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Regularized Interpolation for Noisy Images
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Abstract—Interpolation is the means by which a continuously-
defined model is fit to discrete data samples. When the data
samples are exempt of noise, it seems desirable to build the model
by fitting them exactly. In medical imaging, where quality is of
paramount importance, this ideal situation unfortunately does
not occur. In this paper, we propose a scheme that improves on
the quality by specifying a tradeoff between fidelity to the data
and robustness to the noise. We resort to variational principles
which allow us to impose smoothness constraints on the model
for tackling noisy data. Based on shift-, rotation-, and scale-
invariant requirements on the model, we show that theLp-
norm of an appropriate vector derivative is the most suitable
choice of regularization for this purpose. In addition to Tikhonov-
like quadratic regularization, this includes edge-preserving total-
variation-like (TV) regularization. We give algorithms to recover
the continuously-defined model from noisy samples and also
provide a data-driven scheme to determine the optimal amount of
regularization. We validate our method with numerical examples
where we demonstrate its superiority over an exact fit as well
as the benefit of TV-like non-quadratic regularization over
Tikhonov-like quadratic regularization.

Index Terms—Interpolation, Regularization, Regularization
parameter, Tikhonov functional, Total-variation functio nal,
Splines.

I. I NTRODUCTION

I NTERPOLATION is an integral part of many image-
processing and biomedical algorithms [1]–[6]. It is em-

ployed in registration for performing geometric transformation
(e.g., sub-pixel translation and rotation) of discrete data [7]–
[9]. In volumetric imaging, it is used for rescaling three-
dimensional (3-D) volumes [10]. Fitting 3-D data on geometric
shapes is also best done by taking the interpolation model into
consideration [11]. Other applications where it plays a vital
role include volume rendering for visualization of scalar fields
[12]–[14], evaluation of image gradients [15], [16], and texture
mapping where a two-dimensional (2-D) image is painted
on a 3-D surface [17], [18]. Recently, it has also been used
for modeling diffusion tensors in magnetic resonance imaging
(MRI) [19].

Interpolation can be stated as the problem of fitting discrete
data samples with a continuously-defined model that is usually
represented as a weighted sum of shifted basis functions [4],
[5]. The standard approach is to specify the model so as to
fit the data exactly [6]. When the basis functions take a unit
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value at the origin and are zero at all other integer locations,
the weights are given by the data themselves. Otherwise,
they are determined by imposing an exact-fitting requirement
[20]. In biomedical imaging applications, interpolation is most
often carried out by an exact fit to the data. Although this
is meaningful for a noise-free scenario, it is less appropriate
when data samples are corrupted by noise since the model is
forced to fit noise also.

To tackle noisy data, a desirable alternative is to enforce
“smoothness” properties on the continuous-domain solution
by means of regularization. Various authors have formu-
lated interpolation as a variational problem to accommodate
regularization constraints [21]–[29]. The resulting scheme is
often termedregularized interpolationwhere the objective is
to obtain the solution by minimizing a cost criterion that
jointly measures the data-fitting error and the regularity of the
solution. Regularized interpolation techniques can be broadly
classified into digital-domain or analog-domain approaches.
The former refers to the case where the solution is a discrete
entity defined on a grid that is finer than that of the data—
these methods specifically cater to the image-upsampling
problem [21]–[23]. In the latter case, a continuously-defined
solution—a smoothing-spline—is obtained by minimizing the
L2-norm of some scalar derivative of the solution—Tikhonov-
like quadratic regularization—subject to certain data-fitting
requirements [24]–[29].

In this paper, we concentrate on analog-domain regularized
interpolation and propose to extend smoothing-spline-like ap-
proaches [24]–[29] by considering the use of non-quadratic
regularization—the motivation is to overcome the shortcoming
of Tikhonov-like quadratic regularization which tends to smear
important signal features (e.g., edges in images). We also
want the solution to be invariant to translation, rotation and
scaling of the coordinates. Our first contribution toward these
ends is a theoretical result that states that theLp-norm of
an appropriate vector derivative is the most suitable choice
of regularization with respect to these invariances. This in-
cludes edge-preserving total-variation-like (TV) regularization
(p = 1), which we propose to use as an alternative to
quadratic regularization. We consider a shift-invariant signal
model and obtain the interpolation weights by minimizing the
Lp-norm subject to a data-domain constraint that measures
the statistical infidelity of the solution to the given data (in
terms of a negative log-likelihood function). We propose to
handle the problem in a numerical optimization framework.
We design algorithms based on the majorize-minimize (MM)
strategy [30] for performing the corresponding minimization,
which constitutes our second contribution. Finally, we also
provide a practical scheme for determining an appropriate
balance between data-fitting and regularization. We validate
our method by carrying out experiments on noisy medical
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images and illustrate the superior performance of our method
over standard interpolation. We also numerically justify that
the use of TV-like non-quadratic regularization brings about
further improvement over quadratic regularization.

The paper is organized as follows. In Section II, we briefly
review the standard interpolation technique [20], following
which we present a numerical example in Section II-A to
demonstrate its poor performance when applied to noisy data.
In Section III, we elaborate the proposed regularized interpola-
tion scheme. We first specify the problem mathematically and
provide hypotheses related to the data-fidelity and regulariza-
tion terms. In Section IV, we present algorithms to carry out
the corresponding optimization. We then focus our attention
on spline-based interpolation in Section V. Section VI is
dedicated to experimental results where we numerically verify
the superiority of the proposed approach over other methods
in the literature. In Section VII, we provide evidence that
the proposed scheme achieves a reasonable tradeoff between
computational cost and performance improvement and also
discuss issues related to the selection of the regularization
parameter. Finally, we draw our conclusions in Section VIII.

II. STANDARD INTERPOLATION

Standard interpolation is the process of computing a
continuously-defined functionfint which exactly fits an un-
known analog signalftrue at the given sample points1 ftrue(k),
k = (k1, k2, . . . , kd) ∈ Z

d. Typically, fint is constructed for
x = (x1, x2, . . . , xd) ∈ R

d as

fint(x) =
∑

k∈Zd

ftrue(k)ϕint(x− k), (1)

whereϕint is an interpolating function such thatϕint(0) = 1
and ϕint(x)|x=k∈Zd\{0} = 0. Popular examples ofϕint are
the linear B-spline [31] and the sinc function which perform
linear and bandlimited interpolation, respectively.

An equivalent formulation of (1) has been provided in [20]
for an arbitrary non-interpolating functionϕ by considering
the integer-shift-invariant model

fint(x) =
∑

q∈Zd

c[q] ϕ(x− q), (2)

where the coefficientsc are determined by solving the set of
linear equations:∀ k ∈ Z

d, fint(x)|x=k =
∑

q∈Zd c[q] ϕ(k−
q) = ftrue(k), which ensures perfect fitting of the given
samples. In this paper, we propose to use the shift-invariant
model (2) for our regularized interpolation scheme, but instead
of a perfect-fit requirement, we are going to specifyc based
on certain regularization requirements (see Section III) on the
interpolation model in addition to the data-fitting constraint.

A. Standard Interpolation in the Presence of Noise

While standard interpolation (exact fitting) is desirable in
the noise-free scenario, it can lead to unfavorable results
when applied on noise-corrupted data. To demonstrate this,

1We concentrate on the case of uniformly-spaced samples. Moreover, we
use unit-length sampling step for simplicity.
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Fig. 1. Rotation experiment in the presence of noise: Piecewise-linear
interpolation performs better than cubic splines at high noise levels (input
SNR < 24 dB), in contradiction with the expected behavior. We showin the
inset the central region of the image which was used for computing SNR.

we consider the following experiment: First, we rotate some
noise-free input image by a random angle using an interpolator
that provides high-quality rotation in the noise-free scenario.
Then, we add zero-mean white Gaussian noise of varianceσ2

to enforce a prescribed signal-to-noise ratio (SNR). Finally, we
rotate back the noisy image with nearest-neighbor (using the
rect function), linear, and cubic B-spline based interpolation.
We repeat this for a fixed number of realizations and average
the SNR of the output image over all realizations. We show in
Figure 1 the plot of the (averaged) SNR of the output image
for a range of input SNRs. We observe that piecewise linear
interpolation outperforms cubic splines at high noise levels,
which contradicts the noise-free behavior reported in [20].

This can be qualitatively explained as follows: Letgint be
the interpolant constructed from the noise-corrupted samples
g. Since standard interpolation is a linear operation and be-
cause noise is zero-mean and uncorrelated with the image, the
mean-squared error (MSE) betweenftrue andgint can be ex-
pressed asǫ2mse = ǫ2int + ǫ2noise. Here,ǫ2int is the squared-norm
error betweenftrue andfint which is completely characterized
by the approximation orderL [32], i.e., the ability of the model
to reproduce polynomials of degreen ∈ [0, L−1]. It is known
from approximation theory [32] that the higher the value of
L, the lower theǫ2int error. SinceLCubic > LLinear > LRect,
we have

ǫ2intCubic
< ǫ2intLinear

< ǫ2intRect
. (3)

The quantityǫ2noise is the energy of the continuous-domain sig-
nal that interpolates only the noise component ing (absence of
signal); it can be shown to be proportional toν2 = ‖ϕint‖

2
L2

.
Computingν2 for the rect (ν2

Rect = 1), linear (ν2
Linear = 2

3 ),
and cubic B-spline (ν2

Cubic ≈ 0.874), we find that

ǫ2noiseLinear
< ǫ2noiseCubic

< ǫ2noiseRect
. (4)

Therefore, in Figure 1, at high noise levels (input SNRs in
the range 0 to 24 dB) where the effect ofǫ2noise is dominant,
piecewise linear interpolation does better than cubic splines
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because of (4). At low noise levels (input SNR> 24 dB),
ǫ2int becomes effective and the cubic splines take the lead
due to (3). Nearest-neighbour interpolation has the poorest
performance at all noise levels since bothǫ2int and ǫ2noise are
higher for the rect function than for linear and cubic B-splines.

III. R EGULARIZED INTERPOLATION

A. Problem Formulation

When the input data samples are noisy, it is meaningful to
adopt a variational approach to enforce regularity constraints
on the interpolation model to counterbalance the effect of
noise. We develop our method in a penalized-likelihood setting
in the spirit of [33]–[35], where the solution is obtained by
minimizing a cost functional composed of a negative log-
likelihood term (also called the data-fidelity term)L{g, f}
and a continuous-space regularization functionalΨ{f}. The
log-likelihood measures in a statistical sense the goodness-of-
fit between the samples{g[k]}k∈Zd and {f(k)}k∈Zd while
the regularization penalizes heavy oscillations in the solution.
Mathematically, this is written as

fλ = arg min
f

Eλ{g, f}, (5)

where Eλ is the cost functional given byEλ{g, f} =
L{g, f} + λΨ{f}, and whereλ > 0 is the regularization
parameter that governs the tradeoff between goodness-of-fit
and smoothness offλ. We shall address the problem of
selecting an appropriateλ in Section VII-D and propose a
practical scheme that minimizes the mean-squared error within
the given class of solutions.

Before moving on, we argue that the present formulation,
which addresses the signal reconstruction problem globally,
is preferable conceptually to denoising the data first and
then performing a standard interpolation, although the latter
strategy may produce competitive results depending on the
choice of the denoising algorithm. The primary argument is
statistical: It can be proved that the minimization of a proper
version of (5) will yield the minimum-mean-squared-error
reconstruction of the signal (under the assumption that the
signal is a stationary Gaussian process), provided that thebasis
functions are matched to the regularization operator [27],[29].
More generally, we may adopt a Bayesian point of view and
use (5) to specify the maximuma posterioriestimator of the
unknown signal, which is continuously-defined. The proposed
framework is fairly general and readily extendable to more
complicated situations where the data is non-uniformly sam-
pled (and conventional denoising is not directly applicable).
Finally, the proposed signal estimators can be designed to
be invariant to scaling and rotation of the coordinate system,
which is obviously only possible if we formulate the problem
in the continuous domain.

1) Data-Fidelity Term: In the penalized-likelihood frame-
work, we have thatL{g, f} = − log(q(g|f)) where q is
the probability density of{g[k]}k∈Zd given {f(k)}k∈Zd, or,
equivalently, the probability density of the noise in the data.
Here, L{g, f} is always a discrete-domain entity since it
measures the statistical infidelity of the samples off to

the data. We assume that the noise is statistically indepen-
dent at different sample locations. Then, the joint-probability
density can be written asq(g|f) =

∏

k qk(g[k] |f(k)),
where qk is the marginal density, so thatL{g, f} =
−
∑

k log(qk(g[k] |f(k))).
In this paper, we deal with two specific instances ofL{g, f}.

The first is i.i.d. zero-mean additive white Gaussian noise
(AWGN), whereqk(g[k] |f(k)) ∝ e−κ(g[k]−f(k))2. This leads
to the negative log-likelihoodLQ{g, f} =

∑

k(g[k]−f(k))2.
From a signal-processing perspective, the AWGN model is
often preferred for mathematical ease as the quadratic nature
of LQ simplifies the optimization process.

Next, we consider the signal-dependent Poisson model
(as an instance of non-quadratic data-fidelity) that is ap-
propriate for imaging applications such as fluorescence mi-
croscopy [36] and emission tomography [37]. Here, the sample
g[k] represents the detector counts at thek-th pixel and
qk(g[k] |f(k)) = (g[k]!)−1 e−f(k)(f(k))g[k]. The correspond-
ing negative log-likelihood is given byLPoisson{g, f} =
∑

k∈Zd (−g[k] log(f(k)) + f(k)), where we have neglected
the additive constant log(g[k]!) which is irrelevant for opti-
mization purposes.

2) Regularization:Most regularization functionals describe
the continuous-space “smoothness” in terms of some derivative
of the solution. For our purpose, we consider a class of
multivariate regularization functionals that can be written in
the form

Ψ{f} =

∫

Rd

Φ (‖L{f}(x)‖) dx, (6)

where L is a vector composed ofs linear differential op-
eratorsLm, m = 1, . . . , s, which measures the “smooth-
ness” of f at x in terms of the vector-norm‖L{f}(x)‖ =
√
∑s

m=1 (Lm{f}(x))
2, and whereΦ is called the poten-

tial function that characterizes the penalty associated with
‖L{f}‖. Due to the non-negativity of‖L{f}‖, Φ need only
be specified on the set of non-negative real numbers.

Definition 1: The one-sided potential functionΦ is said to
be appropriate for the purpose of regularization if it is non-
negative, strictly increasing and differentiable.�
This definition is consistent with the minimization in (5) since
we wish to increase the penalty whenever‖L{f}‖ increases.
In order for (6) to be beneficial for the interpolation problem,
we additionally require thatΨ{f} be invariant to translation,
rotation, and dilation. Then, it is guaranteed that the solution
is invariant to such transformations of the given data, thereby
becoming independent of the data-grid. Mathematically, the
invariance requirements are prescribed as follows: We want
the value ofΨ{f} to remain unchanged (up to a multiplicative
constant) whenf is

1) shifted byx0 ∈ R
d (translation-invariance)

Ψ{f(· − x0)} = Ψ{f}, (7)

2) rotated about the origin by an arbitrary angleθ (rotation-
invariance)

Ψ{f(Rθ·)} = Ψ{f}, and (8)
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3) dilated byτ > 0 (scale-invariance)

Ψ
{

f
( ·

τ

)}

= ζ(τ)Ψ{f}, (9)

where ζ(τ) > 0 is an appropriate scalar that is dif-
ferentiable with respect toτ ; its role is to balance the
regularization against a change of scale at which it is
calculated.

Since Ψ{f} is specified via the vector-norm‖L{f}‖, (7)-
(9) necessitates that‖L{f}‖ be preserved under translation,
rotation, and dilation off , up to the Lebesgue measure in the
integral (6). This curtails the choice ofL to those that are
shift-, rotation-, and scale-invariant in nature.

Definition 2: The vector-differential operatorL is said to
be a shift-, rotation-, and scale-invariant operator if∀ x ∈ R

d,
‖L{f}(x)‖ commutes with translation

||L{f(· − x0)}(x)|| = ||L{f}(x− x0)||, ∀ x0 ∈ R
d, (10)

with rotation

||L{f(Rθ·)}(x)|| = ||L{f}(Rθx)||, ∀ θ ∈ [0, 2π), (11)

and with dilation
∥
∥
∥L
{

f
( ·

τ

)}

(x)
∥
∥
∥ = ρ(τ)

∥
∥
∥L {f}

(x

τ

)∥
∥
∥ , ∀ τ > 0, (12)

whereρ(·) > 0 is a differentiable function that captures the
response ofL to a scaling operation.�
Interestingly, common multivariate differential operators such
as the gradient (L =∇∇∇) and the Laplacian (L = ∆) turn out to
be shift-, rotation-, and scale-invariant in nature. In thecase of
the gradient operator, we haveLm = ∂

∂xm
, m = 1, 2, . . . , d.

Obviously, the relation∂f(x/τ)
∂xm

= τ−1 ∂f(x)
∂xm

∣
∣
∣
x=x/τ

implies

that the response of∇∇∇ to the dilation operation isρ(τ) = τ−1.
Similarly, for the case of the LaplacianL = ∆ =

∑d
m=1

∂2

∂x2
m

(scalar operator), we see thatρ(τ) = τ−2 in (12).
Going back to (6), it may seem thatΦ can be arbitrarily

chosen. This is true with respect to translation and rotation
invariance ofΨ{f} since (10) and (11) ensure that without the
need for specifying an explicit functional form forΦ. However,
invariance ofΨ{f} to dilation calls for special attention as it
couples the scale invariance ofL and the effect of dilation on
the potential functionΦ. In fact, this connection together with
(9) narrows down the choice ofΦ as shown below.

Theorem 1:Let L be a linear, scale-, rotation-, and shift-
invariant differential operator and the potential function Φ be
as defined in Definition 1. Then,Ψ{f} is invariant to scaling
of the coordinates if and only ifΦ(x) = γ xp, ∀ x ≥ 0, where
p > 0 andγ is an arbitrary constant.

Proof: Writing down (9) explicitly in terms of integrals
yields

∫

Rd

Φ
(∥
∥
∥L
{

f
( ·

τ

)}

(x)
∥
∥
∥

)

dx

= ζ(τ)

∫

Rd

Φ(‖L{f}(x)‖)dx. (13)

We start from the l.h.s. of (13) and use the fact thatL is
scale-invariant (12) to obtain
∫

Rd

Φ
(∥
∥
∥L
{

f
( ·

τ

)}

(x)
∥
∥
∥

)

dx

=

∫

Rd

Φ
(

ρ(τ)
∥
∥
∥L {f}

(x

τ

)∥
∥
∥

)

dx

= τd

∫

Rd

Φ(ρ(τ) ‖L{f}(x)‖) dx. (14)

Then, comparing the r.h.s. of (13) and (14), we infer thatΦ
must necessarily satisfy

Φ(ρ(τ)x) = ϑ(τ)Φ(x) ∀ x ∈ R, (15)

whereϑ(τ) = τ−d ζ(τ). Differentiating (15) with respect to
τ and settingτ = 1, we get

xΦ′(x) = p Φ(x), (16)

where we have used the fact thatρ(1) = 1 (there is no scaling
for τ = 1 in (12)) andp = ϑ′(1)

ρ′(1) is a real number. The general
solution to (16) is of the form2 Φ(x) = γ x

p
++κ (−x)p

+, where
γ andκ are arbitrary constants, and

x
p
+ =

{
xp, if x ≥ 0,

0, otherwise.

Using the hypothesis thatΦ is defined only forx ≥ 0 and
is non-negative and strictly increasing, we see from (16) that
p > 0, which leads to the desired result:Φ(x) = γ xp, ∀ x ≥ 0
with p > 0. Conversely, it is verified thatΦ(x) = γ xp ensures
scale invariance ofΨ{f}.
As a direct consequence of Theorem 1, we see that the
following Lp-norm is the only choice of regularization with
respect to (9): Ignoring the multiplicative constantγ and
substitutingΦ(x) = xp in (6), we get

Ψ{f} =

∫

Rd

||L{f}(x)||p dx. (17)

In this work, we shall focus on the convex class of regular-
ization functionals in (17) which precludesp < 1. Therefore,
the practical range of interest of thep-values is1 ≤ p ≤ 2.
Some popular instances of convexΨ{f} in (17) that can be
found in regularization or spline literature are

1) Total-variation regularization [39]–[41] wherep = 1,
L =∇∇∇, andζ(τ) = τd−1,

2) Quadratic regularization: Setp = 2,

a) Laplacian semi-norm [42] withL = ∆ andζ(τ) =
τd−4,

b) Duchon’s semi-norm of orderM [43] whereL is
a vector composed of every possibleM -th order
partial derivative operator andζ(τ) = τd−2M .

2The general solution may contain distributions for negative integer values
of p [38]. However, in the present context, we would like the solution to be
a true function ofx, which leads to the given form forΦ.
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TABLE I
CHARACTERISTICS OF DIFFERENTPENALIZED-LIKELIHOOD INTERPOLATION SCHEMES

Scheme Cost Likelihood Regularization Optimization Solution Type of Algorithm

GLQ
Quadratic Gaussian Quadratic Analytical

Explicit, Linear, One-Step

(Section IV-A) Closed-Form (Algorithm 1)

GLNQ
Non-quadratic Gaussian Non-quadratic Numerical Numerical

Non-Linear, Iterative

(Section IV-B2) (Algorithm 2)

PLQ, PLNQ
Non-quadratic

Non-Gaussian Quadratic,
Numerical Numerical

Non-Linear, Iterative

(Section IV-B3) (Poisson) Non-quadratic (Algorithm 3)

B. Discretization of the Problem

As we are dealing with an interpolation problem, we seek
a solution of the form

fλ(x) =
∑

k∈Zd

cλ[k] ϕ(x − k) (18)

for our regularized scheme. Then, the original problem (5) can
be posed as the discrete-domain optimization problem

cλ = arg min
c

Jλ{g, c}, (19)

with

Jλ{g, c}

= Eλ{g, f}

= L{g, (c ∗ b)}

+ λ

∫

Rd






s∑

m=1




∑

k∈Zd

c[k]Lm{ϕ}(x− k)





2





p

2

dx, (20)

wheref is now given by (18) so that

f(k) =
∑

m∈Zd

c[m] b[k−m] = (c ∗ b)[k]

with b[k] = ϕ(k)|k∈Zd in the data-fidelity term. Thus, while
we consider the same continuous-domain model in (2) and
(18), standard and regularized schemes differ in the way the
coefficients are obtained. However, whenλ = 0 in (20), the
regularized scheme (19) reduces to the standard case (2) since
we only minimizeL{g, (c ∗ b)} which leads to close-fitting
of data; at the other extreme, asλ → ∞, (19) results in
a maximum-likelihood estimate within the null-space ofLm,
m = 1, . . . , s.

1) Quadratic Regularization (QR):When p = 2, the
integrand in the r.h.s. of (20) is a quadratic term. Up to
technical details related toϕ and Lm, m = 1, . . . , s, [27]–
[29], the second term in the r.h.s. of (20) can be explicitly
evaluated by interchanging the summation (with respect tok)
and the integral to yield

s∑

m=1

∫

Rd




∑

k∈Zd

c[k] Lm{ϕ}(x− k)





2

dx =
∑

k∈Zd

(c ∗ r)[k] c[k]

= 〈c ∗ r, c〉ℓ2

= ΨQ{c},

where〈·, ·〉ℓ2 represents theℓ2 inner-product of two discrete
sequences and wherer is the discrete sequence whosek-th
component is given by

r[k] =

s∑

m=1

rm[k]

=

s∑

m=1

∫

Rd

Lm{ϕ}(x) Lm{ϕ}(x− k) dx. (21)

Thus, in the quadratic case (p = 2), the discretization ofΨ{f}
implicitly follows from (21) and leads to a quadratic function
ΨQ{c} of the coefficients.

2) Non-Quadratic Regularization (NQR):In this case, the
problem (19) can be handled only in a numerical optimization
framework. For the purpose of numerical tractability, we
replace the integral in (20) by a Riemann sum which leads
to the discrete non-quadratic regularization

ΨNQ{c} =
∑

k∈Zd

(
s∑

m=1

((c ∗ ηm)[k])
2

) p

2

, (22)

whereηm[k] = Lm{ϕ}(k) represents the discretized version
of the differential operatorLm. The use ofΨNQ{c} for
regularized interpolation distinguishes this work from those in
the literature [24]–[29] which primarily deal with quadratic
regularization. An important characteristic ofΨNQ is that
the discretized derivativesηm are obtained by sampling the
corresponding continuous-domain derivativesLm{ϕ}, m =
1, 2, . . . , s. We illustrate this connection in Section V where
we presentηm, m = 1, . . . , s, for the case of the gradient
operator and polynomial B-splines.

IV. OPTIMIZATION ALGORITHMS

Settingp = 2 under the Gaussian likelihood model leads
to a Jλ that is quadratic inc in (20). The corresponding
optimization can be performed analytically and leads to an
explicit closed-form solution that is related tog in a linear
fashion. However,Jλ becomes non-quadratic as soon asp 6= 2
in the regularization or when the data-fidelity is dictated by a
non-Gaussian likelihood (irrespective of whetherp = 2 or not).
For non-quadraticJλ, the optimization has to be performed
numerically and the corresponding solution depends ong in
a non-linear fashion. This discussion is summarized in Table
I where we present the characteristics of different regularized
interpolation schemes. We first describe the optimization of
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quadratic cost (first row of Table I). Then, we give a de-
tailed exposition of the minimization procedure that we adopt
for some specific instances of non-quadratic costs involving
Gaussian and Poisson likelihoods (second and third rows
emphasized by bold-face font in Table I).

A. Quadratic Cost: Gaussian Likelihood with Quadratic Reg-
ularization (GLQ)

The cost to be minimized is composed ofLQ andΨQ, i.e.,

Jλ,GLQ
{g, c} =

∑

k∈Zd

(g[k]− (c ∗ b)[k])2 + λ 〈c ∗ r, c〉ℓ2 .

As Jλ,GLQ
is quadratic, setting its derivative with respect to

c[k] to zero yields the system of linear equations∀ k ∈
Z

d, (c∗b∗ b̄+λ r∗c)[k] = (g∗ b̄)[k], wherēb[k] = b[−k]. This
system can be solved in the discrete-space Fourier domain to
obtain

Cλ(zzz)|zzz=ejωωω = Hλ(ejωωω)G(ejωωω)

=

(
B∗(ejωωω)

|B(ejωωω)|2 + λR(ejωωω)

)

G(ejωωω), (23)

whereCλ, G, B, andR are thez-transforms of the solutioncλ,
the datag, and the sequencesb andr, respectively. Substituting
for cλ in (18) from (23) results in a smoothing-spline-type
solution that has already been investigated in [26]–[29] where
conditions necessary for the existence and stability of (23) are
derived in a rigorous fashion.

Equation (23) amounts to writingcλ = hλ ∗ g, wherehλ

is the digital-correction filter whosez-transform isHλ. The
solution is therefore linear, in the sense thatfλ is related tog in
a linear fashion. The implementation of (23) is straightforward
and can be done via FFTs (see Algorithm 1 in Appendix A-A).
We also note thatHλ(ejωωω)→ 1

B(ejωωω) for λ→ 0, in which case
fλ performs the standard interpolation ofg [20]. However,
while B can be separable, this is never the case forHλ when
λ > 0.

B. Non-Quadratic Costs

When Jλ is a non-quadratic, non-convex function of the
coefficients, conventional techniques such as the non-linear
conjugate gradient and BFGS methods [44] may be used for
determining its local minima. However, whenJλ is convex,
several methodologies such as the majorize-minimize (MM)
approach [30] (or, equivalently, bounded-optimization) and the
half-quadratic method [45]–[47] can be adopted for developing
elegant minimization algorithms that ensure a steady decrease
of Jλ. Moreover, it is well known that the minimization of
a convexJλ always leads to a solution (which need not
necessarily be unique) for whichJλ achieves its global-
minimum value.

In the present work, we resort to the MM approach [30] as
it is easy to comprehend: The idea, as described in [30], is to
replace the original difficult task by several easy-to-optimize
problems that will guarantee a monotonic decrease of the
original cost. We briefly review from [30] the mathematical
details underlying the MM philosophy in Section IV-B1 and

then apply it to the following two instances of convex non-
quadratic cost:3

1) Jλ,GLNQ
that combinesΨNQ with the Gaussian likeli-

hoodLQ (second row of Table I):

Jλ,GLNQ
{g, c} =

∑

k∈Zd

(g[k]− (c ∗ b)[k])2 + λΨNQ{c},

2) Jλ,PLNQ
that combinesΨNQ (or Jλ,PLQ

that usesΨQ)
with the Poisson likelihoodLPoisson:

Jλ,PLNQ
{g, c} = −

∑

k∈Zd

g[k] log((c ∗ b)[k])

+
∑

k∈Zd

(c ∗ b)[k] + λΨNQ{c},

where we have consideredLPoisson as a prototypical
example of a non-Gaussian likelihood model (third row
of Table I) that yields a convex non-quadratic data term.

1) MM Philosophy: In the MM setting, we construct an
auxiliary cost functionJ

AUX
{g, c|ct} at the current estimate

ct such that

Jλ{g, ct} = J
AUX
{g, ct|ct}, (24)

Jλ{g, c} < J
AUX
{g, c|ct}, c 6= ct. (25)

Then, the idea is to find the estimatect+1 at the next iteration
such that

J
AUX
{g, ct+1|ct} < J

AUX
{g, ct|ct}, (26)

which leads to a definite decrease ofJλ as shown below:

Jλ{g, ct+1} = J
AUX
{g, ct+1|ct}

+ Jλ{g, ct+1} − J
AUX
{g, ct+1|ct}

︸ ︷︷ ︸

< 0 using (25)
< J

AUX
{g, ct|ct}

︸ ︷︷ ︸

using (26)

= Jλ{g, ct}.

The whole philosophy relies on finding a suitable
J

AUX
{g, c|ct} that satisfies (24) and (25) and which is

also easy to minimize. In what follows, we make explicit
the steps necessary for findingJ

AUX
{g, c|ct} for the two

instancesJλ,GLNQ
andJλ,PLNQ

(or Jλ,PLQ
).

2) Gaussian Likelihood with Non-Quadratic Regularization
(GLNQ): In this case, we need to apply the MM principle only
on ΨNQ since the data term inJλ,GLNQ

is already quadratic.
Our construction of the auxiliary costJ

AUX
is based on the

inequality

|x|p ≤
2− p

2
|x0|

p +
p

2
x2|x0|

p−2, 1 ≤ p < 2 (27)

for somex0 6= 0 [30], where the equality holds only when
p = 2 or x = x0. The inequality is preserved under summation
and multiplication byλ > 0 which leads to

λΨNQ{c} ≤ λ
p

2

∑

k∈Zd

|χt[k]|p−2
s∑

m=1

((c ∗ ηm)[k])
2

+ Aχt
, (28)

3For thep-values considered,ΨQ andΨNQ are convex as they are derived
from (17). Therefore,Jλ,GLNQ

andJλ,PLNQ
(or Jλ,PLQ

) are convex as well
because of the convexity of associated data-fidelity terms.
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where χt[k] =
√
∑s

m=1 ((ct ∗ ηm)[k])
2 and Aχt

=

λ
(

2−p
2

)∑

k∈Zd |χt[k]|p is a constant independent ofc. Thus,
we obtain

J
AUX
{g, c|ct} =

∑

k∈Zd

(g[k]− (c ∗ b)[k])2

+ λ
p

2

∑

k∈Zd

|χt[k]|p−2
s∑

m=1

((c ∗ ηm)[k])
2

+ Aχt
, (29)

which satisfies (24) and (25). The details associated with the
minimization of the aboveJ

AUX
and the algorithm (Algorithm

2) that results therefrom are provided in Appendix A-B.
3) Poisson Likelihood with Non-Quadratic Regularization

(PLNQ): SinceJλ,PLNQ
contains a term of the formlog((c ∗

b)[k]), it is imperative that(c∗b)[k] > 0, ∀ k ∈ Z
d. Therefore,

whenever we use the Poisson likelihood4 LPoisson, we restrict
ourselves to basis functions that satisfyb[k] = ϕ(k) ≥ 0
∀ k ∈ Z

d (e.g., integer-degree polynomial B-splines). Then,
the above constraint simply boils down to ensuring the posi-
tivity of c.

To construct the auxiliary cost at the current estimatect, we
use the convexity oflog

(
1
·

)
[30, Equation (10)] to write

−
∑

k∈Zd

g[k] log((c ∗ b)[k])

≤ −
∑

k,q∈Zd

g[k]
b[k− q]ct[q]

(ct ∗ b)[k]
log

(

(ct ∗ b)[k]
c[q]

ct[q]

)

.

Similarly, Equation (27) and the convexity of(·)2 [30, Equa-
tion (9)] result in

λΨNQ{c}

≤ λ
p

2

∑

k,q∈Z
d

m=1···s

(
ηm[k− q]

α[k− q]
(c[q]− ct[q]) + (ct ∗ ηm)[k]

)2

× |χt[k]|p−2α[k− q]

+ Aχt
,

where αs are constants such thatα[k] = 0 if ηm[k] = 0,
α[k] > 0 if ηm[k] 6= 0, and

∑

k∈Zd α[k] = 1. After some
algebraic manipulations, we obtain

Jλ,PLNQ
{g, c} ≤

∑

q∈Z
d

J
AUX
{g, c|ct,q}, (30)

where J
AUX
{g, c|ct,q} is the decoupled auxiliary cost that

depends only onc[q]:

J
AUX
{g, c|ct,q}

= −ct[q]A1q log(c[q])

+ pλ c[q]

(
c[q]A2q

2
− ct[q]A2q +A3q +

Ab

pλ

)

+ A4q. (31)

4The development forJλ,PLQ
(ΨQ with LPoisson) follows from that of

Jλ,PLNQ
as we shall see in Appendix A-C.

TABLE II
z-TRANSFORMSB AND B(1) CORRESPONDING TO VARIOUS SPLINE

DEGREES

n B(z) B(1)(z)

1 1 1
2
(z−1 − z)

2 3
4

+ 1
8
(z−1 + z) 1

2
(z−1 − z)

3 4
6

+ 1
6
(z−1 + z) 1

2
(z−1 − z)

4
115
192

+ 19
96

(z−1 + z)

+ 1
384

(z−2 + z2)

11
24

(z−1 − z)

+ 1
48

(z−2 − z2)

5
11
20

+ 13
60

(z−1 + z)

+ 1
120

(z−2 + z2)

5
6
(z−1 − z)

+ 1
24

(z−2 − z2)

The quantityAb =
∑

k∈Zd b[k] > 0 is a constant independent
of ct and

A1q = (b̄ ∗ wt)[q], (32)

A2q =

s∑

m=1

(µ̄m ∗ |χt|
p−2)[q], (33)

A3q =

s∑

m=1

∑

k∈Zd

|χt|
p−2[k] (ct ∗ ηm)[k] ηm[q− k], (34)

wherewt[k] = g[k]
(ct∗b)[k] , µm[k] =

η2
m[k]
α[k] , andA4q in (31) is

an additive constant which is irrelevant for the minimization
of J

AUX
{g, c|ct,q}. The corresponding optimization procedure

and the algorithm (Algorithm 3) are described in Appendix
A-C.

V. SPLINE-BASED REGULARIZED INTERPOLATION

Here, we make explicit the link between the sequencesηm,
rm, m = 1, . . . , s, andϕ andL for spline-based interpolation
which is well-suited for imaging problems [20], [31]. We
consider a separable basis given by

ϕ(x) = ϕ(x1)ϕ(x2) · · ·ϕ(xd), (35)

whereϕ(x) is the univariate basis function. ForL, we select
the gradient operator∇∇∇. Then, the proposed regularization is
related to the total-variation functional (forp = 1) which
is of particular interest to us because of its edge-preserving
characteristics.

The separable nature ofϕ in (35) leads to the separability
of the corresponding discrete sequencesb, ηm, and rm, i.e.,
b[k] = b[k1] b[k2] · · · b[kd], whereb[k] = ϕ(x)|x=k. For L =
∇∇∇, we haves = d, which yields form = 1, . . . , d,

ηm[k] =

d∏

l=1
l 6=m

b[kl] b(1)[km],

whereb(1)[k] = ϕ′(x)|x=k and

rm[k] =

d∏

l=1l 6=m

a[kl] a(2)[km],
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TABLE III
z-TRANSFORMA(2) CORRESPONDING TO VARIOUS SPLINE DEGREES

n A(2)(z)

1 2 − (z−1 + z)

2 1 −
1
3
(z−1 + z) − 1

6
(z−2 + z2)

3 2
3
−

1
8
(z−1 + z) − 1

5
(z−2 + z2) − 1

120
(z−3 + z3)

4 35
72

−
11
360

(z−1 + z) − 17
90

(z−2 + z2) − 59
2520

(z−3 + z3) − 1
5040

(z−4 + z4)

5 809
2160

+ 1
64

(z−1 + z) − 31
1890

(z−2 + z2) − 907
24192

(z−3 + z3) − 25
18144

(z−4 + z4) − 1
362880

(z−5 + z5)

wherea[k] = (ϕ̄ ∗ ϕ)(x)|x=k , ϕ̄(x) = ϕ(−x), anda(2)[k] =
(ϕ̄′ ∗ ϕ′)(x)|x=k.

We list out the sequencesb, b(1), anda(2) (in terms of their
transfer functionsB, B(1), andA(2), respectively) in Tables
II and III, for ϕ = βn, which is the symmetric polynomial B-
spline of degreen ≥ 1. We see that, for splines of sufficiently
high degree,b(1) anda(2) are very different from the simple
finite-difference filters (e.g., first row of both Tables II and III)
that are typically used in the literature for TV-based image
restoration.

VI. EXPERIMENTS

We validate the proposed regularized interpolation scheme
by carrying out 2-D rotation experiments in the presence of
noise. We adopt the separable polynomial B-spline model
in Section V for all implementations and useL = ∇∇∇.
Standard interpolation is performed as described in [20]. In
the regularized case, we implement quadratic regularized (QR)
interpolation—Algorithm 1 corresponding to GLQ in Table
I—using FFTs. The various steps of non-quadratic-regularized
(NQR) interpolation—Algorithms 2 and 3 corresponding to
GLNQ and PLNQ, respectively, in Table I—are executed
via discrete convolutions. Periodic boundary conditions were
applied whenever necessary. In all experiments, we setp = 1
in (22) for NQR interpolation. The stopping criterion for
Algorithms 2 and 3 is‖ct+1 − ct‖

2 < 10−4 ‖g‖
N , whereN

is the size ofg. The performance of all methods is quantified
by

SNR(λ) = 10 log10

( ∑

k∈Ω f2
true(k)

∑

k∈Ω(ftrue(k) − fλ(k))2

)

, (36)

which is a function of the regularization parameterλ and
where {ftrue(k)}k∈Zd and {fλ(k)}k∈Zd are the values of
the continuous-domain noise-free signal and regularized in-
terpolant, respectively, sampled on the grid of data. The SNR
is evaluated inside a circular regionΩ concentric with the
image so as to avoid boundary effects. Our main aim in this
section is to characterize the best-possible performance of the
proposed regularized interpolation methods. For this purpose,
we conduct oracle-based experiments, i.e., we setλ so as to
obtainfλ that yields the highest SNR for a given realization of
the noisy datag. In Section VII-D, we introduce a data-driven
scheme for obtaining MSE-optimalλ directly from g.

A. RegularizedversusStandard Interpolation—Rotation Ex-
periment

We compare the proposed regularized scheme against stan-
dard interpolation by carrying out two sets of 2-D rotation
experiments where the setup is exactly similar to that described
in Section II-A. For the first experiment, we use a512× 512
image of a CT slice. For the second, we consider a stack
of clean MRI images [48] where we use different slices
picked randomly from the MRI stack for different realizations.
We perform exact-fitting interpolation (non-regularized)using
nearest-neighbour, linear B-spline, cubic B-spline and cubic
Keys basis [20], [49], while, for regularized methods, we
consider quadratic regularized (QR) cubic B-spline (Algorithm
1) and non-quadratic regularized (NQR) cubic B-spline (Al-
gorithm 2), respectively.

1) SNR Comparison:We plot the output SNR for each
of these methods in Figure 2a and 2b corresponding to the
CT slice and the MRI stack, respectively. In both figures,
we observe that the non-regularized methods exhibit the same
trend as depicted in Figure 1. The observation that is most
relevant to us is that both regularized interpolation methods
(QR and NQR) perform far better than the non-regularized
ones at high noise levels. The consistently superior trend
exhibited by regularized interpolation in both figures clearly
illustrate its robustness against noise. Finally, the output SNR
of the two regularized methods (for cubic B-spline) converges
to that of the non-regularized cubic B-spline for relatively
high input SNRs since the effect of regularization becomes
negligible under very low noise.

2) Visual Comparison: We present in Figure 3 output
images for one realization of the experiment in Section VI-A
(with MRI stack). Since standard cubic B-spline interpolation
is not regularized, the corresponding output (Figure 3c) isstill
noisy. On the contrary, regularized methods lead to significant
noise reduction as seen in Figures 3d and 3e corresponding to
QR-cubic and NQR-cubic outputs, respectively.

B. RegularizedversusStandard Interpolation—Image Zoom-
ing

We also compare standard and regularized (QR—Algorithm
1 and NQR—Algorithm 2) cubic B-spline-based interpolation
in a scaling experiment: Here, the objective is to zoom
into a noisy MRI image by an irrational factorτ = π.
For the proposed regularized interpolation schemes, we se-
lect λ = ζ(π)λopt, where ζ(·) is the scaling constant in
(9) and λopt is that value which maximizes the SNR (36)
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Fig. 2. Comparison of performance of non-regularized and regularized interpolation: Rotation experiments on noisy versions of (a) slice of a CT image and
(b) MRI slices.

(a) (b) (c) (d) (e)

Fig. 3. Visual Comparison for the rotation experiment; a cubic B-spline interpolation model was used for all schemes: (a) Noise-free image; (b) Noisy data
(rotated by -60◦, σ = 17.54); (c) Non-regularized (standard) result (SNR = 17.12 dB); (d) Quadratic regularized (QR) result (Algorithm 1 with optimal λ,
SNR = 19.49 dB); (e) Non-quadratic regularized (NQR) result(Algorithm 2 with optimalλ, SNR = 21.04 dB).

(a) (b) (c) (d) (e)

Fig. 4. Visual Comparison for the scaling experiment; a cubic B-spline interpolation model was used for all schemes: (a)Noise-free image indicating the
portion that is zoomed; (b) Noise-free image zoomed-in by non-regularized (standard) method; (c) Noisy data zoomed-inby non-regularized method; (d)
Noisy data zoomed-in by quadratic regularized (QR) method;(e) Noisy data zoomed-in by non-quadratic regularized (NQR) method.

for data given on the original (unzoomed) grid. The above
choice of λ is justified by (5) and (9) which indicate that
the regularization parameter must be suitably compensated
whenever the continuous-domain outputfλ is dilated. This
compensation is easily computed since Theorem 1 gives us
an explicit expression forζ(·) for the chosen regularization
operatorL = ∇∇∇. Substituting forL in (9) and (17) and
manipulating theLp-norm, it is seen thatζQR(τ) = 1 and
ζNQR(τ) = τ for QR (p = 2) and NQR (p = 1) interpolation
schemes, respectively.

We portray in Figure 4 the output images corresponding to

non-regularized-cubic (Figure 4c), QR-cubic (Figure 4d) and
NQR-cubic (Figure 4e) methods, respectively. It is clearlyseen
that both regularized methods exhibit superior performance
compared to the standard scheme in terms of noise reduction.
While they also seem to suppress some subtle components of
the underlying noise-free image (which is an inevitable by-
product of noise-filtering), the key point is that in performing
noise reduction NQR (Figure 4e) preserves prominent image
features, i.e., edges, better than QR (Figure 4d).
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Fig. 5. Non-quadratic regularized (NQR) interpolation forvarying spline-
degree.

C. Regularized Interpolation: Varying Spline Degree

To study the effect of the basis functionϕ on the discretiza-
tion of the non-quadratic regularization (NQR) in (22), we
repeat the experiment in Section VI-A (for MRI images) with
B-splines of integer degree varying from 1 to 5 and concentrate
on NQR interpolation (Algorithm 2). We show in Figure 5 the
performance of the NQR interpolation based on linear (n = 1),
quadratic (n = 2), cubic (n = 3), quartic (n = 4), and pentic
(n = 5) B-splines, respectively.

In terms of quality, higher-degree B-splines yield better
performance with NQR interpolation as the output SNR con-
sistently increases with the degree of the B-spline over the
entire range of input SNRs in Figure 5. Particularly, there is
a notable improvement going from linear to a higher-degree
B-spline. This is probably because, for the linear B-spline, the
discretization does not adequately capture the features ofthe
corresponding continuous-domain model, while the situation
improves whenn ≥ 2. For higher-degree B-splines (n ≥ 4),
we only observe marginal increments in the output SNR that
tends to saturate. This is to be expected since the cardinal
splines (corresponding to these B-splines) rapidly converge to
the sinc function with increasingn [31].

In terms of computation, since the number of filter-taps inb

and{ηm} (see Section V) increases linearly withn, the cost of
implementing the convolutions in Algorithm 2 also increases
linearly withn. Therefore, in practice, it is important to choose
a B-spline (ϕ, in general) that strikes a good balance between
computation load and quality. Based on our observations from
Figures 2-5, we find cubic B-spline to provide satisfactory
results.

D. Experiments with Poisson Noise

Until now, we have presented results that demonstrate
the superior performance of regularized interpolation (using
Algorithms 1 and 2) for data corrupted by additive Gaussian
noise. In this section, we investigate the proposed approach
using Algorithm 3 (in Appendix A-C) by performing rotations
in the presence of signal-dependent Poisson noise. As the
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Fig. 6. Comparison of the effect of likelihood on non-quadratic regularized
(NQR) interpolation: Plot of output SNR ofLPoisson-based method (PLNQ)
relative to LQ-based method (GLNQ) as a function of dynamic range
log10( fmax

fmin
). A positive value in the graph indicates thatLPoisson provides

better performance thanLQ for data corrupted by Poisson noise.

outcome was very similar to that exhibited in Figures 2a and
2b, in the interest of space we do not show the results here
but summarize our findings by stating again that the proposed
regularized interpolation scheme outperforms standard meth-
ods by a wide margin.

Our concern in this section is rather to investigate whetheror
not the choice of the data-fidelity term based on the likelihood
model is crucial for regularized interpolation. Specifically, we
propose to study the performance of quadratic data fidelityLQ

(which corresponds to a Gaussian likelihood) when applied to
signal-dependent Poisson noise and compare it withLPoisson

which is statistically the most appropriate data-fidelity term
for this type of noise. For this purpose, we repeat the rotation
experiment described in Section VI-A with the noise-free
phantom shown in Figure 7a, but we now consider data
corrupted by signal-dependent Poisson noise. An important
property of a Poisson random variable is that its variance
is equal (or proportional, if there is a multiplicative gain
factor) to its mean. Moreover, since the intensity value of the
noise-free phantom at a given pixel characterizes the signal-
dependent Poisson noise at that pixel (mean of the Poisson
random variable), the overall variance of the Poisson noiseis
controlled by the mean of the phantom. Therefore, we keep
the mean of the phantom constant but vary its dynamic range
(ratio of the maximum to the minimum intensity value) which
we believe provides a suitable handle to inspect how well
the two likelihood models capture image details in a varied
range of intensity levels for the same amount of input Poisson
noise. We perform NQR-cubic interpolation using Algorithm
2 (LQ data-fidelity) and Algorithm 3 (LPoisson data-fidelity),
respectively. We compute the output SNR of the latter relative
to the former (SNRPoisson − SNRGauss) and plot it in Figure
6 as a function of the dynamic range (inlog10-scale).

For the entire extent of abscissa in Figure 6, we see that
Algorithm 3 yields substantial improvement (≥ 1 dB) over Al-
gorithm 2 pointing to the superiority of the Poisson likelihood
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(a) (b) (c) (d) (e)

Fig. 7. Visual comparison of the effect of likelihood on non-quadratic regularized (NQR) interpolation: (a) Noise-free image, dynamic range of102.5; (b)
Data corrupted by signal-dependent Poisson noise; (c) Result based onLQ data-fidelity (Algorithm 2 optimized for best output SNR); (d) Result based on
LQ data-fidelity (Algorithm 2 with slight over-regularization); (e) Result based onLPoisson data-fidelity (Algorithm 3 optimized for best output SNR).

model in adapting to image details in a large range of intensity
levels. This is also clearly illustrated in Figure 7 where
we show the output images corresponding to one realization
of this experiment: The output of Algorithm 2 (Figure 7c)
retains the innermost circles, but is still noisy. Increasing the
regularization strength reduces the noise significantly (Figure
7d) but at the cost of loosing the smaller circles. However, the
output of Algorithm 3 (Figure 7e) is less noisy and preserves
the smaller circles as well.

VII. D ISCUSSION

A. QuadraticversusNon-Quadratic Regularization

Among the regularized schemes investigated in this work,
NQR interpolation (based on TV-like regularization) performs
significantly better than QR interpolation both in terms of
visual quality and SNR: In Figures 3 and 4, the NQR result
(Figure 3e and 4e) is sharper and less noisy than the QR result
(Figure 3d and 4d), while in Figures 2a and 2b we see that
NQR brings about a consistent SNR improvement over QR
interpolation for a range of input SNRs. We also observed
a similar trend in SNR improvement of NQR over QR in a
pure denoising scenario (where we repeated the experiments
in Section VI-A without applying rotations). These resultsare
a direct consequence of the fact that TV-like NQRs have a
good ability to preserve edges while Tikhonov-like QRs tend
to blur them thus compromising the quality. Therefore, from
a performance point of view, it is better to employ TV-like
NQR for regularized interpolation.

B. Influence of the Likelihood Model

We were able to present an example in Section VI-D to illus-
trate a case where the likelihood term plays a significant role
in variational problems. There, the Poisson likelihoodLPoisson

outperforms the Gaussian likelihoodLQ sinceLPoisson pro-
vides intensity-dependent regularization that adapts to the
non-stationary nature of Poisson noise. This is unlikeLQ

which leads to a uniform regularization that either washes
out low-intensity details (Figure 7d) or retains them at the
cost of performing poorly in high-intensity regions (Figure
7c). However, it must be noted that we had to tailor the
circular phantom in Figure 7a to demonstrate the advantage
of usingLPoisson for Poisson noise, by enforcing the presence
of dominant peaks at high intensities in the histogram.

This is to be contrasted with the many experiments we
performed with real-world autofluorescence images, where
we observed that there was no significant difference in the
performances ofLPoisson andLQ. Our understanding of this
behavior is that, in those situations, the regularization had a
stronger effect on the solution than the likelihood. Therefore,
when the data-fidelity term is less important than the regu-
larization, algorithms can be designed to reduce the amount
of computations. For instance, since Algorithm 2 usesLQ

for the data fidelity, it only requires the linearization of the
regularization—the corresponding optimization is simpleas
it only amounts to solving a set of linear equations. This is
difficult to accomplish under the Poisson-likelihood model—
the logarithm inLPoisson requires careful handling of the
problem as positivity of the solution often becomes a harsh
constraint.

C. Computational Cost

In our analysis so far, we ranked the various regularized
interpolation algorithms purely based on performance gain.
However, we must also consider the computation cost associ-
ated with these algorithms. The authors of [20] performed a
thorough cost-performance analysis for standard interpolation;
for a given quality measure, their emphasis was on reducing
the cost of evaluatingϕ(x− k) for many arguments(x− k).
In the context of regularized interpolation, since we are
concerned with obtaining the coefficientsc, we only consider
the cost of computingc for a givenϕ.

For standard interpolation,c is computed by linear filtering
of the data [20] which can be achieved withO(N) complexity.
In the context of regularized interpolation, Algorithm 1 is
easily implemented in the Fourier domain (via FFTs5)—it
requires aboutO(N log(N)) operations. Thus, with only a
slightly larger computation load (an extralog(N) factor),
Algorithm 1 yields significant improvement in quality and is
generally preferable to standard interpolation.

Algorithms 2 and 3 are non-linear and iterative in nature:
The CG-solver forms the predominant step in Algorithm 2 (see
Appendix A-B), while in Algorithm 3, the major workload

5In this work, the Radix-2 Cooley-Tukey method was used whichrequired
the data to be zero-padded to a size that is a power of 2. Correspondingly,
the time taken for Algorithm 1 is the same for the last three rows in Table
IV.
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TABLE IV
T IME TAKEN (IN SECONDS) BY VARIOUS SCHEMES FOR COMPUTING

COEFFICIENTS

Algorithm

Standard Regularized

Image Size Algorithm 1 Algorithm 2 Algorithm 3

256 × 256 0.071 0.04 10.57 21.90

340 × 340 0.073 0.17 20.22 39.79

420 × 420 0.077 0.17 32.97 62.30

512 × 512 0.096 0.17 51.04 95.32

is in the computation of the constantsA1q, A2q, andA3q

(see Appendix A-C). These operations require the evaluation
of several convolutions with the estimatect which are in
turn repeated for each iteration. It is therefore clear that
these algorithms are computationally more demanding than
Algorithm 1.

We present in Table IV the execution times of standard (that
of [20]) and regularized schemes (Algorithms 1-3) on a 2.66
GHz Intel Macintosh for rotation experiments with the circular
phantom (shown in Figure 7a) of varying sizes. The cubic B-
spline model was used in all algorithms. Algorithms 2 and
3 were executed until they satisfied the convergence criterion
specified at the beginning of Section VI. The durations re-
ported in each row of Table IV have been averaged over 10
realizations.

As expected, Algorithm 1 is much faster than Algorithms
2 and 3, while Algorithm 2 seems to have a considerable
lead over Algorithm 3. The latter observation is in tune with
our discussion at the end of Section VII-B. However, from
a quality point of view, Figures 2a and 2b indicate that
Algorithm 2 is preferable to Algorithm 1 for strong Gaussian
noise. Therefore, Algorithm 2 is best-suited to carry out
regularized interpolation in a general setting. However, at low
noise levels, the effect of regularization becomes negligible
(the output SNR curves in Figures 2a and 2b eventually meet);
then, it may be desirable to use Algorithm 1 as it has the lowest
computational complexity.

D. Selection of the Regularization Parameter

Since the regularization parameterλ balances regularization
against fidelity to the data, choosing an appropriateλ is crucial
for obtaining meaningful results. While our experiments used
oracle-based tuning ofλ, we now propose a data-driven
means of selecting an appropriate value for this parameter
to minimize the mean-squared error (MSE) given by the
averaged-value of the denominator of (36)

MSE(λ) =
1

NΩ

∑

k∈Ω

(ftrue(k)− fλ(k))2, (37)

whereNΩ is the cardinality of the setΩ.
Generalized cross-validation (GCV), which does not require

the knowledge of the noise variance, is often advocated for
determiningλ as it yields asymptotically optimal performance
[26] (under certain hypotheses [50, Proposition 3.1]), i.e.,
λGCV minimizes (37) asNΩ →∞. However, its applicability
is limited to linear algorithms (e.g., Algorithm 1 in this paper).
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Fig. 8. Plot of GCV(λ), SURE(λ), and MSE(λ) versusλ for one realization
(at 0 dB input SNR) of a rotation experiment in the presence ofnoise. We
see thatλSURE = 4.23 is very near the optimum valueλOracle = 4.10,
unlike λGCV = 3.04. Correspondingly, the index MSE(λSURE) = 386.91
is lower than MSE(λGCV) = 400.72 and is very close to the oracle minimum
MSE(λOracle) = 386.65, indicating that SURE-based selection leads to a
better result.
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Fig. 9. MCSURE(λ) captures the trend of MSE(λ) for NQR-cubic
interpolation scheme at 0 dB input SNR.

Our goal here is to minimize(37) directly. To circumvent
the dependence of MSE(λ) on the unknown noise-free samples
{ftrue(k)}k∈Zd , we propose the use of Stein’s unbiased risk
estimate (SURE) [51], which provides a means for estimating
MSE(λ) unbiasedly from the datag. Unlike GCV, SURE
requires the knowledge of the noise variance. But, as it directly
relates to MSE(λ), SURE is more robust than GCV and yields
optimal performance even in the non-asymptotic case.

In the context of variational problems, SURE has been put
to use under one form or another for tuningλ in smoothing-
spline-like linear algorithms [26], [52]. For the non-linear
case, we recently developed a Monte-Carlo scheme in [53]—
Monte-Carlo SURE (MCSURE)—whose numerical evaluation
requires twice the cost of the original algorithm but is appli-
cable to iterative as well as non-iterative denoising methods
with arbitrary nonlinearities. Since MSE(λ) measures the error
in the data domain, MCSURE is applicable in the present
scenario. So, we adopt the analytical SURE formula proposed
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TABLE V
OUTPUT SNROBTAINED BY MSE-BASED (ORACLE) AND SURE-BASED TUNING OFλ

Output SNR (dB)

QR-Cubic NQR-CubicInput SNR (dB)
MSE-based SURE-based GCV-basedMSE-based MCSURE-based

0 13.95 13.95 13.82 14.13 14.11

4 15.75 15.75 15.43 16.10 16.10

8 17.66 17.66 16.94 18.22 18.22

12 19.71 19.71 18.28 20.45 20.44

16 21.95 21.95 19.67 22.85 22.85

20 24.40 24.40 21.39 25.44 25.43

24 27.09 27.09 25.20 28.25 28.24

28 30.03 30.03 29.09 31.19 31.19

32 33.19 33.19 32.86 34.23 34.22

36 36.39 36.39 36.39 37.20 37.19

40 39.35 39.35 39.23 39.86 39.85

44 41.78 41.78 41.88 42.02 42.02

48 43.43 43.42 43.40 43.51 43.51

52 44.38 44.38 44.37 44.38 44.38

56 44.83 44.82 44.80 44.83 44.83

60 45.04 45.04 44.99 45.02 45.02

in [26, Theorem 1.1] for regularized interpolation based ona
linear algorithm and propose the use of MCSURE for those
based on a non-linear algorithm, respectively. In the sequel, we
demonstrate that SURE(λ) and MCSURE(λ) not only mimic
the behavior of MSE(λ) very closely, but also yield a good
estimate of the optimalλ that minimizes MSE(λ).

We repeat now the experiment described in Section VI-A
(with MRI stack) where, for each noisy realization, we com-
pute GCV(λ) [26, Equation (1.9)] and SURE(λ) [26, Equation
(1.8)] for QR-cubic and MCSURE(λ) [53, Equation (6)]
for NQR-cubic regularized interpolation schemes along with
MSE(λ) corresponding to each of these methods. The noise
variance was assumed to be known in all the experiments for
computing SURE(λ) and MCSURE(λ) (in practice, an esti-
mate can be used). We plot GCV(λ) and SURE(λ) in Figure 8
and MCSURE(λ) in Figure 9, respectively, in comparison with
the individual MSE(λ) for one realization of this experiment
at 0 dB input SNR (test image shown in the inset). It is
clearly seen that the SURE curves capture the trend of the
corresponding MSE curves. Moreover, they also yield very
close estimates of the optimalλ in both cases, while GCV
fails to achieve this. This indicates that a SURE-based tuning
procedure is more reliable than GCV even at such low levels
of input SNR.

We further quantify the performance of GCV, SURE, and
MCSURE in Table V where we list out the output SNR (aver-
aged over all the realizations corresponding to an input SNR)
obtained by minimizing GCV and SURE for the QR-cubic
and MCSURE for the NQR-cubic interpolation algorithm,
respectively. Also provided are the oracle values of the output
SNR (obtained by minimizing the corresponding MSEs). We
see that the GCV-based result is far from the oracle for low
input SNRs (< 28 dB). This may be because the hypotheses
[50, Proposition 3.1] required for the optimality of GCV are
probably not fulfilled for the QR-cubic method. However,

SURE-based tuning consistently yields SNR values very close
to the oracle for both QR and NQR methods indicating that it
can be reliably employed for data-driven adjustment ofλ.

VIII. S UMMARY & CONCLUSIONS

Standard interpolation performs exact fitting of the given
data. In the presence of noise, we have shown that this
can have a detrimental influence on the interpolation quality.
To interpolate noisy data, we have developed a regularized
scheme that counterbalances the effect of noise by imposing
smoothness constraints on the resulting continuous-domain
solution. We have adopted an integer shift-invariant signal
model for interpolation where the model parameters (coef-
ficients of the integer-shift-invariant expansion) are obtained
by minimizing the statistical infidelity of the solution to the
given data (negative log-likelihood data term) subject to areg-
ularization constraint prescribed as theLp-norm of a general
vector derivative of the solution. In addition to Tikhonov-
like quadratic functional (which leads to smoothing-spline-
like interpolants), the formulation includes non-quadratic ones
in the spirit of edge-preserving total-variation regularization.
We have presented algorithms based on the MM (majorize-
minimize) strategy to perform the optimization of the coeffi-
cients for non-quadratic cost criteria.

We have carried out 2-D rotation experiments in the pres-
ence of noise and numerically quantified the performance
of standard (non-regularized) and regularized interpolation.
We observe that regularized interpolation always yields a
significant improvement in quality over standard interpolation.
Furthermore, among the regularized methods, we could note
that, in the presence of noise, non-quadratic regularized (NQR)
interpolation consistently outperforms the quadratic regular-
ized (QR) one; we associate this phenomenon to the fact
that NQR interpolation preserves edges and achieves better
noise reduction than QR interpolation. We also illustrated
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that Stein’s unbiased risk estimate (SURE) can be reliably
employed for data-driven selection of the regularization pa-
rameter for performing optimally regularized (QR and NQR)
interpolation. We conclude from these observations that reg-
ularized interpolation, specifically, NQR interpolation,can be
of potential interest in medical-imaging applications.

APPENDIX A
ALGORITHMS FORREGULARIZED INTERPOLATION

A. Minimization ofJλ,GLQ

Algorithm 1: Algorithm for minimizing Jλ,GLQ
for a

given λ

Step 1: Precompute and storeB(ejωωω), R(ejωωω), and
G(ejωωω)

Step 2: ConstructHλ(ejωωω) using (23) for the givenλ
and computeCλ(ejωωω)

Step 3: Perform inverse Fourier transform ofCλ to
obtaincλ

B. Minimization ofJλ,GLNQ

From (29), we note thatJ
AUX
{g, c|ct} is quadratic inc. We

minimize it by setting its derivative to zero which results in
the following system of linear equations:

(c ∗ b ∗ b̄)[k] + λ
p

2

∑

q∈Z
d

m=1···s

|χt[q]|p−2 (c ∗ ηm)[q] ηm[q− k]

= (g ∗ b̄)[k], ∀ k ∈ Z
d, (38)

where b̄[k] = b[−k]. The presence ofχt in (38) prohibits
the use of Fourier-domain techniques such as those used
in Section IV-A. Nevertheless, the MM technique requires
only a decrease ofJ

AUX
; there is no need to minimize it

completely. Therefore, efficient numerical schemes such as
the conjugate-gradient (CG) method can be utilized to solve
(38) partially. Forp < 2, the factor |χt[·]|

p−2 can pose a
problem wheneverχt = 0. An ad hoc modification is to
saturateχt to a small positive valueǫ (i.e., χt ← max(ǫ, χt))
to avoid instabilities in (38). In our implementation, we chose
the initial estimatec0 to be the given datag slightly perturbed
by additive noise. This ensured thatχt 6= 0 at all iterations.

Algorithm 2: MM algorithm for minimizingJλ,GLNQ
for a

given λ andp

Step 1: Precompute the sequencesb̄ ∗ b andg ∗ b̄

Step 2: Initial estimate =c0; t = 0
RepeatStep 3 to 5 untilStop Criterion is met

Step 3: Compute the sequenceχt usingct

Step 4: Apply CG iterations to partially solve forct+1 in
(38)

Step 5: Sett = t + 1

While we used Algorithm 2 in all our experiments, it
may be beneficial to consider the following alternative which
provides a mathematically rigorous means of tackling the
instability of (38). This procedure applies for minimizing
J

GLNQ
and requires the assumption that the kernelb has a

stable convolution inverseb−1 such that(b−1 ∗ b)[k] = δ[k].

Specifically, letB, B−1, and Rm denote toeplitz matrices
corresponding to the sequences{b[k]}k∈Zd, {b−1[k]}k∈Zd ,
and{ηm[k]}k∈Zd , respectively. Then, rewriting (38) in terms
of matrices, we obtain

(BT B + RT ΥΥΥt R) c = BT g, (39)

where c and g are column vectors containing sequences
{c[k]}k∈Zd, and {g[k]}k∈Zd, respectively, and R =
[RT

1 RT
2 · · · R

T
s ]T, andΥΥΥt = λp

2 diag{Υt, . . . , Υt
︸ ︷︷ ︸

s times

}, with Υt

a diagonal matrix containing entries{|χt[k]|p−2}k∈Zd . Per-
forming manipulations on (39) using matrix inversion lemma,
we get

c = B−1 g − (BT B)−1RT z, (40)

(ΥΥΥ−1
t + R (BT B)−1 RT) z = RB−1 g. (41)

Rewriting (40) and (41) in terms of convolutions, we obtain

c[k] = (b−1 ∗ g)[k]−

s∑

m=1

(b−1 ∗ b̄−1 ∗ η̄m ∗ zm)[k], (42)

where b̄−1[k] = b−1[−k], η̄m[k] = η[−k], and
{zm[k]}sm=1, k∈Zd is the solution of the following linear
systems of equations:∀ k ∈ Z

d, andm = 1, . . . , s,

2

λ p
|χt[k]|2−p zm[k] +

s∑

l=1

(ηm ∗ b−1 ∗ b̄−1 ∗ η̄l ∗ zl)[k]

= (ηm ∗ b−1 ∗ g)[k]. (43)

Thus, at iterationt, we employ the CG method to partially
solve for a set of temporary variables{zm}

s
m=1 using (43)

which is then used to updatec in (42). The linear system
corresponding to{zm}

s
m=1 now involves|χt[·]|

2−p rather than
|χt[·]|

p−2 which does not explode whenχt = 0 for p < 2.
Based on (40)-(43), we provide the following alternative to
Algorithm 2 for minimizingJ

GLNQ
:

Algorithm 2a:MM algorithm for minimizingJλ,GLNQ
for a

given λ andp

Step 1: Precomputeb−1∗g, ηm∗b
−1∗g, b−1∗ b̄−1∗ η̄m,

and ηm ∗ b−1 ∗ b̄−1 ∗ η̄l, l, m = 1, 2, . . . , s

Step 2: Initial estimate =c0; t = 0
RepeatSteps 3 to 6 untilStop Criterion is met

Step 3: Compute the sequenceχt usingct

Step 4: Apply CG iterations to partially solve for
{zm,t}

s
m=1 in (43)

Step 5: Computect+1 in (42) using{zm,t}
s
m=1

Step 6: Sett = t + 1

C. Minimization ofJλ,PLNQ

From (30) and (31), we see that minimizingJλ,PLNQ
{g, c}

simply amounts to minimizing each of the individual
J

AUX
{g, c|ct,q} which is accomplished by setting their deriva-

tive with respect toc[q] to zero. The solution is given by

c[q] =
1

2λ pA2q

(

−γ +
√

γ2 + 4λ p ct[q]A1qA2q

)

, (44)
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whereγ = λ p (A3q − ct[q]A2q) +Ab. Since, the sequences
b and χt are non-negative and becauseg represents the data
counts under the Poisson noise model, we have thatA1q > 0
andA2q > 0 wheneverct[q] > 0 ∀ q ∈ Z

d. Thus, the solution
given by (44) is always positive. Based on (30)-(34) and (44),
we present Algorithm 3 for the minimization ofJλ,PLNQ

.
In the case of quadratic regularization, we have that

ΨQ{c} = 〈c, r ∗ c〉ℓ2 =
∑

k∈Zd

s∑

m=1

((c ∗ rm 1
2
)[k])2, (45)

whererm 1
2

is specified via itsz-transformRm 1
2
(zzz)|zzz=ejωωω =

√

Rm(ejωωω) whereinRm is the z-transform of the sequence
rm in (21). Comparing (22) and (45), we see that Algorithm
3 can be applied to minimizeJλ,PLQ

by settingp = 2 and
replacingηm by rm 1

2
in (33) and (34).

Algorithm 3: MM algorithm for minimizing Jλ,PLNQ
for a

given λ andp

Step 1: PrecomputeAb and the sequenceµm in (33)
Step 2: Initial estimate =c0; t = 0

RepeatSteps 3 to 5 untilStop Criterion is met
Step 3: Update constantsA1q, A2q, A3q using (32)-(34)

∀ q ∈ Z
d

Step 4: Computect+1 using (44)
Step 5: Sett = t + 1
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