image (Figure 3a) in which several regions of interest
(ROIs) made of short line segments have been manually
selected by an expert, and where local orientation should be
estimated. The angle that each of the manually placed ROI
form with the horizontal direction is considered as ground
truth and corresponds to the orientation that shall automatically

1Code source available by request to the authors.
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Fig. 2: Wavelet profiles in space domain for (a) the proposed
optimal profiles, and (b) existing ones (Simoncelli, Meyer, and
Papadakis).

be retrieved. We estimate the local orientation of each ROI
with the trivial isotropic profile (Shannon [3]), several popular
isotropic wavelet profiles (Simoncelli [8], which corresponds
to hU2D

(26), Papadakis [19], and Meyer [18]), as well as
with the wavelets we propose (hU1D

(28), hV2D
(25) and

hV1D
(27)). To obtain an estimation of the local orientation

of each ROI, we average the orientation estimates provided
by the steerable filter under the ROI (i.e., we average the
values of the pixels that belong to the line segment composing
the ROI). We investigate the quality of each of the local
orientation estimate by comparing the ground truth orientation
with the automatically retrieved one (Table II). We also report
the absolute error between the ground truth and each of the
estimates in Table III. The experiment is conducted using 4
scales of wavelet decomposition.

In this experiment, we observe that best results are obtained
with hU1D . This can be explained by the fact that the two
classes of wavelets hU and hV are optimized for different
applications. The profiles of hV2D

and hV1D
are most localized

in the spatial domain as they optimize V2D (8) and V1D (9),
while hU2D

and hU1D
optimally localizes wavelet coefficients

following U2D (11) and U1D (12). The estimation of local
orientation is better when the wavelet response is strong and
well localized, as ridges (here, the filaments) are then more
accurately detected. In the present experiment, a profile maxi-
mizing wavelet coefficients localization, and hence a criterion

(a) (b)

Fig. 3: Estimation of local orientation. (a) Original filaments
image from [33], and (b) overlaid local regions of interest with
their label.

of the class U , is therefore desirable. This is confirmed by
the results and the good performance obtained by hU1D

and
hU2D . Also, among the class of hU wavelets, one observes
that hU1D outperforms hU2D . An argument for this is that a
1-dimensional design is more suitable for steerable wavelets
since they are inherently directional. In the current application,
the wavelets align themselves with ridges so that the U1D

criterion, which measures the spread in each radial direction,
is the most appropriate one.

B. Image Reconstruction from Edges

The experiment we study here is image approximation from
a reduced set of wavelet-based edges. First, a multiscale primal
sketch [14], or edge map [15], is extracted from the set of
wavelet coefficients of the image. An approximation of the
original image is then recovered from this small subset of
coefficients relying on constrained optimization.

To extract a multiscale edge map from the input image, we
rely on a gradient-like wavelet framework. It is implemented
with the help of the generalized Riesz-wavelet transform [4],
and of an appropriate shaping matrix [4, Section 5.1.1] that
yields a pair of x- and y-derivative wavelets. Edges in the mul-
tiscale gradient signal are then detected based on a wavelet-
domain version of the Canny edge detector, which includes
non-maximum suppression and hysteresis thesholding [14].
Note that the Canny edge detector requires an estimation of
the strength and orientation of the gradient for each point
of the image, which is obtained by steering the gradient-like
wavelets at every scale and location. The final edge map is
composed of the wavelet coefficients retained by the multiscale
edge detector. To preserve the graylevel information of the
image, all coefficients of the lowpass residual of the wavelet
decomposition are saved.

Reconstruction is then formulated as the constrained opti-
mization problem

minimize ‖z‖1 (29)

subject to z = WHf (30)
zi = qi, ∀ i ∈ S, (31)
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TABLE II: Estimation of Local Orientations for the Regions of Interest depicted in Figure 3b

Wavelet type Angle [◦]
1 2 3 4 5 6

Ground Truth 95 .36 129 .09 83 .88 166 .50 33 .02 13 .24
hV2D

(25) 95.88 133.19 80.48 164.66 36.74 15.95
hV1D

(27) 96.08 133.59 79.14 163.13 37.44 15.90
hU2D

(Simonceli) (26)[8] 96.42 133.75 78.37 164.55 37.72 16.67
hU1D

(28) 95.57 132.88 83.19 165.07 36.12 15.53
Papadakis 97.31 134.91 79.46 163.39 41.65 18.04

Meyer 97.15 134.67 79.65 164.25 41.61 18.75
Shannon 96.78 136.61 76.97 136.10 70.73 22.16

TABLE III: Error in Local Orientation Estimates for the Regions of Interest depicted in Figure 3b

Wavelet type Absolute error [◦]
1 2 3 4 5 6

hV2D
(25) 0.52 4.10 3.41 1.85 3.72 2.71

hV1D
(27) 0.73 4.49 4.75 3.38 4.41 2.66

hU2D
(Simonceli) (26)[8] 1.07 4.66 5.52 1.95 4.69 3.43
hU1D

(28) 0.22 3.79 0.69 1.43 3.09 2.29
Papadakis 1.95 5.82 4.42 3.11 8.62 4.80

Meyer 1.79 5.57 4.24 2.26 8.59 5.51
Shannon 1.43 7.51 6.91 30.41 37.71 8.92

with variables z and f , where S is the set of indices for
the wavelet coefficients that are part of the edge map, WH

the wavelet-analysis operator, and f an image. Finally, qi
denotes the wavelet coefficient of the original image at location
i, where i is an index of 2-D position and scale. This
formulation is motivated by two main principles. First, we
aim at conserving the elements of the edge-map in order to
reconstruct the image. We refer to them as wavelet-based
edges, as they are the output of a Canny edge detector
applied on the wavelet transform of the image. This gives us
constraint (31), which imposes the elements qi, i ∈ S to be
fixed during the optimization process. Second, we want the
estimated missing wavelet coefficients to project back onto an
image. Knowing that images are sparse in the wavelet domain,
we impose sparsity by minimizing the `1-norm of the wavelet
transform z of the image, yielding (29). Our problem thus
amounts to minimizing a convex functional under a finite set of
linear constraints, which guarantees the existence of a feasible
minimum that can be reached using appropriate optimization
algorithms.

Here, we propose an improvement of the reconstruction
algorithm in [15] that relies on a gradient descent of the
augmented Lagrangian. Our new algorithm is based on the
alternating-direction method of multipliers (ADMM), which
motivates the introduction of the auxiliary variable z. ADMM
is a method known to converge very fast to an acceptable
solution and that guarantees the residual to be brought to zero.
In practice, it is observed that the fast and moderately good
estimate provided after 30 iterations of the algorithm is already
visually satisfactory. We refer the reader to [34] for a complete
description of the method.

To reconstruct the image with ADMM, we first form the
augmented Lagrangian

L(z,f ,λ) = ‖z‖1 + λT
(
z −WHf

)
+
µ

2

∥∥z −WHf
∥∥2
2
,

(32)
where µ is a step size that can be adapted to influence the

speed of convergence. We rewrite (32) in terms of the scaled
dual variable u = λ

µ in order to obtain simpler mathematical
expressions, yielding

L(z,f ,u) = ‖z‖1 +
µ

2

∥∥z −WHf + u
∥∥2
2
− µ

2
‖u‖22 . (33)

The ADMM algorithm for our problem thus consists of the
three successive iterations

z(k+1) = argmin
z

L(z,f (k),u(k)), (34)

f (k+1) = argmin
f

L(z(k+1),f ,u(k)), (35)

u(k+1) = u(k) +
(
z(k+1) −WHf (k+1)

)
. (36)

The update for z can be rewritten in an element-wise manner
as

z(k+1) = argmin
z

(
‖z‖1 +

µ

2

∥∥∥z −WHf (k) + u(k)
∥∥∥2
2

)
(37)

= argmin
z

(∑
i∈I

|zi|+
µ

2

∑
i∈I

∣∣∣zi − v(k)i ∣∣∣2) , (38)

where we denote by I the set of indices for all wavelet coeffi-
cients of the image. We introduced v(k)i = [WHf (k)]i − u(k)i
for convenience. For all elements i ∈ S, (31) imposes that
zi = qi, and no further computations are required. For i /∈ S,
zi should be colinear with vi in order to annihilate the second
term in (38). Plugging zi = Cvi into (38) and solving
for the optimal constant C brings us to the component-wise
expression of the z update

z
(k+1)
i =


qi, if i ∈ S(
1− 1

µ
∣∣∣v(k)i

∣∣∣
)

+

v
(k)
i , if i /∈ S, (39)

where (·)+ = max(0, ·) corresponds to the shrinkage of v(k)i .
Then, updating f boils down to an unconstrained quadratic
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optimization problem. It can hence be performed by taking the
partial derivative of the augmented Lagrangian and solving for
zero. This yields

f (k+1) = argmin
f

∥∥z −WHf + u
∥∥2
2

(40)

=
(
WWH

)−1
W
(
z(k+1) + u(k)

)
. (41)

As W forms a tight frame, (41) can be further simplified by
observing that WWH = I. Finally, u is simply modified
through a linear update.

In practice, the algorithm is initialized with a z(0) composed
of all the wavelet coefficients qi, i ∈ S retained in the edge
map and the complete lowpass residual of the image to recon-
struct. Then, f (0) is initialized as an image entirely composed
of pixels with value zero and WHf (0) is obtained by taking
its wavelet transform. Finally, u(0) is set as a pyramid of
images composed only of zeros and having the same number
of scales and dimensions as WHf (0). The parameter µ is
empirically set to 106. With these settings, between thirty and
fifty ADMM iterations were observed to be sufficient to reach
“visual convergence”, which corresponds to a situation where
additional iterations bring unnoticeable visual improvements.
Note that, through the whole optimization procedure, the left-
multiplication by WH or W corresponds to performing a
wavelet analysis or synthesis, respectively. The algorithm can
thus be executed in reasonable time as these two operations
can be performed efficiently with the help of a filterbank
implementation. To illustrate this experiment, we give in
Figure 4 the original Cameraman image, its reconstruction
from 7% of the wavelet coefficients, as well as the mask
containing the coefficients retained by our multiscale wavelet-
based edge detector.

We implemented2 the Riesz-wavelet transform [4] as well as
the edge-map extraction and subsequent image reconstruction
using ADMM as a Java-based plug-in for the open-source
image-analysis software ImageJ [32].

We gather results on a set of 5 standard test images,
namely, House, Pirate, Peppers, Lena, Bridge, Cameraman,
and Einstein, all being 512 × 512 pixels grayscale images.
We run the same experiments with the trivial isotropic profile
(Shannon [3]), several popular isotropic wavelet profiles (Si-
moncelli [8], which happens to be hU2D

(26), Papadakis [19],
and Meyer [18]), and finally with our proposed wavelets
(hU1D (28), hV2D (25) and hV1D (27)). We investigate the
reconstruction performance of the different wavelets in terms
of the PSNR of the reconstructed image. We start by retaining
7% of the total number of wavelet coefficients in the image.
These 7% are chosen among the set of wavelet-based edges
retained by our multi-scale Canny edge detector3. Note that,
as our test images all have the same size, this percentage
corresponds to the same absolute number of coefficients in
each case. All experiments are conducted using 4 scales of
decomposition. Reconstruction results obtained after 30 itera-
tions of the ADMM algorithm are shown in Table IV. In order

2Code source available by request to the authors.
3In practice, we adapt the percentage of coefficients retained by the

multiscale Canny edge detector by changing the hysteresis thresholding
parameters.

(a) (b)

(c)

Fig. 4: Wavelet-based edge reconstruction. (a) Original Cam-
eraman image, (b) final result after reconstruction using hU1D

,
and (c) binary masks featuring the wavelet coefficients saved
for reconstruction at different scales. Here, 4 scales were used
and 7% of the total number of coefficients were retained.

to allow for a visual comparison of the performance, we also
show in Figure 5 close-ups of the Lena image reconstructed
using the different wavelet profiles. We here observe that
hU1D

outperforms the other wavelets. Further experiments of
reconstruction using a set of edge coefficients corresponding to
1 to 7% of the total number of wavelet coefficients in the image
allows us to reach similar conclusions, as seen in Figure 6.
Here, only results on Lena and Cameraman are displayed, as
they are representative of the results observed in the remaining
test images. This confirms that the proposed hU1D

profile is
better for reconstruction than the other wavelets considered in
this experiment.

Notice that, in this application, hU1D
followed by hU2D

outperforms in particular hV2D and hV1D . As the construction
of the edge map in the current experiment relies on the same
kind of framework as the filaments detection for local orienta-
tion estimation in Section IV-A (namely, multiscale steerable
filters), the same arguments hold for explaining these results.
The reconstruction task obtains better results when the edge
map contains sharper elements, which corresponds to better
sets of edges. What matters most in this experiment is therefore
again the optimal localization of the wavelet coefficients. This
explains why the best performance is obtained with the profiles
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TABLE IV: Reconstruction from Wavelet-Based Edges (7% of Coefficients)

Wavelet type PSNR [dB]
House Pirate Peppers Lena Bridge Cameraman Einstein

hV2D
(25) 28.90 27.33 27.61 29.14 23.42 29.01 28.97

hV1D
(27) 29.72 27.32 27.96 30.04 23.99 29.70 29.28

hU2D
(26) (Simoncelli [8]) 29.15 27.37 27.96 29.95 23.91 30.14 29.22
hU1D

(28) 30.01 28.24 28.42 30.37 24.07 30.67 29.40
Papadakis [19] 27.98 26.55 27.34 28.99 23.67 28.52 28.89

Meyer [18] 27.72 26.29 26.70 28.88 23.50 28.97 28.65
Shannon [3] 26.80 24.91 25.53 27.20 23.03 25.60 27.61

(a) (b) (c) (d) (e) (f) (g)

Fig. 5: Wavelet-based edge reconstruction. Close-up of reconstruction of Lena relying on (a) Shannon, (b) Meyer, (c) Papadakis,
(d) hU1D

, (e) hU2D
(Simoncelli), (f) hV1D

, and (g) hV2D
. The best PSNR is achieved by hU1D

shown in (e). Here, 4 scales
were used and 7% of the total number of coefficients were retained.

optimizing criterion of the class U (hU1D
and hU2D

). Results
can actually directly be interpreted from the values of U1D

provided in Table I. Starting from the optimal hU1D
, the next

most localized profiles sorted by distance to the optimum are
Simoncelli (hU2D ), hV1D , hV2D , Papadakis and Meyer. The
quality of reconstruction obtained by the different profiles and
shown in Figure 6 follow the same pattern, with Papadakis
and Meyer being the worst and followed by hV2D

and hV1D
,

hU2D
(Simoncelli), and finally hU1D

, which achieves the best
results.

C. BLS-GSM Denoising

The BLS-GSM algorithm [7] is a famous and very efficient
approach for recovering noise-corrupted images. The motiva-
tion behind this method is the observed strong correlation
between wavelet coefficients located at similar positions at
various orientations and scales. More specifically, the prop-
erties of the image (i.e., the neighborhood of each wavelet
coefficient) are modeled by a Gaussian scale mixture model
(GSM) in the multiresolution wavelet transform space. The
original, noise-free value of each coefficient is then estimated
using Bayesian least squares (BLS) under the Gaussian scale
mixture model, and making use of the correlation between
coefficients in the pyramid. The algorithm therefore improves
the denoising by taking advantage of local similarities. In
practice, BLS-GSM is performed on subbands of an oriented
multiresolution transformation of the noise-corrupted image,
which corresponds in the original implementation to the
steerable pyramid with Simoncelli’s wavelet profile. We orient
readers interested in a more detailed description of BLS-GSM
to the very comprehensive paper of Rajaei [35].

A Matlab implementation of BLS-GSM has been released
by the authors of the initial paper [7]. In order to perform
the following experiments, we modify this original implemen-

tation4 by replacing the Simoncelli wavelet by other wavelet
profiles.

We perform several experiments in order to compare perfor-
mance of different isotropic wavelet profiles when denoising
with the BLS-GSM algorithm. We use the same image set
as previously in IV-B. We also compare results between the
same collection of wavelet profiles, namely Shannon, Meyer,
Papadakis, Simoncelli (hU2D ), hU1D , hV2D and hV1D . In our
first experiment, we corrupt the images with additive Gaussian
noise of standard deviation σ = 40 and use the default
number of orientations for the construction of the steerable
pyramid, namely 4. We evaluate results in terms of the PSNR
of the denoised image, as presented in Table V. From this,
one observes that hV1D

(27) outperforms all other profiles. In
order to further investigate this, we perform two additional
experiments by varying the parameters of BLS-GSM. We first
run the algorithm for each wavelet profile on images corrupted
by noise levels with σ ∈ [20, 70]. Results are displayed in
Figure 7. As expected, higher noise levels yield lower PSNR
as the image becomes harder to retrieve. We also study the
influence on the number of orientations chosen to built the
steerable pyramid5. Increasing the number of orientations yield
better results, but also significantly increases computation
time. We show results for each of the studied wavelet profile
in Figure 8. From these two experiments, we observe that
hV1D

, followed by hV2D
, yields consistently better results than

all the other popular profiles we tested, outperforming state-
of-the-art results using the steerable pyramid. Although we
only show here results on Lena and Cameraman due to space
constraints, the same observation can be made using House,
Pirate, Peppers, Bridge and Einstein.

4BLS-GSM Image Denoising Matlab Toolbox 1.0.3 (latest revision:
February 23, 2005), available from http://www.io.csic.es/PagsPers/JPortilla/
software/section/3-bayesian-denoising-in-the-wavelet-domain9/

5The maximum number of orientations allowed by the Matlab implemen-
tation is 16.

http://www.io.csic.es/PagsPers/JPortilla/software/section/3-bayesian-denoising-in-the-wavelet-domain9/
http://www.io.csic.es/PagsPers/JPortilla/software/section/3-bayesian-denoising-in-the-wavelet-domain9/
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(a) (b)

Fig. 6: Wavelet-based edge reconstruction. Evolution of the PSNR as a function of the percentage of retained wavelet
coefficients using different wavelet profiles on the (a) Lena and (b) Cameraman images. The legend is sorted by decreasing
order of performance.

TABLE V: BLS-GSM Denoising at σ = 40 with 4 Orientations

Wavelet type PSNR [dB]
House Pirate Peppers Lena Bridge Cameraman Einstein

hV2D
(25) 28.80 26.06 26.60 29.23 23.97 29.66 28.77

hV1D
(27) 28.85 26.09 26.62 29.28 24.01 29.71 28.80

hU2D
(26) (Simoncelli [8]) 28.80 26.03 26.55 29.22 23.96 29.64 28.75
hU1D

(28) 28.70 25.98 26.38 29.13 23.94 29.60 28.69
Papadakis [19] 28.67 26.01 26.51 29.11 23.94 29.54 28.71

Meyer [18] 28.57 25.93 26.38 29.03 23.89 29.41 28.65
Shannon [3] 27.89 25.71 25.84 28.63 23.78 28.87 28.36

Unlike hV2D
and hV1D

, we observe that hU1D
yield less

impressive results, and in particular does not compete with
the Simoncelli profile (hU2D

) initially used in BLS-GSM,
which gives similar results than hV2D . This observation is
consistent with the way each of the wavelets are constructed.
As explained in Section IV-A, the hU maximally localizes
the wavelet coefficients, while the hV have a profile which
is optimally localized in spatial domain. The most desirable
feature here, in comparison with local orientation estimation
and image reconstruction from edges, is a spatially localized
profile for the steerable pyramid. A transformation yielding
very localized wavelet coefficients is actually even counter-
productive as it concentrates the neighborhood of each coef-
ficient, and thus reduces the amount of information that can
be exploited by BLS-GSM. The profiles of choice for this
application are hence of the class hV . The values of V1D that
can be found in Figure 1 for the different profiles are consistent
with these observations: hV1D

is optimal, then comes hV2D
and

hU2D
(Simoncelli), which is the third closest to the optimal

value. The Papadakis and hU1D
follow with V1D values that

are about equivalently far from the optimum, and the Meyer
wavelet finally gets the worse V1D localization value. This
trend is conserved in our results, as seen in Figures 7 and 8.
Sorting the profiles by result quality (from best to worse)
indeed yields hV1D

, hV2D
, hU2D

(Simoncelli), Papadakis, hU1D

and Meyer.

Note that although the difference in PSNR are marginal,
the improvement comes at no cost as the only modification
to the algorithm is a change of the radial wavelet profile.

We also emphasize that these results do not imply that the
proposed design should outperform denoising results based on
other non-steerable wavelet frames. Rather, they indicate that
the signal-domain localization of the wavelets is beneficial to
the BLS-GSM algorithm.

V. CONCLUSION

In this paper, we have introduced a method for designing
maximally localized isotropic tight-frame wavelets. The key
ingredient is a measure of localization that can be optimized
in order to derive the corresponding profile. We provide two
classes of criterion for measuring localization either in the
spatial or in the wavelet domain and express the resulting
profiles optimizing each criterion either over the whole space
or along each radial direction. We then consider three ex-
perimental settings in which we compare results obtained
with our wavelets against state-of-the-art. First, we focus on
the problem of estimating local orientation of filamentous
structures, and then on the task of reconstructing an image
from a small subset of edges in the wavelet domain. Both
of these experiments rely on steerable filters, either Hessian-
or gradient-based. In this setting, the wavelets obtained by
optimizing the localization of wavelet coefficients outperforms
existing isotropic wavelet profiles. Then, we demonstrate the
efficiency of the most localized profiles in spatial domain in a
denoising experiment using the popular BLS-GSM algorithm.
These different use-cases show that both of our classes of
localization criterion are relevant depending on the kind of
application being considered, and that the proposed wavelet
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(a) (b)

Fig. 7: BLS-GSM denoising. Evolution of the PSNR as a function of noise using different wavelet profiles on the (a) Lena
and (b) Cameraman images. The legend is sorted by decreasing order of performance.

(a) (b)

Fig. 8: BLS-GSM denoising. Evolution of the PSNR as a function of the number of angles using different wavelet profiles on
the (a) Lena and (b) Cameraman images. The legend is sorted by decreasing order of performance.

profiles are interesting candidates for image-processing tasks
involving isotropic wavelets. Moreover, our results experimen-
tally confirm the validity of the proposed localization criterion.
The good or bad performance of the studied wavelet profiles
can indeed be interpreted in the light of these two metrics.
This further hints at the fact that our localization criterion are
useful in order to study the localization of a given wavelet
either in terms of its spatial profile, or of the coefficients it
generates. In fact, the two proposed localization criteria can
serve as quick estimates to assess the relative performance
of any given isotropic tight-frame wavelet profile based on a
simple calculation.

APPENDIX A
COMPUTATION OF THE GRADIENT

In order to obtain the gradient of the functional Am : Lw →
R, we first calculate the Gâteaux derivative of Am in the
direction of a given function g ∈ Lw as

DgAm(h) =
∂

∂ε
Am(h+ εg)

∣∣∣
ε=0

(42)

=

∫ ∞
0

rm
∂

∂ε
H{h+ εg}(r)2

∣∣∣
ε=0

dr.

Due to the linearity of H{·}, we can write

DgAm(h) =

∫ ∞
0

rm
∂

∂ε

(
H{h}(r) + εH{g}(r)

)2∣∣∣
ε=0

dr

= 2

∫ ∞
0

rm H{h}(r)H{g}(r)dr (43)

= 2

∫ ∞
0

rmH{h}(r)
(∫ ∞

0

g(t)J0(tr)tdt

)
dr

= 2

∫ ∞
0

g(t)t

(∫ ∞
0

rmH{h}(r)J0(tr)dr
)

dt.

According to the definition of the gradient, we have that

DgAm(h) =

∫ ∞
0

g(t) ∇Am{h}(t) w(t)dt. (44)

We therefore obtain

∇Am{h}(ρ) =
2ρ

w(ρ)

∫ ∞
0

rmH{h}(r)J0(ρr)dr. (45)

APPENDIX B
CHARACTERIZATION OF THE PROJECTOR ONTO THE SPACE

OF TIGHT FRAMES

In order to characterize the orthogonal projector P : Lw →
T , we have to solve a minimization problem. For a given
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h̃ ∈ Lw, we are looking for a function h ∈ T that satisfies∑
i∈Z
|h(2iρ)|2 = 1 for ρ ∈ [

π

2
, π] (46)

and that minimizes the functional

‖h̃− h‖22 =

∫ ∞
0

(h̃(ρ)− h(ρ))2w(ρ)dρ. (47)

We solve this problem using an infinite-dimensional
Lagrange-multiplier method [36]. Similar to (42)-(45), we
calculate the gradient of constraint (46) for each value of ρ as

∇

{∑
i∈Z
|h(2iρ)|2

}
(t) = 2

h(t)

w(t)

∑
i∈Z

δ(t− 2iρ), (48)

where δ is the Dirac delta distribution. The gradient of (47) is
given by

∇
{
‖h̃− h‖22

}
(t) = 2(h(t)− h̃(t)). (49)

According to the Lagrange-multiplier method, there exists a
function k supported on [π2 , π] at the minimizer of (47) for
which we have that [36]

h(t)− h̃(t) =
∫ π

0

k(ρ)
h(t)

w(t)

∑
i∈Z

δ(t− 2iρ)dρ

=
h(t)

w(t)

∑
i∈Z

2ik(2it). (50)

Therefore,

h(t) =
h̃(t)

1− 1
w(t)

∑
i∈Z 2

ik(2it)
. (51)

Now, we fix the weight function w as

w(t) = 2i for
π

2i+1
≤ t ≤ π

2i
. (52)

Equation (51) can now be simplified to

h(t) =
h̃(t)

1−
∑
i∈Z k(2

it)
. (53)

To determine k, we substitute (53) in (46) and obtain∑
j∈Z

h̃2(2jt)

(1−
∑
i∈Z k(2

i+jt))2
= 1. (54)

Since the denominator of (53) is invariant to dilations by
powers of 2, the denominator of (54) does not depend of j. It
means that

1−
∑
i∈Z

k(2it) =
(∑
j∈Z

h̃2(2jt)
) 1

2

. (55)

By substituting (55) in (53), we get that

h(t) =
h̃(t)√∑
i∈Z h̃

2(2it)
. (56)
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