Regularized Interpolation for Noisy Images

Sathish Ramanj Member, IEEE Philippe Thévenaz and Michael Unséellow, IEEE

Abstract—Interpolation is the means by which a continuously- value at the origin and are zero at all other integer location
defined model is fit to discrete data samples. When the data the weights are given by the data themselves. Otherwise,
samples are exempt of noise, it seems desirable to build theodhel they are determined by imposing an exact-fitting requirdmen

by fitting them exactly. In medical imaging, where quality is of . L . S . L
paramount importance, this ideal situation unfortunately does [20]. In biomedical imaging applications, interpolatiGnmost

not occur. In this paper, we propose a scheme that improves on often carried out by an exact fit to the data. Although this
the quality by specifying a tradeoff between fidelity to the dita is meaningful for a noise-free scenario, it is less appedpri
anc_;l robustness to _the noise. We resort to varl_atlonal pringles \when data samples are corrupted by noise since the model is
which allow us to impose smoothness constraints on the model forced to fit noise also

for tackling noisy data. Based on shift-, rotation-, and scke- To tack isv dat desirable alt tive is t f
invariant requirements on the model, we show that theL,- 0 tackle noisy data, a desirable alternatve Is 1o entorce

norm of an appropriate vector derivative is the most suitabe ‘Smoothness” properties on the continuous-domain saiutio
choice of regularization for this purpose. In addition to Tikhonov- by means of regularization. Various authors have formu-
like quadratic regularization, this includes edge-preseving total-  |ated interpolation as a variational problem to accommedat
variation-like (TV) regularization. We give algorithms to recover regularization constraints [21]-[29]. The resulting sleeis

the continuously-defined model from noisy samples and also . . . L
provide a data-driven scheme to determine the optimal amoutnof often termedregularized interpolationvhere the objective is

regularization. We validate our method with numerical exanples  t0 obtain the solution by minimizing a cost criterion that
where we demonstrate its superiority over an exact fit as well jointly measures the data-fitting error and the regularitthe

as the benefit of TV-like non-quadratic regularization over golution. Regularized interpolation techniques can bediiso
Tikhonov-like quadratic regularization. classified into digital-domain or analog-domain approache
Index Terms—Interpolation, Regularization, Regularization The former refers to the case where the solution is a discrete
parameter, Tikhonov functional, Total-variation functio nal, entity defined on a grid that is finer than that of the data—
Splines. these methods specifically cater to the image-upsampling
problem [21]-[23]. In the latter case, a continuously-dedin
|. INTRODUCTION solution—a smoothing-spline—is obtained by minimizing th

NTERPOLATION is an integral part of many image-Lz_norm of s_ome SC"""’?“ d_er|vat|ve pf the solut|o.n—T|kho.nov-
) . . . . like quadratic regularization—subject to certain dattnfit
processing and biomedical algorithms [1]-[6]. It is em-

ployed in registration for performing geometric transfation requirements [24}-{29].

(e.g, sub-pixel translation and rotation) of discrete data-[7]. In this Paper, we concentrate on analog-d_omaln_regglanzed
[9]. In volumetric imaging, it is used for rescaling threelnterpolatlon and propose to extend smoothing-spline-&g-
dirﬁensional (3-D) volumes ,[10]. Fitting 3-D data on geor’rmetrproaches [24]-{29] by considering the use of non-quadratic

shapes is also best done by taking the interpolation mottel ir;egL.lIarlzatlor)—the motlyatlon IS tp overcome the shortirr
. ; .2 ) .. of Tikhonov-like quadratic regularization which tends toesar
consideration [11]. Other applications where it plays alvit.

. . ) o . important signal featurese(g, edges in images). We also
role include volume rendering for visualization of scalatds P g 6 g ges)

. . : want the solution to be invariant to translation, rotatiord a
[12]-[14], evaluation of image gradients [15], [16], an&ttee . . ' I
; : . ; . - scaling of the coordinates. Our first contribution towarest
mapping where a two-dimensional (2-D) image is painte ; .
. ends is a theoretical result that states that ihenorm of

on a 3-D surface [17], [18]. Recently, it has also been use . L . .

. e ) . ) ~an appropriate vector derivative is the most suitable @oic
for modeling diffusion tensors in magnetic resonance imgJgi

(MRI) [19].

Interpolation can be stated as the problem of fitting discre
data samples with a continuously-defined model that is ysua
represented as a weighted sum of shifted basis functions . . : . L
[5]. The standard approach is to specify the model so as 1 del and obtain the interpolation weights by minimizing th

) ) . -norm subject to a data-domain constraint that measures
fit the data exactly [6]. When the basis functions take a urHlipe statistical infidelity of the solution to the given data (
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of regularization with respect to these invariances. This i
ludes edge-preserving total-variation-like (TV) regidation
= 1), which we propose to use as an alternative to
adratic regularization. We consider a shift-invariaighal



images and illustrate the superior performance of our netho 7 [r "=z nearest-neighboun)

over standard interpolation. We also numerically justifiatt 3o T 7 T dnear

the use of TV-like non-quadratic regularization brings @ho
further improvement over quadratic regularization.

The paper is organized as follows. In Section Il, we briefly
review the standard interpolation technique [20], follogi
which we present a numerical example in Section II-A to
demonstrate its poor performance when applied to noisy. data
In Section Ill, we elaborate the proposed regularized puk-
tion scheme. We first specify the problem mathematically and
provide hypotheses related to the data-fidelity and regualar
tion terms. In Section IV, we present algorithms to carry out
the corresponding optimization. We then focus our attentio
on spline-based interpolation in Section V. Section VI is e e e B 5 h b u 4 = = o
dedicated to experimental results where we numericallifyver SNRIN (d8)
the superiority of the proposed approach over other methods _ _ . . __—

. . . . . Fig. 1. Rotation experiment in the presence of noise: Pimmelinear
in the literature. In Section VII, we provide evidence thghterpolation performs better than cubic splines at higisedevels (input
the proposed scheme achieves a reasonable tradeoff betws2@h< 24 dB), in contradiction with the expected behavior. We stimhe
computational cost and performance improvement and al8gft the central region of the image which was used for coimpENR.
discuss issues related to the selection of the regulasizati

parameter. Finally, we draw our conclusions in Section VIII

SNR OUT (dB)

we consider the following experiment: First, we rotate some
noise-free input image by a random angle using an interpolat
that provides high-quality rotation in the noise-free srém
Standard interpolation is the process of computing Bhen, we add zero-mean white Gaussian noise of variafice
continuously-defined functiorfi,; which exactly fits an un- to enforce a prescribed signal-to-noise ratio (SNR). Bmale
known analog signaf;... at the given sample poirit§;...(k), rotate back the noisy image with nearest-neighbor (usieg th

Il. STANDARD INTERPOLATION

k = (ki,ka,...,kq) € Z%. Typically, fi; is constructed for rect function), linear, and cubic B-spline based interfiofa
X = (z1,72,...,74) € R? as We repeat this for a fixed number of realizations and average
the SNR of the output image over all realizations. We show in
fint (%) = > Forue(K) pint (x — k), (1) Figure 1 the plot of the (averaged) SNR of the output image
kez? for a range of input SNRs. We observe that piecewise linear

where gy, is an interpolating function such that,(0) = 1  interpolation outperforms cubic splines at high noise leve
and @ing (X)|x—keza\ (o} = 0. Popular examples op;,, are Wwhich contradicts the noise-free behavior reported in.[20]
the linear B-spline [31] and the sinc function which perform This can be qualitatively explained as follows: Lgt: be
linear and bandlimited interpolation, respectively. the interpolant constructed from the noise-corrupted $esnp
An equivalent formulation of (1) has been provided in [20§. Since standard interpolation is a linear operation and be-
for an arbitrary non-interpolating functiop by considering cause noise is zero-mean and uncorrelated with the image, th

the integer-shift-invariant model mean-squared error (MSE) betwegn.. and gi,; can be ex-
pressed asZ,, = €2, + €2..... Here,eZ , is the squared-norm
fint(x) = Z cld] p(x — q), (2)  error betweery;,ue and fin; Which is completely characterized

qez? by the approximation orddr [32], i.e., the ability of the model

where the coefficients are determined by solving the set of© reproduce polynomials of degrees [0, L —1J. Itis known
linear equationsy k € Z2, fin(x)|x=k = > qeze cld] ok — from approximatig)n theory [32] that the higher the value of
@) = fuue(k), which ensures perfect fitting of the givenL. the lower thec; error. SinceLcubic > Liinear > LRect,
samples. In this paper, we propose to use the shift-inviarid¥e have
model (2) for our regularized interpolation scheme, butead 2
of a perfect-fit requirement, we are going to specifppased intCubic
on certain regularization requirements (see Section Hiji@ The quantitye? .. is the energy of the continuous-domain sig-
interpolation model in addition to the data-fitting constta  nal that interpolates only the noise componenj {absence of
signal); it can be shown to be proportionali® = ||in |7 -
Computingv? for the rect (3., = 1), linear ¢Z,,... = ),
and cubic B-splineu ;. ~ 0.874), we find that

<€ 3)

intrect *

<€2

intLinear

A. Standard Interpolation in the Presence of Noise

While standard interpolation (exact fitting) is desirale i
; A 2 2 2
the noise-free scenario, it can lead to unfavorable results €noiseLinear < Enoisecunic < Enoiserect 4)

when applied on noise-corrupted data. To demonstrate thI"?ierefore, in Figure 1, at high noise levels (input SNRs in

1We concentrate on the case of uniformly-spaced samplesedver, we the ran.ge O to 24. dB) Whe_re the effect f(if)isc is domi.nant!.
use unit-length sampling step for simplicity. piecewise linear interpolation does better than cubicnsgli



because of (4). At low noise levels (input SNR 24 dB), the data. We assume that the noise is statistically indepen-
2. becomes effective and the cubic splines take the leddnt at different sample locations. Then, the joint-prdlitsth
due to (3). Nearest-neighbour interpolation has the pooreensity can be written ag(g|f) = [, a(9[k]|f(k)),
performance at all noise levels since baffy ande? ;. are where g is the marginal density, so that{g, f} =
higher for the rect function than for linear and cubic B-sp8. — ", log(gx(g[k] | f(k))).
In this paper, we deal with two specific instance<éf, f}.
The first is i.i.d. zero-mean additive white Gaussian noise
. (AWGN), whereqy (g[k] | £ (k)) o e *(9lkl=F()* This leads
A. Problem Formulation to the negative log-likelihoodq{g, f} = 3, (g[k] — f(k))2.
When the input data samples are noisy, it is meaningful E#om a signal-processing perspective, the AWGN model is
adopt a variational approach to enforce regularity coimdsa often preferred for mathematical ease as the quadraticenatu
on the interpolation model to counterbalance the effect 6f Lq simplifies the optimization process.
noise. We develop our method in a penalized-likelihoodregtt Next, we consider the signal-dependent Poisson model
in the spirit of [33]—[35], where the solution is obtained byas an instance of non-quadratic data-fidelity) that is ap-
minimizing a cost functional composed of a negative logeropriate for imaging applications such as fluorescence mi-
likelihood term (also called the data-fidelity ternf){g, f} croscopy [36] and emission tomography [37]. Here, the sampl
and a continuous-space regularization functiobidlf}. The g[k| represents the detector counts at tkeh pixel and
log-likelihood measures in a statistical sense the goadobs ax(g[k] | f(k)) = (g[k]))~* e~/ (f(k))?!. The correspond-
fit between the samplegg[k]}ycze and {f(k)}xeze while ing negative log-likelihood is given byCpsisson{g, f} =
the regularization penalizes heavy oscillations in thetsmh. 7. (—g[k]log(f(k)) + f(k)), where we have neglected

IIl. REGULARIZED INTERPOLATION

Mathematically, this is written as the additive constant log(K]!) which is irrelevant for opti-
mization purposes.
Iy =arg mfin Ex{g, f}, (5) 2) Regularization:Most regularization functionals describe
' the continuous-space “smoothness” in terms of some didvat
where Ej is the cost functional given byE\{g,f} = of the solution. For our purpose, we consider a class of

L{g,f} + A¥{f}, and where\ > 0 is the regularization multivariate regularization functionals that can be werittin
parameter that governs the tradeoff between goodness-offfe form

and smoothness of\. We shall address the problem of

selecting an appropriaté in Section VII-D and propose a U{f} :/ O (L{f}(x)]]) dx, (6)

practical scheme that minimizes the mean-squared errbirwit R

the given class of solutions. where L is a vector composed of linear differential op-
Before moving on, we argue that the present formulatiosratorsL,,, m = 1,...,s, which measures the “smooth-

which addresses the signal reconstruction problem glgbathess” of f at x in terms of the vector-norniL{f}(x)| =

is preferable conceptually to denoising the data first an S (L {f}(x))Q and whered is called the poten-

; ; ; m=1
then performing a standard interpolation, although thtenatl';%l function that characterizes the penalty associateth wi

strategy may prodgc_e compgtitive results. depending on {/}||. Due to the non-negativity ofL{f}|, ® need only
choice of the denoaising algorithm. The primary argument |5, goeified on the set of non-negative real numbers.
statl_stlcal: It can .be proved that _th_e minimization of a @OP  pefinition 1: The one-sided potential functioh is said to
version of .(5) wil y|elq the mlnlmum-mean-sqgared-err e appropriate for the purpose of regularization if it is nion
reconstruction of the signal (under the assumption that t ggative strictly increasing and differentiable

?lgn?I 'sa statlonta[]y S?Uf:an pr?ce.ssi_, prowdedtthaiabs This definition is consistent with the minimization in (5hee
unctions are matched to the regularization operator 28, we wish to increase the penalty whene\l&r{ f}|| increases.

More generally, we may adopt a Bayesian point of view ar]ﬂ order for (6) to be beneficial for the interpolation prahble

use (5) to _speC|fy the maximue posteriori _estlmator of the we additionally require tha¥ { f} be invariant to translation,
unknown signal, which is continuously-defined. The pronOS?otation, and dilation. Then, it is guaranteed that the tgmiu

frame\_/vork IS fawly general and read|ly extendaple to MOKE invariant to such transformations of the given data,aher
complicated situations where the data is non-uniformly-sa

led q tional denoising i ¢ direct i lrﬂecoming independent of the data-grid. Mathematicallg, th
p'e (and conventiona denoising 1S not directly app_leab invariance requirements are prescribed as follows: We want
Finally, the proposed signal estimators can be designed

i . ) ) i th value of to remain unchanged (up to a multiplicative
be invariant to scaling and rotation of the coordinate syste {7} ged (up P

which is obviously only possible if we formulate the problemconStam) whery is

in the continuous domain. 1) shifted byx, € R? (translation-invariance)

1) Data-Fidelity Term: In the penalized-likelihood frame- Wlf( — — 7
work, we have thatC{g, f} = —log(q(g|f)) whereq is {/(=x0)} 2% %
the probability density of g[k|}ycze given {f(k)}xeza, OF,  2) rotated about the origin by an arbitrary angl@otation-
equivalently, the probability density of the noise in thaada invariance)

Here, £{g, f} is always a discrete-domain entity since it
measures the statistical infidelity of the samples fofto U{f(Re')} = ¥{f}, and (8)



3) dilated byr > 0 (scale-invariance)

v{f(2)}=cneisn (©)

where {(r) > 0 is an appropriate scalar that is dif-

ferentiable with respect te; its role is to balance the
regularization against a change of scale at which it
calculated.

Since U{f} is specified via the vector-norfiL{f}||, (7)-

(9) necessitates thafl.{f}|| be preserved under translation

rotation, and dilation off, up to the Lebesgue measure in the
integral (6). This curtails the choice df to those that are
shift-, rotation-, and scale-invariant in nature.

Definition 2: The vector-differential operatdt is said to
be a shift-, rotation-, and scale-invariant operator i ¢ R,
IL{f}(x)|| commutes with translation

IL{F(- = x0)} ()| = [[L{f}(x = x0)ll, ¥ x0 € R?, (10)
with rotation
[IL{f(Re-)}(2)[| = [[L{f}(Rex)[|, ¥V 0 € [0, 27), (11)

and with dilation

u{s ()3 60l =

Dt G)| v @2

We start from the Lh.s. of (13) and use the fact thais
scale-invariant (12) to obtain

Lo (s )y eal) o
= [ o (ot L (2)]) ax

_ / B(p(r) IL{} ) dx. (1)
R4

is

Then, comparing the r.h.s. of (13) and (14), we infer that
Fhust necessarily satisfy

d(p(t)z) = (15)
whered(7) = 74 ((7). Differentiating (15) with respect to
7 and settingr = 1, we get

W) ®(x) VzeR,

e ®(z) = pd(a), (16)
where we have used the fact thﬁu) =1 (there is no scaling
forr =1in (12)) andp =

solution to (16) is of the for <I> =~ah +r(—
~ andk are arbitrary constants and

|

)+, where

if x>0,
otherwise.

P,

0,

p
Ty

wherep(-) > 0 is a differentiable function that captures the

response oL to a scaling operatiorll

Interestingly, common multivariate differential openstcuch
as the gradienl{ = V) and the Laplacianl{ = A) turn out to
be shift-, rotation-, and scale-invariant in nature. In ¢hse of
the gradient operator, we havg, = %, m=1,2,...,d.

Obviously, the relatio 71 ) implies

that the response &F to the dilation operationcisx(/T)

Similarly, for the case of the Laplacidn= A = Z

(scalar operator), we see thatr) = 72 in (12).
Going back to (6), it may seem thédt can be arbitrarily

X

n2Le/r)

1
82
m=1 9x2,

chosen. This is true with respect to translation and ratatio

invariance ofl'{ f} since (10) and (11) ensure that without th
need for specifying an explicit functional form fé. However,

invariance ofU{f} to dilation calls for special attention as it

couples the scale invariance bfand the effect of dilation on

the potential functiorb. In fact, this connection together with

(9) narrows down the choice df as shown below.

Using the hypothesis thab is defined only forz > 0 and
is non-negative and strictly increasing, we see from (16 th

p > 0, which leads to the desired result(z) = y 2P,V x > 0
with p > 0. Conversely, it is verified thab(x) = 2P ensures
scale invariance o {f}. [ |

As a direct consequence of Theorem 1, we see that the

following L,-norm is the only choice of regularization with
respect to (9): Ignoring the multiplicative constamtand
substituting®(x) = 2P in (6), we get

Wit = [ LGl ax a7)

?n this work, we shall focus on the convex class of regular-

ization functionals in (17) which precludes< 1. Therefore,
the practical range of interest of thevalues is1 < p < 2.
Some popular instances of conv@X f} in (17) that can be
found in regularization or spline literature are

Theorem 1:Let L be a linear, scale-, rotation-, and shift- 1) Total-variation regularization [39]-[41] whene = 1,

invariant differential operator and the potential funotid be
as defined in Definition 1. Thern{f} is invariant to scaling
of the coordinates if and only B (z) = vy2?, ¥V « > 0, where
p > 0 and~ is an arbitrary constant.

Proof: Writing down (9) explicitly in terms of integrals
yields

Lo (s G} ool ox

~¢) [ e(Lf@hx @3)

L=V, and({(r) = 791,

2) Quadratic regularization: Set= 2
a) Laplacian semi-norm [42] with = A and((7) =
7_d74’
b) Duchon’s semi-norm of ordel/ [43] whereL is
a vector composed of every possihlé-th order

partial derivative operator ang{7) = 79¢=2M,

2The general solution may contain distributions for negatieger values
of p [38]. However, in the present context, we would like the §oluto be
a true function ofz, which leads to the given form fob.



TABLE |
CHARACTERISTICS OF DIFFERENTPENALIZED-LIKELIHOOD INTERPOLATION SCHEMES

Scheme Cost Likelihood | Regularization| Optimization| Solution Type of Algorithm
?LQ Quadratic Gaussian Quadratic Analytical Explict, Linear, Qne-Step
(Section IV-A) Closed-Form (Algorithm 1)
G_LNQ Non-quadratiq  Gaussian | Non-quadratici Numerical | Numerical Non-Llne.ar, lterative
(Section 1V-B2) (Algorithm 2)
PLQ, PLNQ Non-quadratig Non-(?:aussm. Quadranc,‘ Numerical | Numerical Non-L|nef’;1r, Iterative
(Section 1V-B3) (Poisson) | Non-quadratic| (Algorithm 3)
B. Discretization of the Problem where (-, ), represents thé, inner-product of two discrete
As we are dealing with an interpolation problem, we segiéduences and whereis the discrete sequence whaséh
a solution of the form component is given by
S
e =Y aklex—k) (18) rikl = 3 vl
kezZa m=1
for our regularized scheme. Then, the original problem &) ¢ .
; L e = L x)L x — k) dx. 21
be posed as the discrete-domain optimization problem zjl Rd m{P}(x) L { o H( ) (21)
m=

ey = arg min Jy{g, c}, (19) Thus, in the quadratic casg € 2), the discretization o { f}
implicitly follows from (21) and leads to a quadratic furarii
Uq{c} of the coefficients.

Jnig.c} 2) Non-Quadratic Regularization (NQR)n this case, the

problem (19) can be handled only in a numerical optimization
= Exlg, f} framework. For the purpose of numerical tractability, we
= L{g,(cxb)} replace the integral in (20) by a Riemann sum which leads
2\ % to the discrete non-quadratic regularization

with

S

+ A S D eKLmf{etx—k) | | dx, (20) s 3
/Rd m=1 \kezd Unofel = ) (Z((c*nm)[k])2> : (22)

kezd \m=1
where f is how given by (18) so that ) _ )
wheren,, k] = L,,{¢}(k) represents the discretized version

fk) = Z c[m] bk — m] = (c*b)[K] of the differential operatoiL,,. The use of¥nq{c} for
meZd regularized interpolation distinguishes this work frorogh in

. B . Al . the literature [24]-[29] which primarily deal with quadiat

with blk] = (k)| in the data-fidelity term. Thus, while reogularization. An important characteristic dfyq is that

we consider the same continuous-domain model in (2) e discretized derivativ are obtained by sampling the
(18), standard and regularized schemes differ in the way the B y ping

coefficients are obtained. However, when= 0 in (20), the corresponding continuous-domain deriaties {0}, m =

regularized scheme (19) reduces to the standard case (2) Si1r1 2,...,s. We illustrate this connection in Section V where

we only minimize £{g, (c * b)} which leads to close-fitting \éveefarg)s;e:r%m’oT n:orr}i’all.é:? I:;);Sthe case of the gradient
of data; at the other extreme, as — oo, (19) results in P poly P '

a maximume-likelihood estimate within the null-spacelgf,
m=1,...,s. IV. OPTIMIZATION ALGORITHMS

1) Quadratic Regularization (QR):When p = 2, the  Settingp = 2 under the Gaussian likelihood model leads
integrand in the r.h.s. of (20) is a quadratic term. Up t@ a .J, that is quadratic inc in (20). The corresponding
technical details related tp andL,,, m = 1,...,s, [27]- optimization can be performed analytically and leads to an
[29], the second term in the r.h.s. of (20) can be explicitlgxplicit closed-form solution that is related gpin a linear
evaluated by interchanging the summation (with respei)to fashion. However,J, becomes non-quadratic as soorpas 2
and the integral to yield in the regularization or when the data-fidelity is dictategdab

2 non-Gaussian likelihood (irrespective of whetpet 2 or not).

i/ Z K] Lo {0} K |d For non-quadratic/y, the optimization has to be performed
c m1P (X — X
m=1 R

Z (% 7)[k] c[k] numerically and the corresponding solution dependsg on
kezd kezZs a non-linear fashion. This discussion is summarized in &abl
= {c*7,0)e, | where we present the characteristics of different redzear
= Uq{c}, interpolation schemes. We first describe the optimizatibn o



quadratic cost (first row of Table I). Then, we give a dethen apply it to the following two instances of convex non-
tailed exposition of the minimization procedure that we gtdoquadratic cost:

for some specific instances of non-quadratic costs invglvin 1) J, . ., that combinesknq with the Gaussian likeli-
Gaussian and Poisson likelihoods (second and third rows hood£q (second row of Table I):

emphasized by bold-face font in Table I). Inonna {010} = Z (01K] — (e D)KD)? + A Unoe),
kezd

2) Jxping that combinestyq (or Jy .., that usestq)
with the Poisson likelihood pgisson:

J)\-,PLNQ {ga C} - - Z g[k] log((c * b)[k])

A. Quadratic Cost: Gaussian Likelihood with Quadratic Reg-
ularization (GLQ)

The cost to be minimized is composed&f, and¥q, i.e.,

Inaraldset = D (glk] = (cx b)[K])* + A(cxr,c)e,. keZ?
kezd + Z Cx* b —|— A \I/NQ{C}
As Jy ..o IS quadratic, setting its derivative with respect to kezd
clk] to zero yields the system of linear equatiorisk < where we have considereflpyisson @S @ prototypical
Z%, (exbxb+Arxc)k] = (gxb)[k], wherebk] = b[—k]. This example of a non-Gaussian likelihood model (third row
system can be solved in the discrete-space Fourier domain to of Table I) that yields a convex non-quadratic data term.
obtain 1) MM Philosophy: In the MM setting, we construct an
(D)aure = Hi(€9) G(e7%) auxiliary cost functionJ, . {g,c|c;} at the current estimate
z=e B (e _ ¢; such that
= ‘ o ) G(e™), (23) J _ 24
|B(e@)|2 + A R(e) Mg, eed = Jaxdgs ciled, (24)
whereC}, @, B, andR are thez-transforms of the solution, g, et < iy clets c# (25)

the datay, and the sequencésndr, respectively. Substituting Then, the idea is to find the estimatg ; at the next iteration
for ¢, in (18) from (23) results in a smoothing-spline-typ&uch that
solution that has already been investigated in [26]-[29%r&h

conditions necessary for the existence and stability of 628 Jaox{9s cealet < Tl celedd, (26)

derived in a rigorous fashion. which leads to a definite decrease.bf as shown below:
Equation (23) amounts to writingy, = hy * g, whereh) _

is the digital-correction filter whose-transform isHy. The Mg} = Jioxdg conled

solution is therefore linear, in the sense tlfiats related tgy in + g, 1} = Jaoxdg, coaled}

a linear fashion. The implementation of (23) is straightfard <0 using (25)

and can be done via FFTs (see Algorithm 1 in Appendix A-A). J —J
We also note thakl ) (e/“) — W for A — 0, in which case < M g, e}

f» performs the standard interpolation gf[20]. However, using (26)

while B can be separable, this is never the casefferwhen The whole philosophy relies on finding a suitable

A>0. Juxi9,cla} that satisfies (24) and (25) and which is
also easy to minimize. In what follows, we make explicit

B. Non-Quadratic Costs the steps necessary for finding,,{g,c|c:} for the two

instances/y ¢ ngq aNdJx prng (OF Ix prg)-

When J, is a non-quadratic, non-convex function of the 2) Gaussian Likelihood with Non-Quadratic Regularization

coefficients, conventional techniques such as the norulin ) : .
. . GLNQ): In this case, we need to apply the MM principle only
conjugate gradient and BFGS methods [44] may be used q{\PNQ since the data term ity ..., is already quadratic.

determining its Ioca_l minima. However, .When IS CONVEX,  Aur construction of the auxiliary cost,, is based on the
several methodologies such as the majorize-minimize (M equality

approach [30] (or, equivalently, bounded-optimizatiom) he
half-quadratic method [45]-[47] can be adopted for devielpp lz|P < 2—p
elegant minimization algorithms that ensure a steady dsere

of Jx. Moreover, it is well known that the minimization offor somezo # 0 [30], where the equality holds only when
a convex.J, always leads to a solution (which need nap = 20rz = xo. The inequality is preserved under summation
necessarily be unique) for whicl, achieves its global- and multiplication byA > 0 which leads to

|zo|? + gx2|xo|p72, 1<p<?2 (27)

minimum value. 8
In the present work, we resort to the MM approach [30] as A Unq{c} < z2 Z K2 (e mm) [K])?
it is easy to comprehend: The idea, as described in [30], is to kezd m=1
replace the original difficult task by several easy-to-myte + Ay, (28)

roblems that will guarantee a monotonic decrease of th
P iginal Wi bg fl . f 301 th h . %For thep-values consideredl o and ¥ are convex as they are derived
original cost. We brietly review from [ ] the mat emat'Ca’rom (17). ThereforeJ LGLNG andJy,, (or Jy PLQ ) are convex as well

details underlying the MM philosophy in Section IV-B1 ancdecause of the convexity of associated data-fidelity terms.



2 TABLE I
where [k \/Zm L ((ee*mm) k)" and A, = 2-TRANSFORMSB AND B(1) CORRESPONDING TO VARIOUS SPLINE
A (352) Zkezd |Xt[ ]|P is a constant independent af Thus, DEGREES
we obtam " B(2) B (2)
Taoxdgscley = D (glk] = (e +b)[k])? 1 ! 2= =)
kezd 2 % + %(z’1 + 2) %(z*1 —z)
s 4 1/.-1 1/-1
P _ 3 24+ 2(z7t+2) s(z7t—2)
AT el Y (e % ) K] T :
ezt " 5 L V-1 42) )
+ AX“ (29) 4 192 7 96 24
+ g (272 +2%) + a5 (272 = 2%)
which satisfies (24) and (25). The details associated wigh th
minimization of the abovd, . and_the glgorithm (Algorithm . 11301 (21— z)
2) that results therefrom are provided in Appendix A-B. —2 1,-2_ 2
+ 120(Z +z ) + 24(2 z )

3) Poisson Likelihood with Non-Quadratic Regularization
(PLNQ): SinceJ) ;.o contains a term of the forrog((c *

b)[K]), it is imperative thatcxb)[k] > 0, ¥ k € Z?. Therefore, The quantityA, = 3\, b[k] > 0 is a constant independent
whenever we use the Poisson likelih8a®b,;sson, We restrict €

i ' - of ¢; and
ourselves to basis functions that satidfik] = ¢(k) > 0 B
V k € Z? (e.g, integer-degree polynomial B-splines). Then,  Ajq = (b* wy)[q], (32)
the above constraint simply boils down to ensuring the posi- s
tivity of c. Asq = Y (it * PalP %) el (33)
To construct the auxiliary cost at the current estimateve m=1
use the convexity ofo 30, Equation (10)] to write - _
y olo () [30. Equation (10)] Asg = 3 5 Pl 20 (e o) )l — e, (39)
— Z k]| log((c* b)[K]) m=tkezs

kezd

wherew, [k] = —4X_ 1 k] = AL , and Ayq in (31) is
blk — aci[d] cla] iti R ] e
< - Z glK] log ((Ct # b)[K] ) _ an additive constant which is irrelevant for the minimigati
(ct = b)[K] cilq] of J, {9, ¢|ct, q}. The corresponding optimization procedure
and the algorithm (Algorithm 3) are described in Appendix
Similarly, Equation (27) and the convexity 69 [30, Equa- A-C.
tion (9)] result in

k,qeZ4

AT V. SPLINE-BASED REGULARIZED INTERPOLATION
Noi{ch

p Nmlk — q 2 Here, we make explicit the link between the sequenges
<A > <7a[k —d (cla] — ela]) + (er = nm)[k]> rm,m=1,...,s, andy andL for spline-based interpolation
k,qud which is well-suited for imaging problems [20], [31]. We
e _ consider a separable basis given b
% halk]P2alk — qf P ey

+ Ay, p(x) = p(x1) p(x2) - - p(2a), (35)

where as are constants such thafk] = 0 if 7,,[k] = 0, wherecp(_:c) is the univariate basis function. Far, we_sel_ect_
alk] > 0 if n,[k] # 0, and}, ;. alk] = 1. After some the gradient operatdv. Then, the proposed regularization is
algebraic manipulations, we obtain related to the total-variation functional (fgr = 1) which

is of particular interest to us because of its edge-presgrvi

Inealg el <D Tadsclenal, (30) characteristics.

qezt The separable nature ¢f in (35) leads to the separability
of the corresponding discrete sequenbges,,, andr,,, i.e.,
where J,x{g,clci,q} is the decoupled auxiliary cost thaty(k) — p[k] b[ky] - - - blka], whereblk] = o(z)]o—p. FOr L =
depends only or{q]: V., we haves = d, which yields form =1,...,d,
JAUX{ng|Ctaq} d
e
= —ci[q) Aiq log(clq]) M (K] = T blke] 0 (K],
c[q] .Azq .Ab ll;nlz
+ pAc[d] 5 TG ctq] Azq + Asq + 5 W
wherebW[k] = ¢/ (x)|,—r and
+ A4q' (31) [ ] ¥ (I)| =k
d
4The development fot/y PLQ (Pq with Lpgisson) follows from that of T'm [k] = H (l[kl] UL(Q) [km]a
Jx,pLng @s we shall see in Append|x A-C. I=1l%#m



TABLE Il
2-TRANSFORMA(2) CORRESPONDING TO VARIOUS SPLINE DEGREES

n AR (z)

1 2— (271 +2)

2 1—%(2*1+z)—%(z*2+z2)

3 %—%(z’l—i-z)—%(z*2+z2)—ﬁ(z’3+23)

4 %—%(z’l—i-z)—%(2’2—#22)—%(2’3—#23)—ﬁ(z*‘l—l—z‘l)

5| steo Ter(z7t +2) — 1350272 +2%) — apgs (27 + 2%) — g (6T + 2Y) — g (270 20

wherealk] = (¢ * ¢©)(2)|o=k, ¢(x) = ¢(—z), anda®[k] = A. RegularizedversusStandard Interpolation—Rotation Ex-
(@ * ") (@) 2=k periment
We list out the sequencésb(’), anda® (in terms of their e compare the proposed regularized scheme against stan-
transfer functionsB, B™), and A®), respectively) in Tables dard interpolation by carrying out two sets of 2-D rotation
Il-and 111, for ¢ = 3", which is the symmetric polynomial B- experiments where the setup is exactly similar to that dlesdr
spline of degreex > 1. We see that, for splines of sufficientlyin Section I1-A. For the first experiment, we use &2 x 512
high degreep!”) anda® are very different from the simple image of a CT slice. For the second, we consider a stack
finite-difference filterSQ.g,ﬁrSt row of both Tables Il and I”) of clean MRI images [48] where we use different slices
that are typically used in the literature for TV-based imaggicked randomly from the MR stack for different realizatio
restoration. We perform exact-fitting interpolation (non-regularized)ng
nearest-neighbour, linear B-spline, cubic B-spline anbicu
Keys basis [20], [49], while, for regularized methods, we
VI. EXPERIMENTS consider quadratic regularized (QR) cubic B-spline (Aition
1) and non-quadratic regularized (NQR) cubic B-spline (Al-

. . . . grithm 2), respectively.
We validate the proposed regularized interpolation schefi .
by carrying out 2-D rotation experiments in the presence o; 1) SNR ComparisonWe plot the output SNR for each

noise. We adopt the separable polynomial B-spline moa%lrth?se me;[jhct)ﬁs Il\r/llRFllglfcre k2a and 2tb ﬁorrfzspl;)rlﬂw}g to the
in Section V for all implementations and use = V. slice an ¢ stack, respectively. fn both Hgures,

Standard interpolation is performed as described in [20]. yve observe that the non-regularized methods exhibit theesam

the regularized case, we implement quadratic regular@gj ( trend as depicted in Figure 1. The observation that is most

interpolation—Algorithm 1 corresponding to GLQ in Tablerelevant to us is that both regularized interpolation mdﬁjo
I—using FFTs. The various steps of non-quadratic-regzsari (QR and NQR) perform far better than the non-regularized

(NQR) interpolation—Algorithms 2 and 3 corresponding gnes at high noise levels. The consistently superior trend

GLNQ and PLNQ, respectively, in Table |—are execute‘(ﬁ)(h'tb'tted_tby rf)gultarlzed mtlerptolat.lon Ilg btl)lth tf;]gutr]zs dﬁa
via discrete convolutions. Periodic boundary conditioreyev lustrate its robustness against noise. Finally, the oU§N

. : of the two regularized methods (for cubic B-spline) conesrg
applied whenever necessary. In all experiments, setl . ) , ,
ppledw v y xper we to that of the non-regularized cubic B-spline for relatyel

n (2.2) for NQR mtgrpolaﬂon. TQhe Sto?ﬁ’ﬂ@% criterion forhigh input SNRs since the effect of regularization becomes
Algorithms 2 and 3 is||¢;+1 — ¢ ]]? < 107*44L, where N L .
N egligible under very low noise.

. . . P
th fg. Th f f all method tified : -
'S e size 0. The performance of all Methods Is quantine 2) Visual Comparison:We present in Figure 3 output

by images for one realization of the experiment in Section VI-A
3 2. (k) (with MRI stack). Since standard cubic B-spline interpiolat
SNR()\) = 101log,, ( keQ Jtrue ) ., (36) Isnotregularized, the corresponding output (Figure 3s}ils
> kea(foue(k) — fa(k))? noisy. On the contrary, regularized methods lead to signific
noise reduction as seen in Figures 3d and 3e corresponding to
which is a function of the regularization parameterand QR-cubic and NQR-cubic outputs, respectively.
where { firue(kK) bxeze and {fi(k)}xeze are the values of
the continuous-domain noise-free signal and regularired i ) .
terpolant, respectively, sampled on the grid of data. Th& Sl\?' RegularizedversusStandard Interpolation—Image Zoom-
is evaluated inside a circular regidn concentric with the Ing
image so as to avoid boundary effects. Our main aim in thisWe also compare standard and regularized (QR—AIlgorithm
section is to characterize the best-possible performahtteeo 1 and NQR—AIlgorithm 2) cubic B-spline-based interpolation
proposed regularized interpolation methods. For this gggp in a scaling experiment: Here, the objective is to zoom
we conduct oracle-based experiments, i.e., wekssb as to into a noisy MRI image by an irrational factor = .
obtain f, that yields the highest SNR for a given realization ofor the proposed regularized interpolation schemes, we se-
the noisy datg. In Section VII-D, we introduce a data-drivenlect A = {(7) \ops, Where ¢(-) is the scaling constant in
scheme for obtaining MSE-optimal directly from g. (9) and A\t is that value which maximizes the SNR (36)
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Fig. 2. Comparison of performance of non-regularized agdlegized interpolation: Rotation experiments on noisysians of (a) slice of a CT image and
(b) MRI slices.

Fig. 3. Visual Comparison for the rotation experiment; aicu-spline interpolation model was used for all schemepNaise-free image; (b) Noisy data
(rotated by -60, o = 17.54); (c) Non-regularized (standard) result (SNR = 17.12 dB); Quadratic regularized (QR) result (Algorithm 1 with aopél X,
SNR = 19.49 dB); (e) Non-quadratic regularized (NQR) regAlgorithm 2 with optimal A\, SNR = 21.04 dB).

Fig. 4. Visual Comparison for the scaling experiment; a cubispline interpolation model was used for all schemesNa@ise-free image indicating the
portion that is zoomed; (b) Noise-free image zoomed-in bg-regularized (standard) method; (c) Noisy data zoomebyimon-regularized method; (d)
Noisy data zoomed-in by quadratic regularized (QR) metlfefiiNoisy data zoomed-in by non-quadratic regularized (\N@thod.

for data given on the original (unzoomed) grid. The abowveon-regularized-cubic (Figure 4c), QR-cubic (Figure 4djl a
choice of A is justified by (5) and (9) which indicate thatNQR-cubic (Figure 4e) methods, respectively. It is cleadgn

the regularization parameter must be suitably compensathdt both regularized methods exhibit superior perforreanc
whenever the continuous-domain outpfjt is dilated. This compared to the standard scheme in terms of noise reduction.
compensation is easily computed since Theorem 1 gives \While they also seem to suppress some subtle components of
an explicit expression fo¢(-) for the chosen regularizationthe underlying noise-free image (which is an inevitable by-
operatorL. = V. Substituting forL in (9) and (17) and product of noise-filtering), the key point is that in perfong
manipulating theL,-norm, it is seen thaiqr(7) = 1 and noise reduction NQR (Figure 4e) preserves prominent image
(nqr(7) =7 for QR (p = 2) and NQR p = 1) interpolation features, i.e., edges, better than QR (Figure 4d).

schemes, respectively.

We portray in Figure 4 the output images corresponding to
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Fig. 5. Non-quadratic regularized (NQR) interpolation farying spline- Fig. 6. Comparison of the effect of likelihood on non-quaidraegularized
degree. (NQR) interpolation: Plot of output SNR & py;sson-based method (PLNQ)
relative to Lq-based method (GLNQ) as a function of dynamic range

loglo(J}mf‘ ). A positive value in the graph indicates th@peisson provides

C. Regularized Interpolation: Varying Spline Degree better pgr'f‘ormance thafiq for data corrupted by Poisson noise.
To study the effect of the basis functignon the discretiza-

tion of the non-quadratic regularization (NQR) in (22), W%utcome was very similar to that exhibited in Figures 2a and

repeat the experiment in Section VI-A (for MRI images) Wiﬂbb in the interest of space we do not show the results here

B-splines of integer degree varying from 1 to 5 and concémtr . - . .
on NQR interpolation (Algorithm 2). We show in Figure 5 thg)ut summarize our findings by stating again that the proposed

performance of the NQR interpolation based on lineaz(1), regularized interpolation scheme outperforms standarth-me

. ) . ' ods by a wide margin.
dratic ¢ = 2), cub =3), t =4), and t oS L . .
?;a: r5€;1 Ilg—gpline)s Crl:aslge%tive?j quartic ¢ = 4), and pentic Our concern in this section is rather to investigate whetiner

In terms of quality, higher-degree B-splines yield bettdjOt the choice of the data-fidelity term based on the likedtho

performance with NOR interpolation as the output SNR coﬁUOdel is crucial for regularized interpolation. Specifigaive

sistently increases with the degree of the B-spline over theopose to study the performanf:e ofqu.adratic data fidé@y
entire range of input SNRs in Figure 5. Particularly, thexe th'Ch corresponds to a Gaussian likelihood) when appbed t

a notable improvement going from linear to a higher-degré%nal'qepenqe_m Poisson noise and compare It WM.SSO“
B-spline. This is probably because, for the linear B-splithe w 'Ch IS statlstlcqlly the most appropriate data-fidelieynt .
discretization does not adequately capture the featuréiseof for this type of noise. For this purpose, we repeat the mati

corresponding continuous-domain model, while the situmati experiment descr!bed_ in Section VI-A with the nqse-free
phantom shown in Figure 7a, but we now consider data

%?rrupted by signal-dependent Poisson noise. An important

tends to saturate. This is to be expected since the Cardi%(?perty of a Poisson random variable is that its variance

: ; : : IS equal (or proportional, if there is a multiplicative gain
splines (corresponding to these B-splines) rapidly cayeé¢o . . . '
the sinc function with increasing [31]. factor) to its mean. Moreover, since the intensity valuehef t

In terms of computation, since the number of filter-taps in noise-free phantom at a given pixel characterizes the kigna

and{n,.} (see Section V) increases linearly withthe cost of dependent _P0|sson noise at tha_t pixel (mean (.)f the qusson
random variable), the overall variance of the Poisson nigise

implementing the convolutions in Algorithm 2 also incremase
P g 9 ontrolled by the mean of the phantom. Therefore, we keep

linearly withn. Therefore, in practice, it is important to choos f the phant tant but its d :
a B-spline (, in general) that strikes a good balance betwe ﬁe_mean ot the phantom constant but vary 1ts dynamic range
ratio of the maximum to the minimum intensity value) which

computation load and quality. Based on our observations fr beli id itable handle to | ‘h I
Figures 2-5, we find cubic B-spline to provide satisfactor € believe provides a suitable handie 1o InSpect how we
e two likelihood models capture image details in a varied

results. . . ) .
range of intensity levels for the same amount of input Paisso
noise. We perform NQR-cubic interpolation using Algorithm

D. Experiments with Poisson Noise 2 (Lq data-fidelity) and Algorithm 3 £pisson data-fidelity),

Until now, we have presented results that demonstragspectively. We compute the output SNR of the latter nedati
the superior performance of regularized interpolatiorin@s to the former (SNRyisson — SNRGauss) and plot it in Figure

Algorithms 1 and 2) for data corrupted by additive Gaussignhas a function of the dynamic range (isg;,-scale).

noise. In this section, we investigate the proposed approac For the entire extent of abscissa in Figure 6, we see that

using Algorithm 3 (in Appendix A-C) by performing rotationsAlgorithm 3 yields substantial improvement (1 dB) over Al-

in the presence of signal-dependent Poisson noise. As faithm 2 pointing to the superiority of the Poisson likeldd
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Fig. 7. Visual comparison of the effect of likelihood on nguadratic regularized (NQR) interpolation: (a) Noiseefienage, dynamic range df02-5; (b)
Data corrupted by signal-dependent Poisson noise; (c)lReased onl data-fidelity (Algorithm 2 optimized for best output SNRJ) (Result based on
Lq data-fidelity (Algorithm 2 with slight over-regularizatily (e) Result based 0fip,isson data-fidelity (Algorithm 3 optimized for best output SNR).

(@)

model in adapting to image details in a large range of intgnsi This is to be contrasted with the many experiments we
levels. This is also clearly illustrated in Figure 7 wherperformed with real-world autofluorescence images, where
we show the output images corresponding to one realizatime observed that there was no significant difference in the
of this experiment: The output of Algorithm 2 (Figure 7cperformances oLpgisson and Lg. Our understanding of this
retains the innermost circles, but is still noisy. Incragsihe behavior is that, in those situations, the regularizatiad A
regularization strength reduces the noise significantlgufe stronger effect on the solution than the likelihood. Theref

7d) but at the cost of loosing the smaller circles. Howeve, t when the data-fidelity term is less important than the regu-
output of Algorithm 3 (Figure 7e) is less noisy and preservdarization, algorithms can be designed to reduce the amount

the smaller circles as well. of computations. For instance, since Algorithm 2 usks
for the data fidelity, it only requires the linearization difet
VII. DISCUSSION regularization—the corresponding optimization is simpke

A. QuadraticversusNon-Quadratic Regularization it only amounts to solving a set of linear equations. This is

Among the regularized schemes investigated in this wor ifficult to accomplish under the Poisson-likelihood medel

NQR interpolation (based on TV-like regularization) penic thie logarithm in Lpoisson requires careful handling of the

significantly better than QR interpolation both in terms 0[Problem as positivity of the solution often becomes a harsh

visual quality and SNR: In Figures 3 and 4, the NQR resyrPnStraint

(Figure 3e and 4e) is sharper and less noisy than the QR result
(Figure 3d and 4d), while in Figures 2a and 2b we see th@t Computational Cost
NQR brings about a consistent SNR improvement over QR ¢ analysis so far, we ranked the various regularized

interpolation for a range of input SNRs. We also observggiernolation algorithms purely based on performance .gain

a similar trend in SNR improvement of NQR over QR in g5 ever, we must also consider the computation cost associ-
pure denoising scenario (where we repeated the experimeqisy yith these algorithms. The authors of [20] performed a
in Section VI-A without applying rotations). These reswlt®  ,,,rq,9h cost-performance analysis for standard intetjzol;

a direct consequence of the fact that TV-like NQRs haveg, 5 given quality measure, their emphasis was on reducing
good ability to preserve edges while Tikhonov-like QRs tenfl o ~ost of evaluating(x — k) for many argumentéx — k).

to blur them thus compromising the quality. Therefore, from, o context of regularized interpolation, since we are
a performance point of view, it is better to employ TV-lik&qncerned with obtaining the coefficientswe only consider

NQR for regularized interpolation. the cost of computing for a givene.
o For standard interpolatiom,is computed by linear filtering
B. Influence of the Likelihood Model of the data [20] which can be achieved Wit V') complexity.

We were able to present an example in Section VI-D to illugn the context of regularized interpolation, Algorithm 1 is
trate a case where the likelihood term plays a significare ra¢asily implemented in the Fourier domain (via FPFsit
in variational problems. There, the Poisson likelihabigisson ~ Fequires aboutO(N log(NN)) operations. Thus, with only a
outperforms the Gaussian likelihoagl, since Lpoisson pro- slightly larger computation load (an extiag(N) factor),
vides intensity-dependent regularization that adaptsh® tAlgorithm 1 yields significant improvement in quality and is
non-stationary nature of Poisson noise. This is unlikg generally preferable to standard interpolation.
which leads to a uniform regularization that either washesAlgorithms 2 and 3 are non-linear and iterative in nature:
out low-intensity details (Figure 7d) or retains them at th&he CG-solver forms the predominant step in Algorithm 2 (see
cost of performing poorly in high-intensity regions (Figur Appendix A-B), while in Algorithm 3, the major workload
7c). However, it must be noted that we had to tailor the

circular phantom in Figure 7a to demonstrate the advantaﬁ%’” this work, the Radix-2 Cooley-Tukey method was used whituired
the data to be zero-padded to a size that is a power of 2. Qomdgly,

of usmgﬁPoiSSOD for POiS_S()n. noise_,.by .enforcin.g the presencfe time taken for Algorithm 1 is the same for the last threesran Table
of dominant peaks at high intensities in the histogram. 2
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TABLE IV

TIME TAKEN (IN SECONDS BY VARIOUS SCHEMES FOR COMPUTING 700K
COEFFICIENTS ‘l
650 !l
Algorithm !
Standard Regularized . goory ]
Image Size Algorithm 1 Algorithm 2 Algorithm 3 § \ G
o 9501 \u GCV(A) 2
256 x 256 0.071 0.04 10.57 21.90 8 |
© -
340 x 340 0.073 0.17 20.22 39.79 € soopt \\ SUREQY) o257
420 x 420 0.077 0.17 32.97 62.30 5 \
512 x 512 0.096 0.17 51.04 95.32 4501 3\ A\
400f >=Te - - 2 MSE() = Oracle
. . : e
is in the computation of the constantq, Azq, and Asq B0l Ay o A l
. . . . A L ragle L L | |
(see Appendix A-C). These operations require the evaloatio 12 25 38 52 65 78 91 104 118 13.09
of several convolutions with the estimatg which are in A

turn repeated for each iteration. It is therefore clear tha

. i - EItg 8. Plot of GC\\), SURE)), and MSE\) versus\ for one realization
these algorithms are computationally more demanding th@io dB input SNR) of a rotation experiment in the presencaaite. We

Algorithm 1. see that\syrg = 4.23 is very near the optimum valugo,acle = 4.10,

We present in Table IV the execution times of standard (thféﬁ"ke Aoy = 3.04. Correspondingly, the index M%Esyp) = 386.91

. . ower than MSEAgcv ) = 400.72 and is very close to the oracle minimum
of [20]) and regularized schemes (Algorithms 1-3) on a 2.Q#SE(\o,.c.) = 386.65, indicating that SURE-based selection leads to a

GHz Intel Macintosh for rotation experiments with the cieyu better result.
phantom (shown in Figure 7a) of varying sizes. The cubic B-
spline model was used in all algorithms. Algorithms 2 and
3 were executed until they satisfied the convergence aiteri
specified at the beginning of Section VI. The durations re-
ported in each row of Table IV have been averaged over 10  14%0r
realizations.

As expected, Algorithm 1 is much faster than Algorithms
2 and 3, while Algorithm 2 seems to have a considerable
lead over Algorithm 3. The latter observation is in tune with
our discussion at the end of Section VII-B. However, from
a quality point of view, Figures 2a and 2b indicate that
Algorithm 2 is preferable to Algorithm 1 for strong Gaussian
noise. Therefore, Algorithm 2 is best-suited to carry out 400r
regularized interpolation in a general setting. Howevelow \ \ \ \ \ \ \ \
noise IeVeIS, the effect Of regularization becomes ndgbgl 92.8 130.3 167.8 205.3 242.8}\280.3 317.8 355.3 392.8 430.3
(the output SNR curves in Figures 2a and 2b eventually meet);

then, it may be desirable to use Algorithm 1 as it has the lowedd- 9.~ MCSUREA) captures the trend of MSE) for NQR-cubic
. . interpolation scheme at 0 dB input SNR.
computational complexity.

‘ —— MSE(\) ‘
- - -MCSURE(\)

1600

[N

N

o

o
T

1000+

Mean-Squared Error

800

600

D. Selection of the Regularization Parameter Our goal here is to minimiz¢37) directly. To circumvent

Since the regularization paramegfebalances regularization the dependence of M$E) on the unknown noise-free samples
against fidelity to the data, choosing an appropriaiecrucial  { firue(k) }reze, We propose the use of Stein’s unbiased risk
for obtaining meaningful results. While our experimentedis estimate (SURE) [51], which provides a means for estimating
oracle-based tuning of\, we now propose a data-drivenMSE()\) unbiasedly from the datg. Unlike GCV, SURE
means of selecting an appropriate value for this parameteguires the knowledge of the noise variance. But, as ittyre
to minimize the mean-squared error (MSE) given by thelates to MSE\), SURE is more robust than GCV and yields
averaged-value of the denominator of (36) optimal performance even in the non-asymptotic case.

1 In the context of variational problems, SURE has been put
MSE(\) = —— > (firue (k) — fa(K))*, (37) to use under one form or another for tunixgn smoothing-
ke spline-like linear algorithms [26], [52]. For the non-lare
where Ng, is the cardinality of the se®. case, we recently developed a Monte-Carlo scheme in [53]—
Generalized cross-validation (GCV), which does not regjuiMonte-Carlo SURE (MCSURE)—whose numerical evaluation

the knowledge of the noise variance, is often advocated faquires twice the cost of the original algorithm but is &ppl
determining\ as it yields asymptotically optimal performancecable to iterative as well as non-iterative denoising mesho
[26] (under certain hypotheses [50, Proposition 3.1]),, i.ewith arbitrary nonlinearities. Since M$E) measures the error
Agcy Minimizes (37) adVg — oo. However, its applicability in the data domain, MCSURE is applicable in the present
is limited to linear algorithmsd.g, Algorithm 1 in this paper). scenario. So, we adopt the analytical SURE formula proposed
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TABLE V
OUTPUTSNROBTAINED BY MSE-BASED (ORACLE) AND SURE-BASED TUNING OF A

Output SNR (dB)
Input SNR (dB) QR-Cubic NQR-Cubic
MSE-based SURE-based GCV-basedSE-based MCSURE-based
0 13.95 13.95 13.82 14.13 14.11
4 15.75 15.75 15.43 16.10 16.10
8 17.66 17.66 16.94 18.22 18.22
12 19.71 19.71 18.28 20.45 20.44
16 21.95 21.95 19.67 22.85 22.85
20 24.40 24.40 21.39 25.44 25.43
24 27.09 27.09 25.20 28.25 28.24
28 30.03 30.03 29.09 31.19 31.19
32 33.19 33.19 32.86 34.23 34.22
36 36.39 36.39 36.39 37.20 37.19
40 39.35 39.35 39.23 39.86 39.85
44 41.78 41.78 41.88 42.02 42.02
48 43.43 43.42 43.40 43.51 43.51
52 44.38 44.38 44.37 44.38 44.38
56 44.83 44.82 44.80 44.83 44.83
60 45.04 45.04 44.99 45.02 45.02

in [26, Theorem 1.1] for regularized interpolation basedaon SURE-based tuning consistently yields SNR values veryeclos
linear algorithm and propose the use of MCSURE for thoge the oracle for both QR and NQR methods indicating that it
based on a non-linear algorithm, respectively. In the sequee can be reliably employed for data-driven adjustmen of
demonstrate that SURE) and MCSURE)) not only mimic

the behavior of MSE\) very closely, but also yield a good VIIl. SUMMARY & CONCLUSIONS

estimate of the optimal that minimizes MSEA). Standard interpolation performs exact fitting of the given

We repeat now the experiment described in Section Vi-4ata. In the presence of noise, we have shown that this
(with MRI stack) where, for each noisy realization, we comean have a detrimental influence on the interpolation qualit
pute GC\) [26, Equation (1.9)] and SURE) [26, Equation To interpolate noisy data, we have developed a regularized
(1.8)] for QR-cubic and MCSURR) [53, Equation (6)] scheme that counterbalances the effect of noise by imposing
for NQR-cubic regularized interpolation schemes alonghwitsmoothness constraints on the resulting continuous-domai
MSE()) corresponding to each of these methods. The noisglution. We have adopted an integer shift-invariant digna
variance was assumed to be known in all the experiments fabdel for interpolation where the model parameters (coef-
computing SUREA) and MCSUREN) (in practice, an esti- ficients of the integer-shift-invariant expansion) areaimed
mate can be used). We plot GCVj and SURE)) in Figure 8 by minimizing the statistical infidelity of the solution thet
and MCSURE)) in Figure 9, respectively, in comparison withgiven data (negative log-likelihood data term) subject teg
the individual MSEA) for one realization of this experimentylarization constraint prescribed as thg-norm of a general
at 0 dB input SNR (test image shown in the inset). It igector derivative of the solution. In addition to Tikhonov-
clearly seen that the SURE curves capture the trend of ffie& quadratic functional (which leads to smoothing-sefin
corresponding MSE curves. Moreover, they also yield vefke interpolants), the formulation includes non-quaitranes
close estimates of the optimal in both cases, while GCV in the spirit of edge-preserving total-variation regutation.
fails to achieve this. This indicates that a SURE-basech@iniwe have presented algorithms based on the MM (majorize-
procedure is more reliable than GCV even at such low |ev€ﬂﬁnimize) strategy to perform the optimization of the coeffi
of input SNR. cients for non-quadratic cost criteria.

We further quantify the performance of GCV, SURE, and We have carried out 2-D rotation experiments in the pres-
MCSURE in Table V where we list out the output SNR (averence of noise and numerically quantified the performance
aged over all the realizations corresponding to an input SNBf standard (non-regularized) and regularized interjpmiat
obtained by minimizing GCV and SURE for the QR-cubidVe observe that regularized interpolation always yields a
and MCSURE for the NQR-cubic interpolation algorithmsignificant improvement in quality over standard intergiola
respectively. Also provided are the oracle values of thgwaiut Furthermore, among the regularized methods, we could note
SNR (obtained by minimizing the corresponding MSEs). Wihat, in the presence of noise, non-quadratic regularix€zR)
see that the GCV-based result is far from the oracle for lomterpolation consistently outperforms the quadraticuteg
input SNRs & 28 dB). This may be because the hypothesézed (QR) one; we associate this phenomenon to the fact
[50, Proposition 3.1] required for the optimality of GCV ardhat NQR interpolation preserves edges and achieves better
probably not fulfilled for the QR-cubic method. Howevernoise reduction than QR interpolation. We also illustrated
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that Stein’s unbiased risk estimate (SURE) can be reliapecifically, letB, B~!, and R,, denote toeplitz matrices
employed for data-driven selection of the regularizati@aa pcorresponding to the sequencé8k]}icze, {07 1[k]}keza,
rameter for performing optimally regularized (QR and NQRAnd {7, [k] }xcz¢, respectively. Then, rewriting (38) in terms
interpolation. We conclude from these observations thgt reof matrices, we obtain

ularized interpolation, specifically, NQR interpolatiaran be

T T _ T
of potential interest in medical-imaging applications. B'B+R T;Rjc=B"g,

(39)

where ¢ and g are column vectors containing sequences
{c[K]}xeze, and {glk|}xeze, respectively, andR =
[err R’QT s R;F]T, anth = )\g diag{Tt, ey Tt}, with Tt

APPENDIXA
ALGORITHMS FORREGULARIZED INTERPOLATION

A. Minimization ofJ .,

Algorithm 1: Algorithm for minimizing Jy .., for a
given A
Step 1: Precompute and storg(e’*), R(e/*), and
G(el?)
Step 2: ConstrucH (e“) using (23) for the giver
and compute’y (e/«)
Step 3: Perform inverse Fourier transform ©f to

) ) o s times
a diagonal matrix containing entriggy;[k||?~2}xczq. Per-
forming manipulations on (39) using matrix inversion lemma
we get
c=Blg—- (B"B)"'R'z,
(r;'+RB™B)'RT)z=RB 'g.

(40)
(41)

Rewriting (40) and (41) in terms of convolutions, we obtain

obtaincy
ek = (67" =)k = Y (07 b w7y z) (K, (42)
B. Minimization ofJy ., q m=1
From (29), we note thaf, , {g. c|c;} is quadratic inc. We  \ynere b1k b-'[-K], 7mk] = n[-k|, and

minimize it by setting its derivative to zero which results i ¢, s | wege i the solution of the following linear
) . . ) m=1,ke
the following system of linear equations: systems of equations’ k € Z4, andm = 1,.. ., s,

(cxbx B+ D7 Ixelall” (e m)la) monla —

qez?
m=1---s

=(gxb)k], Vke ze,

2 _ - PR
/\—p|Xt[k]|2 P 2 K] Y (o # D7D 7y ) K]
=1

(38) = (1 * b~ 5 g)[K]. (43)
where blk] = b[-k]. The presence ok, in (38) prohibits ;5 at iteratiors, we employ the CG method to partially
_the use of Fourier-domain techniques such as those_uggq/e for a set of temporary variablds,,}?,_, using (43)

in Section IV-A. Nevertheless, _the MM technlqge_ requiregnich is then used to update in (42). The linear system
only a decrease of,,,; there is no need to minimize it corresponding td 2, }%,_, now involves|y;|]|>~? rather than
completely. Therefore, efficient numerical schemes such @S[][»-2 which doesmﬁot explode whep, — 0 for p < 2.
the conjugate-gradient (CG) method can be utilized to sol sed on (40)-(43), we provide the following alternative to
gorithm 2 for minimizing J,, .

(38) partially. Forp < 2, the factor|x;[-]|?~2 can pose a Al
problem whenevery; = 0. An ad hoc modification is to Algorithm 2a:MM algorithm for minimizing Jj , v, for a
given A andp

saturatey; to a small positive value (i.e., x;: < max(e, x¢))
to avoid instabilities in (38). In our implementation, weosk _ X . ot
the initial estimater, to be the given data slightly perturbed | SteP 1: Precompuﬂel‘ 9 M *b™ "% g, b7 *b™ i),
by additive noise. This ensured that # 0 at all iterations. and 7, xb™" x b7 xm, Lm=1,2,...,5
Step 2: Initial estimate =q; t =0
RepeatSteps 3 to 6 untiStop Criterion is met

Step 3: Compute the sequenggusing ¢,

Step 4: Apply CG iterations to partially solve for
{2m,t}im=1 In (43)

Step 5: Compute,; in (42) using{zm.¢}5,—1

Step 6: Set =t+1

Algorithm 2: MM algorithm for minimizing Jj ., v, for a
given A andp

Step 1: Precompute the sequenses andg * b
Step 2: Initial estimate =p; t =0
RepeatStep 3 to 5 untilStop Criterion is met
Step 3: Compute the sequenggusing ¢,
Step 4: Apply CG iterations to partially solve for.; in
(38)
Step 5: Set=¢t+1

C. Minimization ofJ} ,, vq

: . . . . From (30) and (31), we see that minimiziog .., ., {9, c}
Wht|)le bwe ?sg?tAIgor|t%m t2h mf T}” our el)t(pe”':.‘em\;h.'tsimply amounts to minimizing each of the individual
may be beneticial to consider the Tollowing afternative winic ; ux 19, ¢let, g} which is accomplished by setting their deriva-

provides a mathematically rigorous means of tackling tf}ﬁ? ith tt ¢ Th Iution is i b
instability of (38). This procedure applies for minimizing e with respect tarlg] to zero. The solution s given by

J, and requires the assumption that the kerindias a 1

GLNQ ; - C[q] —
stable convolution inverse—! such that(b=!  b)[k] = J[K]. 22\ p Azg

(—7 + \/72 +4Apeiql Aig A2q) , (44)



wherey = Ap (Asq — ¢i[q]A2q) + Ap. Since, the sequences10]
b and x; are non-negative and becaugeepresents the data
counts under the Poisson noise model, we have thgt> 0
andAsq > 0 whenever;[q] > 0V q € Z?. Thus, the solution
given by (44) is always positive. Based on (30)-(34) and (44)
we present Algorithm 3 for the minimization of, .., -

In the case of quadratic regularization, we have that

[13]

Vo{ct=(erxc), =Y Z rm1)[k)?,  (45)
kezd m=1 [14]

wherer, 1 is specified via its:-transformR,,, ., (2 ) zmeiw =

R (e7*) wherein R,, is the z-transform of the sequencel®!
rm in (21). Comparing (22) and (45), we see that Algorithm
3 can be applied to minimizég, ., by settingp = 2 and [16]
replacingn,, by Tml in (33) and (34).

Algorithm 3: MM algorithm for minimizing Jy ., ., for a| [17]
given A andp
Step 1: Precomputél, and the sequence,, in (33) [18]

Step 2: Initial estimate =p; t =0

RepeatSteps 3 to 5 untiStop Criterion is met|

Step 3: Update constantq, Aaq, Asq using (32)-(34
Vqezd

Step 4: Compute;,, using (44)

Step 5: Set=¢t+1

[19]

[20]
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