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ABSTRACT
Motivation: SpotCaliper is a novel wavelet-based image-analysis
software providing a fast automatic detection scheme for circular
patterns (spots), combined with the precise estimation of their size. It
is implemented as an ImageJ plugin with a friendly user interface. The
user is allowed to edit the results by modifying the measurements (in a
semi-automated way), extract data for further analysis. The fine tuning
of the detections includes the possibility of adjusting or removing the
original detections, as well as adding further spots.
Results: The main advantage of the software is its ability to capture
the size of spots in a fast and accurate way.
Availability: http://bigwww.epfl.ch/algorithms/spotcaliper/
Contact: zsuzsanna.puspoki@epfl.ch
Supplementary information: Supplementary material is available at
Bioinformatics online.

1 INTRODUCTION
The focus of our paper is the analysis of circular objects (spots),
since their detection and size estimation is fundamental in the
image processing of micrographs. Our method/software can be
applied to a broad class of images; it is not linked to one
specific biological problem. However, we note two particular
applications, where the precise detection of the spots and their
radius estimation is of high interest. First, in antimicrobial
susceptibility testing of significant bacterial isolates, the size of
the zones of the inhibition areas are measured and used as an
indicator of antibiotics-resistance (susceptible, intermediate, or
resistant) [J.H. Jorgensen (2009)]. Second, detection and size
measurements are also important for understanding ELISpot
images [Lehmann (2005)].

2 FEATURES AND METHODS
There are several existing methods for the detection of circular
objects and measuring their radii. Some typical examples
cover morphological operators, the Circle Hough Transform,
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the Laplacian of Gaussian (LoG) and its multiscale extension
[Lindeberg (1998)], the determinant of Hessian (DoH), and
wavelet-based techniques [Olivo-Marin (2002)]. Dyadic wavelet
schemes are considered a powerful tool and they are widely used
for feature extraction. They provide a multiscale decomposition
scheme and allow a high level abstraction from the data. However,
the dyadic hierarchy of the typical wavelet schemes introduces
difficulties in the precise estimation of the size of the objects,
since the between-scale details are diffused among the wavelet
coefficients.

In the presented software, we use a novel wavelet scheme
that we have developed. Our wavelets approximate intermediate
scales by using several patterns (channels) that can be linearly
combined with adjustable coefficients, to create disk patterns
with continuously varying sizes in between two sequential
(discrete) wavelet scales.

The starting point for our algorithm is a dyadic tight wavelet
frame that provides a redundant multi-scale decomposition of
an image (in particular, we use a Meyer-type tight wavelet frame
[Daubechies (1992)]). We generate our scalable wavelet frame
using scalable filters. A filter is scalable if it and all of its scaled
versions can be expressed in a finite basis. We apply a particular
basis of scalable filters to our dyadic tight wavelet frame to create
wavelet channels, and the resulting wavelet frame is arbitrarily
scalable.

The wavelet coefficients of an image f at location x and dyadic
scale a are computed as g (x) = 〈 f ,Ψa (·−x)〉, where

Ψa (·−x) =∑
n

qn (a)Ψn (·−x), (1)

with Ψ denoting the scalable wavelet, n the channel, and qn the
wavelet coefficients with respect to the channels. The “·” symbol
represents the implicit (hidden) variable. Thus, we obtain

g (x) =∑
n

qn (a)〈 f ,Ψn (·−x)〉 =∑
qn (a)gn . (2)

Since our wavelets, generated by such a method, are scaled
continuously, we estimate the scale of objects much more
precisely than what is afforded by traditional dyadic wavelet
schemes. It is enough to perform the filtering operations once,
the response for any specific scale being retrieved by the linear
combination of a few precomputed components. Due to the
scaling property of the detector wavelet, the detections are
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Fig. 1. A: RMS error of radius estimation as a function of running time;
noise free case. B: Rate of detections estimated by the Jaccard index J
under isotropic background signal, as a function of the standard deviation
σ of the background fluorescence. C: Detections using our wavelet-based
method on an image with isotropic Brownian motion (mean 0, st. dev. 4).
D: Semi-automated detection of spots on an ELISpot image. E: Automatic
detection and scale estimation of fluorescence cells on a microscopy
image.

obtained in a fast and computationally effective way. The in-
between-scale details are not lost, thanks to the scalable design.
We note that our algorithm is able to handle overlapping spots as
well.

For a thorough description on the mathematical background of
our algorithm we refer to [Püspöki et al. (2015)].

3 THE SPOT DETECTION AND SIZE ESTIMATION
ALGORITHM

The detection algorithm comprises the following steps:

1. Wavelet analysis with the proposed wavelet scheme: We
compute the wavelet coefficients for each pixel.

2. Local maxima detection: We apply a local non-maximum
suppression on the magnitude of the wavelet coefficients in
order to prevent multiple detections of the same spot.

3. Fine estimation of the radius: Based on the set of candidate
points selected in step (2.), we provide an estimation of
scale at those locations. Since our wavelets are scaled on a
quasi-continuum, we obtain precise results; the local scale is
chosen to maximize the detector response of the proposed
wavelet.

4. Selection: We choose the best N results based on an image-
adapted measure (e.g. highest detector response).

5. Visualization of the detections: The user is able to edit the
results and their visualization in several ways. For further
information, we refer to the supplementary material.

4 RESULTS AND VALIDATION
To evaluate the performance of the algorithm, we tested it on a
variety of synthetic images in the presence of background signal,
and finally on real microscope images. We generated a series of
test images of size (512 x 512). The location of the spots and their
radii was chosen in a way that the ground truth data contained
50 disks, with radii varying between 8 and 40 pixels. Overlap was
allowed between neighboring objects, by at most 10 pixels. The
results are summarized in Figure 1. For a thorough description of
the evaluation and the corresponding experiments we refer to our
supplementary material called Experiments.

Based on the graphs (Figures 1.A and 1.B) we can confirm
that our method performs better than other competing methods
with respect to computational time, accuracy, and robustness
against background with varying intensity. The quality of the
detections are illustrated on synthetic data (Figure 1.C) and
biological micrographs (Figures 1.D and 1.E). The original test
images and the corresponding parameter settings are presented
in the Experiments supplementary material.
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