
1

Friendly “ImageJ”:

A pedagogical tool for teaching image-processing programming in Java

Daniel Sage and Michael Unser

Swiss Federal Institute of Technology Lausanne

Biomedical Imaging Group

EPFL LIB

Bât. BM 4.135 STI/BIO-E

1015 Lausanne, Switzerland

daniel.sage@epfl.ch and michael.unser@epfl.ch

2

Abstract:

Image processing can be taught very effectively by complementing the basic lectures with computer

laboratories where the participants can actively manipulate and process images. This offering can be

made even more attractive by allowing the students to develop their own image processing code within a

reasonable time frame. After a brief review of existing software package that can be used for teaching

IP, we present a system that we have designed to be as “student-friendly” as possible. The software is

built around ImageJ, a freely available, full-featured, and user-friendly program for image analysis. The

computer sessions are given in alternation with the lectures; typically, a three-hour session at the end of

every chapter. The sessions are in the form of assignments that guide the students towards the solution

of simple imaging problems. The starting point is typically the understanding and testing of some

standard image-processing algorithm in Java. Next, students are asked to extend the algorithms

progressively. This constructive approach is made possible thanks to a programmer-friendly

environment and an additional software interface layer that greatly facilitates the developments of plug-

ins for ImageJ. Taking into account the fact that our students are not experienced programmers (they

typically do not even know Java), we use a “learn by example” teaching strategy, with good success.

Keywords:

Teaching image-processing, Programming image-processing, Computer laboratories, ImageJ, Java.

3

I. INTRODUCTION

Because of the widespread use of imaging, there is an ever pressing need to train engineers that are

proficient with this new technology. This trend is likely to continue as the cost of imaging devices

(digital camera, scanners, etc) keeps declining, and as the power of personal computers keeps increasing,

making sophisticated image processing algorithms available to a larger base of users and increasing the

potential number of applications.

Many universities are meeting this demand by offering a basic course in image processing

(IP)—typically, a two semester class—that covers all the standard techniques. While image processing

comes in many gradations, it is typically a topic that is perceived as being rather theoretical. Image

processing is indeed a subject that lends itself quite naturally to a rigorous, mathematical treatment. The

mathematics are not difficult but the notation can be intimidating because of the multiple sums and

indices. On the other hand, image processing is also a very practical discipline; it is extremely

motivating for students to see that the formulas are easily translated into algorithms, often with

dramatic visual effects.

Since engineering students are often more interested in applications than in pure theory, there a strong

incentive for instructors to complement the basic lectures in IP with computer laboratories. A number

of initiatives in this area have demonstrated that students gain a lot in their understanding [1]; they

develop in-depth understanding and have a better retention of theoretical material [2]. The students

become motivated to study theory if they can experiment with algorithms [3] and visualize the results.

Interactive software is generally perceived as a useful tool for complementing textbooks [4] [5].

4

The purpose of this paper is to discuss some of the important issues relating to the use of computer

sessions in IP and to present some practical and cost-effective solutions for implementing these ideas in

the classroom. It is organized in such a way that we move from the global to the more specific. In the

first part, we discuss the advantages of hands-on experimentation with IP and identify the key points

that need to be taken into account to make such an approach successful. We then briefly review the

software solutions (both commercial and freeware) that are currently available for teaching image

processing. In the second part, we get more specific and describe a system (IPLab) that was developed by

us at the Swiss Federal Institute of Technology in Lausanne (EPFL) and that is made freely available to

the academic community. While our initial motivation was to provide a system where the participants

would actively manipulate and process images, we took the challenge further so that we would have the

students write their own image-processing code down to the pixel level. Of course, we also wanted to

give them the benefit of a user-friendly interface and of a software platform that they may extend to

perform sophisticated image processing tasks. Even though a rudimentary knowledge of the Java syntax

is required (which can be acquired in a one-hour lesson), we should emphasize that this knowledge comes

at essentially no effort from the part of the student and that the laboratories require little programming

skills. There is no need to teach the students how build a complete object-oriented applications [6].

Rather, they are invited to understand some example code, which they then modify to achieve their

goals.

II. HANDS-ON IMAGE PROCESSING

Even when the lectures include visual demonstrations of image-processing algorithms, students are often

passive. Learning the mathematical concepts can be facilitated with hands-on experimentation. The

first level of involvement is to apply the algorithms to real images and to see the results. The second is

to take part in the programming itself and to truly experience how formulas translate into algorithms.

2.1 Image processing by direct image manipulation

The usual way to get the students involved is to provide a convivial computer environment that allows

them to try out different algorithms and to visualize the results. The key points here are the following:

- Basic manipulations to illustrate and reinforce the theoretical concepts treated in the course.

Visual experimentation with different sets of parameters.

- Use of practical examples to demonstrate image-processing applications. Chaining of simple

modules.

- Need for a user-friendly interface to facilitate interaction with the computer. Production of

results that are visually appealing.

Such experimentation can be achieved easily by using standard image-processing software.

5

2.2 Programming image-processing algorithms

Once the students are accustomed to manipulating images, the challenge is to have them program simple

image-processing algorithms. Our key requirements for this more ambitious level of involvement are as

follows:

- The best way to truly understand an algorithm is obviously to code it and to test it. Students

should get the opportunity to implement the most representative algorithms.

- The exercises should be accessible to inexperienced programmers (very basic knowledge in one

language, e.g., C). The assignment should concentrate on image-processing issues alone. To

facilitate programming, we propose a “learning by example” approach: students receive the

source code of a basic image-processing task and are asked to extend and/or complete the

algorithm.

- The students should not have to worry about data types. The code should be as generic as

possible.

- The programming should be simple and robust. The graphical user interface and input/output

task should be provided to avoid spending time on what is non-essential to our purpose (i.e.,

teaching image processing).

- The edit-compile-execute programming cycle should be short to see immediate effects on the

images when modifying the code.

The two traditional ways to practice image processing are through the use of a low-level language (such

as C) or a high-level language (such as Matlab). The low-level language offers the advantage of

computational speed, an important factor when dealing with images, but students waste a lot of time

with basic input-output operations (reading files, data types, memory allocation, accessing pixels and

displaying images) and rapidly lose their enthusiasm. A high-level language, on the other hand, offers a

rich functionality with a large palette of imaging routines, but tends to hide many important aspects of

the algorithm.

III. OVERVIEW OF AVAILABLE PACKAGES

We now proceed with a brief review of the software solutions that are presently available to instructors.

There has been a substantial effort by members of this community to create didactic tools for teaching

image-processing; a number of systems have been described in the literature and part of them are

available on the Internet (cf. the links we are providing in our reference list). Special sessions at

conferences and workshops have been organized on this topic [7] [8]; a recent review on computer

vision education is also available [9].

The choices of the instructor are usually oriented by the following considerations:

6

1) Scope of the course: digital signal and image processing, mathematical imaging, computer vision,

multimedia.

2) Background of the students: electrical engineering or computer science? How proficient are they

with programming?

3) Level of the course: undergraduate or graduate level. Note that there are even attempts to

introduce image processing at the high-school level [10].

4) Goals of the interactive tools: demos for complementing the lectures, practical experimentation

with images, or/and programming of algorithms.

5) Commercial or freeware: this is an important consideration both from the ethical and economical

point of view.

Most teachers want a plug-and-play system that does not have a steep initial learning curve; they also

want an immediate visual feed-back of the effect of IP operators [6]. An ideal tool should also be able to

solve realistic problems and be relevant for real-world applications [1, 3].

3.1 Commercial packages

Several commercial software packages can be used for setting up image-processing computer

laboratories. The most prominent one is Matlab of The MathWork Inc. [11], a high-level programming

language that is ideally suited for manipulating vectors and matrices. It is widely used in the scientific

community for fast prototyping, and has been adopted by many universities [12] [13]. Matlab with its

accompanying Image Processing Toolbox is an attractive framework for teaching image processing

[14]. The interactive nature of Matlab also encourages “learning by discovery” [15].

Khoros Pro 2001 of Khoral Inc. [16] is an integrated development environment for image processing

with a special module for teaching known as the "Digital Image Processing Course" [17]. Khoros has

earned its place as a pedagogical platform for image processing [1] [5] mainly because it offers a visual

programming environment coupled with an easy way to link C functions. It also has a large base of users

who are willing to exchange their knowledge [18].

Image-processing laboratories have also been developed with other commercial software, including
Mathematica [19] of Wolfram Research Inc [20], LabView [21] of National Instruments Corp. [22], or

AVS Express [23] of Advanced Visual Systems Inc. [24].

7

The down side with these commercial products is that they are often expensive, and require the

sustained availability of a campus-wide license. In many cases, students are not authorized to use the

software at home. For these and other reasons, voices have been raised against the use of commercial

software which may conflict with the aims of academic institutions [25]. In addition, many of the

packages are platform-dependent and the image-processing operators are often provided as black-box

(built-in) routines [23]. Hence, the students do not have access to the core part of the code and cannot

visualize intermediate results; this also implies that they cannot easily compare different

implementations of an algorithm.

3.2 Non-commercial C-based solutions

Chronologically, the first group of non-commercial offerings is based on the C language (later on also

C++) [3] [2]. In [6], the authors argue that the C language is the closest to being universal—it is the

choice of many image-processing and numerical-analysis libraries. Some libraries have been developed in

academia specifically to provide support for image-processing teaching [26] [27]. The C language gives

fast execution code and the students really need to worry about the “hard-core” part of the algorithms.

According to [2], students should absolutely know how to handle pointers, which can represent a time-

consuming and frustrating task. An interesting class library for image processing (CLIP) [6] was

developed to handle memory management tasks—with a small overhead time—and to do other

technical and common operations through a small user interface which is easy to learn. Of course, there

are also other proposals based on more less common programming languages such as Python [28], Lisp

[29] (which uses an unfamiliar syntax and is less adapted to teaching), or Tcl/Tk (the CVIPTools

frameworks [30]).

3.3 Non-commercial Java-based solutions

Recently, more and more programmers are turning to Java for writing image processing software that is

plateform-independent. Java has also other advantages that are discussed in the next section. Below, we

give an overview of available Java packages that can be used for pedagogical purposes, even though not

all of them were developed with that specific goal in mind. All these packages are freely available on the

Internet.

- NeatVision provides an image-analysis and software development environment [31]. Many of its
algorithms are based on a reference book [32]. It has a nice user interface. It is strongly oriented

towards computer vision as opposed to signal processing.

- Java Vision Toolkit: (JVT) software library for machine vision and image processing

applications [33] [34]. Only few sessions available; the package is rather rudimentary.

- ImageJ: a powerful, full-featured image-processing program developed at the NIH [35]. ImageJ is

used on a routine basis by biologists worldwide to assist them with the processing and analysis

their images. ImageJ also has an extensive library of plug-ins developed by users.

8

- Hypertext Image Processing Reference (HIPR): a collection of image-processing resources to

illustrate and try-out standard IP operators using interactive applets [36], [37].

- Java Image and Graphics Library (JIGL): image-processing library, but without a graphical user

interface [38].

- IPlab with ImageAcess: this is a collection of documented image processing laboratories

(downloadable sessions including handouts for the student and software) that was designed by us

to take advantage of the features of ImageJ. An important addition is the “ImageAccess”

software layer which greatly facilitates the programming of plug-ins, making it accessible to

students.

Many of these image-processing frameworks may be used equivalently as a foundation for creating

interesting image-processing laboratories. According to us, the availability of a graphical user interface is

an important prerequisite to make the software attractive and easy-to-use for the students. In the

packages described above, especially the most comprehensive ones, the programming environment

offered to the user is often rather general and technical. This is the reason why we developed a “student-

friendly” intermediate interface layer, called ImageAccess, to be described in the section "ImageAccess:

the interface layer". Even though it was originally designed for ImageJ, it can be ported to other

frameworks as well. Presently, in addition to ImageJ, it supports applets for the web, and can cooperate

with the Java Virtual Machine integrated into Matlab. It is thus also possible to call Java image-

processing routines directly as Matlab functions.

We believe that making the tools and student sessions available to the community through the Internet

does not only assist and inspire others to design and share their own classes, but also provides the

authors with valuable feedback for further enhancements. We will now give a more detailed description

of the system that we are promoting and comment on our experience in using these tools for teaching

image processing.

IV. THE IPLAB /IMAGEJ COMBINATION

Our goal in developing IPLab was to offer an environment where the students could implement the

algorithms literally as they are seen in the course [39]. It was also an attempt to combine the

advantages of low-level languages and high-level languages by borrowing the best from both

philosophies.

Specifically, we have chosen to base our system on:

- Java as programming language.

- ImageJ [35], one of the most comprehensive IP freeware available, for a graphical user interface

which provides convivial interaction with the full functionality of an image processing

application.

9

- ImageAccess, a “student-friendly” software layer that we have developed to meet the

requirements listed in Section 2.2. It simplifies and robustifies the access to pixel data without

having to worry about technicalities and the interfacing with ImageJ.

- Sample source code to enable students to extend the algorithm progressively and make them

learn by example.

4.1 Java

We have chosen to develop our pedagogical tool in Java. The main arguments in favor of this language

are the following: (1) Java is platform-neutral, hence well-adapted to the diversity of the students

community; (2) Java is free; (3) Java is network-ready. This makes it possible to develop remote

teaching and virtual laboratories [40], even though this is not the way we work—we prefer to maintain

contact with our students.

Some authors claim that Java is a natural language for interactive teaching [41], and that it is ready for

signal and image processing applications [42]. Java is an object-oriented language which is desirable for

image-processing programming [43].

For our part, we add the following arguments:

- Java is robust with a good handling of errors and garbage collection; this eliminates the main

source of bugs and crashes;

- Java is syntactically close to C and easy to learn if we provide examples and templates for the

methods;

- Java is reasonably fast: applying a 3*3 convolution filter takes only a fraction of a second on a

512*512 pixels image; this means that the students get almost immediate feedback.

Another argument not to be neglected is the “hype” factor: students are attracted by Java, a modern and

fashionable language that plays a major role on the Web.

4.2 ImageJ and plug-ins

Our image-processing system is based on a public-domain software: ImageJ. ImageJ is a general-purpose

image-processing program; it is the Java offspring of the well-known NIH Image software. As a result, it

can run on any platform with a Java Virtual Machine (Mac, Windows, various flavors of Unix, etc…).

The application and its source are freely available. The author, Wayne Rasband, is with the National

Institutes of Health, Bethesda, Maryland, USA [35].

ImageJ has an open architecture that allows extensibility by addition of Java plug-ins and we take

advantage of this functionality for adding our educational plug-ins. Java also provides a mechanism for

loading the plug-ins dynamically without having to restart the application after each modification of the

code; this functionality offers a fast and comfortable way to edit-compile-execute a program.

10

Since the programming of ImageJ plug-ins was not originally meant for novice programmers, we have

made this process much more transparent and robust for the student. In particular, we provide the

function templates and their corresponding commands under the “Plug-ins” menu. They typically take

the form of a dialog box, enabling the user to change the parameters of his algorithm. The other key

component is our “student-friendly” software layer called ImageAccess (see below), which highly

facilitates the programming of image-processing algorithms.

4.3. Sample source code to enable “learning by example”

The students who participate to the image-processing laboratories do not necessarily know Java. Hence,

we always provide them with an example of a Java method that does an operation that is similar to the

assignment. In particular, we make sure that the example uses the same type of syntax (loops,

assignments, mathematical functions) as required for the solution. In addition, we do structure their code

by providing empty templates that need to be filled in. This means that a good portion of the

assignment can usually be implemented by simple modifications of the example. A sample two-hour

session on morphological filtering (handout + software listing) can be viewed at

http://bigwww.epfl.ch/teaching/iplabsite/trial.html; the solution can also be run on the Web.

V. IMAGEACCESS: THE INTERFACE LAYER

5.1 Simplified image data access

The key component of our system is the Java class, ImageAccess, that provides a high-level and

foolproof interface that lets students safely manipulate images. We have designed it by applying two

well-known principles of software development:

- Abstraction. For the user, an image is simply an instance of the ImageAccess class. The pixel

data is always retrieved and stored in “double” format, independently of the underlying ImageJ

image type. In this way, students do not have to worry about rounding, truncation, or

conversion of pixel data. Moreover, pixel data can be accessed “anywhere” through the use of

consistent mirror symmetric boundary conditions. For example, when a student wants to

retrieve a 3*3 block of an image centered on the upper left corner (0,0), the interface layer

provides a full block with “outside” pixel values that are correctly extrapolated. This frees the

student from having to worry about what happens at the boundaries and results in more pleasant

results (no border artifacts in the output). The aim of applying abstraction is to let the source

code express the original algorithm more clearly. The full documentation of the class is available

at: http://bigwww.epfl.ch/teaching/iplabsite/Docs/index.html.

11

- Encapsulation. The fact of working with ImageAccess objects prevents the students from having

to worry about implementation details. The typical way to program is to retrieve an image

block by using a method that begins with get...(). The block is processed and the result is written

in the image using a put...() method. The block can be a single pixel, a row, a column, a 3*3 or a

5*5 neighborhood window.

Conceptually, there is a clear pedagogical advantage in separating as much as possible the image-

processing code (algorithm) from the access to the pixels. For our purpose, the latter is a technical part

that depends on the language, the platform, or the frame grabber. However, this is not the approach

taken in ImageJ because is has a computational cost associated with it. As a result, the typical image-

processing routines in ImageJ are faster than ours but also significantly more complicated. Our additional

layer leads to an overhead, as illustrated in Table 1 and Table 2. Note that in the case of a separable

algorithm where rows and columns are processed in succession, the cost of the access is fixed (e.g. 75

ms), irrespective of the type of processing. For non-separable processing, the access cost is more

important: it increases proportionally to the number of pixels in the local neighborhood. We consider

the overhead an acceptable price to pay for the substantial simplifications in algorithm transcription.

Thanks to this layer, an algorithm can be translated into Java almost literally. This is in contrast with

ImageJ’s own operators, which need to be implemented for each data type (e.g., byte, 32-bits).

12

Computation time

Built-in ImageJ smooth operator (3*3 filtering) 35 ms

Built-in ImageJ convolve operator (3*3 filtering) 200 ms

Our separable implementation of 3*3 filtering with mirror boundary conditions 150 ms

Our non-separable implementation of 3*3 filtering with mirror boundary conditions 325 ms

Table 1.

Comparison of the computation times for a 3*3 filter: built-in ImageJ routines

versus ours (ImageAccess). Experimental conditions: 512*512 pixels image (byte),

Java Virtual Machine JRE 1.1.8, Pentium III/500 MHz.

Separable implementation Non-separable implementation

Kernel size Algorithm Access Algorithm Access

3*3 averaging 75 ms 75 ms 75 ms 250 ms

5*5 averaging 150 ms 75 ms 175 ms 405 ms

7*7 averaging 200 ms 75 ms 250 ms 640 ms

9*9 averaging 235 ms 75 ms 375 ms 910 ms

11*11 averaging 250 ms 75 ms 500 ms 1280 ms

13*13 averaging 295 ms 75 ms 655 ms 1690 ms

Table 2.

Cost of the overhead of the access (due to ImageAccess) compared to the cost of the

image-processing algorithm itself for the separable and the non-separable

implementation of an averaging filter. The access time includes data conversion, the

copy of pixel values and implementation of the boundary conditions. Experimental

conditions: 512*512 pixels image (byte), Java Virtual Machine JRE 1.1.8, Processor

Pentium III/500 MHz.

13

5.2 Interfacing with the Web

Programming in Java offers the interesting opportunity to easily port applications to the Web, through

the mechanism of applets. In order to easily create stand-alone applets based on the same image-

processing source code, our interface layer also comes in an “ImageAccess for Applets” flavor, which

can be used exactly the same way by the programmer, but does not make use of ImageJ internally

anymore. In this way, we can easily generate and distribute image-processing demonstration applets at a

very low development cost. The same image-processing code can therefore be re-used in a plug-in or in

an applet (see Fig 1.). Note that such applets are also used to provide on-line examples for the students

(some on-line examples can be found at: http://bigwww.epfl.ch/demo/).

5.3. Interfacing with Matlab

Recent versions of Matlab integrate a Java Virtual Machine. Therefore, it becomes possible to run Java

image-processing routines directly from the Matlab command window or from a Matlab function. The

level of integration is surprisingly high so that Java objects, such as ImageAccess ones, can be handled in

a transparent way. The following example (listing 1) illustrates the call of IPlab commands (here, a 2D

filter followed by an image display) from Matlab; the data is transferred through the object “im”, which

contains a copy of the image array used in Matlab.

Listing 1.

JAVA processing and display of an image from Matlab.

>> array = 255*rand(100,200); % creates an array of random variables
>> im = ImageAccess(array); % copies the array into an ImageAccess object
>> out = Filter.apply(im); % applies a 2D filtering method
>> out.show('filtered image'); % displays the ImageAccess object

Fig. 1.

ImageJ

Plug-ins

Applets

on the Web

Matlab

functions

ImageAccess class

Image-processing routines

14

The same image-processing routines are used to create a plug-in for ImageJ, to

interface with Matlab, or to build a demonstration applet.

VI. EXAMPLES

In this section, we present two examples that illustrate the ease with which image-processing algorithms

can be programmed using our interface layer. The code is relatively straightforward; it is essentially a

literal translation of the textbook versions of the algorithm.

6.1. Digital filter

We compare two implementations of a digital filter using a non-separable (cf. Listing 2) and a separable

algorithm (cf. Listing 3).

Listing 2.

Example of a non-separable filtering template (vertical edge detector) given to the

students.

public ImageAccess filter2D_NonSeparable(ImageAccess input) {
int nx = input.getWidth();
int ny = input.getHeight();
ImageAccess output = new ImageAccess(nx, ny);
double block[][] = new double[3][3];
double value = 0.0;
for (int x=0; x<nx; x++) {

for (int y=0; y<ny; y++) {
input.getNeighborhood(x, y, block);
value = (block[2][0] - block[0][0] + block[2][1] -

block[0][1] + block[2][2] - block[0][2]) / 6.0;
output.putPixel(x, y, value);

}
}
return output;

}

15

Listing 4.

Example of a separable filtering template (vertical edge detector) given to the

students.

public ImageAccess filter2D_Separable(ImageAccess input) {
int nx = input.getWidth();
int ny = input.getHeight();
ImageAccess output = new ImageAccess(nx, ny);
double rowin[] = new double[nx];
double rowout[] = new double[nx];
for (int y=0; y<ny; y++) {

input.getRow(y, rowin);
difference3(rowin, rowout);
output.putRow(y, rowout);

}
double colin[] = new double[ny];
double colout[] = new double[ny];
for (int x=0; x<nx; x++) {

output.getColumn(x, colin);
average3(colin, colout);
output.putColumn(x, colout);

}
return output;

}

private void average3(double in[], double out[]) {
int n = in.length;
out[0] = (2.0 * in[1] + in[0]) / 3.0;
for (int k=1; k<n-1; k++) {

out[k] = (in[k-1] + in[k] + in[k+1]) / 3.0;
}
out[n-1] = (2.0 * in[n-2] + in[n-1]) / 3.0;

}

private void difference3(double in[], double out[]) {
int n = in.length;
out[0] = 0.0;
for (int k=1; k<n-1; k++) {

out[k] = (in[k+1] - in[k-1])/2.0;
}
out[n-1] = 0.0;

}

The separable implementation offers many advantages in terms of computation time and modularity.

The code, which is generic for the most of part, clearly shows the two loops, the first one which scans

the rows and the second one which scans the columns. The only specific parts are the 1D routines

difference3() and average3(), which can be modified easily to yield other separable filters.

In practice, we give these two templates as examples to the students and ask them to program other

digital filters such as a horizontal edge detector and a 5*5 moving-average filter (non-separable and

separable implementation). By mastering those examples, they get a rather complete exposure to the

topic of linear filtering.

16

6.2. Wavelet transforms

Another interesting example is the implementation of a separable wavelet transform in 2D (c.f. Fig. 2).

The students have 3 hours to program the transform and to apply it to various image-processing tasks

(simple coding by zeroing out non-significant coefficients, and noise reduction by soft-thresholding). To

simplify their task, we give the templates of separable routines for the analysis part; we ask them to

code the 1D Haar transform and to write the synthesis part (both 1D and 2D) from scratch.

Fig 2.

Haar wavelet transform of Lena (3 iterations across scale)

17

Listing 3.

Code for the analysis part of the wavelet transform. The high level, data handling

routines analysis() and split() are given to the students. Their assignment is to write

the code (also shown here) for split_1D() (Haar decomposition) and to implement

the 2D inverse transform completely.

public ImageAccess analysis(ImageAccess input, int nbScale) {
int nx = input.getWidth();
int ny = input.getHeight();
ImageAccess output = input.duplicate();
ImageAccess buffer;
for (int i=0; i< nbScale; i++) { // From fine to coarse loop

buffer = new ImageAccess(nx, ny); // Create the buffer
ouput.getSubImage(0, 0, buffer); // Get the buffer
buffer = split(buffer); // Split the buffer
output.putSubImage(0, 0, buffer); // Put the buffer
nx = nx / 2;
ny = ny / 2;

}
return output;

}

private ImageAccess split(ImageAccess input) {
int nx = input.getWidth();
int ny = input.getHeight();
ImageAccess output= new ImageAccess(nx, ny);
double rowin[] = new double[nx];
double rowout[] = new double[nx];
for (int y=0; y<ny; y++) {

input.getRow(y, rowin);
split_1D(rowin, rowout);
output.putRow(y,rowout);

}
double colin[] = new double[ny];
double colout[] = new double[ny];
for (int x=0; x<nx; x++) {

output.getColumn(x, colin);
split_1D(colin, colout);
output.putColumn(x,colout);

}
return output;

}

private void split_1D(double in[], double out[]) {
int n = in.length / 2;
double sqrt2 = Math.sqrt(2.0);
int k1;
for (int k=0; k<n; k++) {

k1 = 2 * k;
out[k] = (in[k1] + in[k1+1]) / sqrt2;
out[k+n] = (in[k1] - in[k1+1]) / sqrt2;

}
}

18

As far as the students are concerned, this is perhaps one of the most impressive sessions they go

through. The great majority of them are capable of completing the full assignment; the 1D routines

split_1D and merge_1D for the Haar transform are rather easy—2 liners—and the wavelet synthesis is

the same as the analysis, but the other way around.

VII. CLASSROOM

A laboratory session, which is three-hours long, is typically devoted to one chapter of the course. The

assignment is given one week in advance. It contains a programming part and an experimental part,

where the desired results are processed images. As backup, we usually provide reference versions of the

assigned algorithms as executable code (bytecode) to make sure that all students can undertake the

experimental part of the assignment under equal conditions; of course, they are greatly encouraged to

run their own code and make sure that they get the same results. The sessions take place in 2 computer

rooms with 30 Windows 2000 machines in each. There are typically 3 teaching assistants per room for

technical assistance. At the end of the session, the students submit their results (source code + processed

images) on the Web. The images are checked automatically and the assistants proofread the source code.

The students get back their corrected assignments the next week.

The sessions that are currently available are:

1) Introduction—Understanding of the Fourier transform

2) Digital filtering and applications

3) Morphological operators and applications

4) Edge detection and applications

5) Wavelet transforms

6) Geometric transformation and interpolation

7) Tomography and filtered backprojection

8) Deconvolution (planning)

These session assignments are also available on the web: http://bigwww.epfl.ch/teaching/iplabsite/. Some

examples of results with user interfaces are shown in Fig. 3.

Before the introduction of the laboratories, our optional image-processing course normally attracted 15-

20 students. With the third edition of the laboratories (term 2002/2003), the number of students went

up to 45, which is a good indication of success. The feedback from the students has also been extremely

positive.

19

The combination of “ImageJ” and our interface layer is also used by the students who choose to

complete a practical semester or diploma project in our laboratory, which is fully equipped with

Macintosh computers. Here, the students develop their new image-processing algorithms using ImageJ

and a user-friendly Java integrated development environment (IDE); at the end, they can easily produce

a demonstration applet, which is then made available on the Internet.

The students value the fact that the software tools are all freely available on the Web. After

downloading ImageJ and a Java development kit (JDK), they are ready to work at home.

Fig. 3.

Examples of user interface and results for the session 3 and the session 7.

20

VIII. DISCUSSION AND CONCLUSION

The proposed computer laboratories are a perfect complement to a theoretical course on image

processing. Students get active, hands-on practice in image processing which will be valuable to them

later in the workplace. They also learn how to implement image-processing algorithms. The computer

sessions increase their interest in the course; students like to interact with images and become much

more involved as soon as they see some practical relevance. The programming experience raises their

curiosity and often stimulates them to do their own experiments. The overall reaction of our students

has always been very positive.

As designers of IPLab, we are still astonished by the robustness of Java and ImageJ. The system is quite

stable and appears to be robust against the student’s programming errors—much more so than any other

language or system that we have tested before. Up to now, we have not yet experienced a single crash

due to bugs in plug-ins.

The laboratories are entirely based on ImageJ, which is a full featured image-processing software. This

package is freely available on the Web, and is still evolving. The students can walk away from the course

with an image-processing system that is operational. Using the ImageAccess interface layer, they can

easily program both ImageJ plug-ins or Internet applets. The system that we have described may also

appeal to practitioners as it offers a simple, full-proof way of developing professional level image

processing software.

ACKNOWLEDGEMENTS

We would like to thank Dimitri Van De Ville for the editorial advice and, Wayne Rasban for his helpful

and valuable remarks and for his generosity in making ImageJ freely available to the community. We are

also thankful to EPFL students and assistants who have tested the system and have given us feedback to

improve it.

21

REFERENCES

[1] M. Sonka, E. L. Dove, and S. M. Collins, "Image systems engineering education in an
electronic classroom," IEEE Trans. Education, vol. 41, no. 4, pp. 263-272, 1998.

[2] E. Fink and M. Heath, "Image-processing projects for an algorithms course," International
Journal of Pattern Recognition and Artificial Intelligence, vol. 15, no. 5, pp. 859-868, 2001.

[3] A. Sanchez, J. F. Velez, and A. B. Moreno, "Introducing Algorithm Design Techniques in
Undergraduate Digital Image Processing Courses," International Journal of Pattern
Recognition and Artificial Intelligence, vol. 15, no. 5, pp. 789-803, 2001.

[4] K. Bowyer, G. Stockman, and L. Stark, "Themes for improved teaching of image
computation," IEEE Trans. Education, vol. 43, no. 2, pp. 221-223, 2000.

[5] G. W. Donohoe and P. F. Valdez, "Teaching digital image processing with Khoros," IEEE
Trans. Education, vol. 39, no. 2, pp. 137-142, 1996.

[6] J. A. Robinson, "A software system for laboratory experiments in image processing," IEEE
Trans. Education, vol. 43, no. 4, pp. 455-459, 2000.

[7] Session, "Curriculum advances in digital imaging systems," IEEE International Conference on
Image Processing (ICIP'96), Lausanne, Switzerland, 1996.

[8] Workshop, "Undergraduate Education and Image Computation," IEEE Computer Vision and
Pattern Recognition (CVPR'00), Hilton Head Island, South Carolina, USA, 2000.

[9] G. Bebis, D. Egbert, and M. Shah, "Review of computer vision education," IEEE Trans.
Education, vol. 46, no. 1, pp. 2-21, 2003.

[10] CIPE, Center for Image Processing in Education, All Rights Reserved, [Online]. Available:
http://www.cipe.com/ (visited in 2003).

[11] Matlab, The MathWorks Inc., Natwick, Massachusetts, USA, [Online]. Available:
http://www.mathworks.com/ (visited in 2003).

22

[12] B. M. Dawant, "Matlab-supported undergraduate image processing instruction," Proc. SPIE
Medical Imaging 1998, K. M. Hanson, Ed., vol. 3338, pp. 276-284, 1998.

[13] H. J. Trussell and M. J. Vrhel, "Image display in teaching image processing .I. Monochrome
images," IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP'00), Istanbul, Turkey, vol. 6, pp. 3518-3521, 2000.

[14] C. S. Zuria, J. M. Ramirez, D. Baez-Lopez, and G. E. Flores-Verdad, "MATLAB based
image processing lab experiments," IEEE Frontiers in Education Conference (FIE'98),
Tempe, Arizona, USA, 1998.

[15] S. L. Eddins and M. T. Orchard, "Using MATLAB and C in an image processing lab
course," IEEE International Conference on Image Processing (ICIP'94), Austin, Texas ,
USA, vol. 1, pp. 515-519, 1994.

[16] Khoros Pro 2001 Integrated Development Environment, Khoral Inc., Albuquerque, New
Mexico, USA, [Online]. Available: http://www.khoral.com/ (visited in 2003).

[17] R. Jordan and R. Lotufo, Digital Image Processing (DIP) with Khoros Pro 2001, visited in
February 2001.

[18] R. Lotufo and R. Jordan, "Hands-on digital image processing," IEEE Proceedings of
Frontiers in Education Conference (FIE'96), Salt Lake City, Utah, 1996.

[19] M. Jankowski, Digital image processing with Mathematica, University of Southern Maine,
Maine, USA, [Online]. Available: http://www.usm.maine.edu/~mjkcc/docs/dip/ (visited in
2002).

[20] Mathematica, Wolfram Research, Inc, Champaign, Illinois, USA, [Online]. Available:
http://www.wolfram.com/ (visited in 2003).

[21] U. Rajashekar, G. C. Panayi, F. P. Baumgartner, and A. C. Bovik, "The SIVA
Demonstration Gallery for signal, image, and video processing education," IEEE Trans.
Education, vol. 45, pp. 323- 335, 2002.

[22] LabVIEW, National Instruments Corp., Austin, Texas, USA, [Online]. Available:
http://www.ni.com/ (visited in 2003).

23

[23] D. S. Sohi and S. S. Devgan, "Application to enhance the teaching and understanding of basic
image processing techniques," Proceedings of the IEEE Southeastcon 2000, Nasville,
Tennessee, USA, pp. 413-416, 2000.

[24] AVS/Express, Advanced Visual Systems Inc., Waltham, Massachusetts, USA, [Online].
Available: http://www.avs.com/software/soft_t/avsxps.html (visited in 2003).

[25] M. Jackson, D. I. Laurenson, and B. Mulgrew, "Supporting DSP Education Using Java," IEE
Symposium Engineering Education: Innovations in Teaching, Learning and Assessment, W.
Padgett, M. A. Yoder, D. V. Anderson, and D. Munson, Eds., London, UK, 2001.

[26] A. Jacot-Descombes, M. Rupp, and T. Pun, "LaboImage 4.0: Portable window based
environment for research in image processing and analysis," World Congress on Medical
Informatics (MedInfo'92), Geneva, Switzerland, 1992.

[27] F. DePiero, "SIPTool: the Signal and Image Processing Tool an engaging learning
environment," IEEE Frontiers in Education Conference (FIE'01), vol. 3, pp. F4C-1-5, 2001.

[28] A. Goncalves Silva, R. De Alencar Lotufo, and R. Campos Machado, "Toolbox of image
processing for numerical Python," IEEE Brazilian Symposium on Computer Graphics and
Image Processing, Florianopolis, Brazil, pp. 402, 2001.

[29] S. L. Tanimoto and J. W. Baer, "Programming at the end of the learning curve: Lisp scripting
for image processing," IEEE Symposia on Human-Centric Computing Languages and
Environments, Stresa, Italy, pp. 238-239, 2001.

[30] S. E. Umbaugh, Computer Vision and Image Processing: A Practical Approach Using
CVIPtools, Prentice Hall Professional Technical Reference, 1998.

[31] NeatVision, Paul F. Whelan, Vision Systems Group at Dublin City University, Dublin,
Ireland, [Online]. Available: http://www.neatvision.com/ (visited in 2003).

[32] P. F. Whelan and D. Molloy, Machine Vision Algorithms in Java: Techniques and
Implementation, Springer-Verlag, 2001.

[33] M. W. Powell and D. Goldgof, "Software toolkit for teaching image processing,"
International Journal of Pattern Recognition and Artificial Intelligence, vol. 15, no. 5, pp.
833-844, 2001.

24

[34] JVT, Java Vision Toolkit, Mark W. Powell, University of South Florida, Florida, USA,
[Online]. Available: http://marathon.csee.usf.edu/~mpowell/jvt/ (visited in 2003).

[35] ImageJ, Wayne Rasband, National Institute of Health, Bethesda, Maryland, USA, [Online].
Available: http://rsb.info.nih.gov/ij/ (visited in 2003).

[36] R. B. Fisher and K. Koryllos, "Interactive textbooks: Embedding image processing operator
demonstrations in text," International Journal of Pattern Recognition and Artificial
Intelligence, vol. 12, no. 8, pp. 1095-1123, 1998.

[37] HIPR, Hypermedia Image Processing Reference, R. Fisher, S. Perkins, A. Walker and
E. Wolfart., [Online]. Available: http://www.dai.ed.ac.uk/HIPR2/ (visited in 2003).

[38] JIGL, Java Image and Graphics Library, Bryan Morse, Brigham Young University, Provo,
Utah, USA, [Online]. Available: http://rivit.cs.byu.edu/jigl/ (visited in 2003).

[39] D. Sage and M. Unser, "Easy Java programming for teaching image-processing," IEEE
International Conference on Image Processing (ICIP'01), Thessaloniki, Greece, vol. 3, 2001.

[40] D. Y. Wang, B. Lin, and J. Zhang, "JIP: Java image processing on the Internet," Proc. SPIE
Color Imaging: Device-independent color, color hardcopy, and graphic arts, G. B. Beretta
and R. Eschbach, Eds., pp. 354-364, 1998.

[41] Y. Cheneval, L. Balmelli, P. Prandoni, J. Kovacevic, and M. Vetterli, "Interactive DSP
education using Java," IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP’98), Seattle, Washington, USA, vol. 3, pp. 1905-1908, 1998.

[42] D. A. Lyon, Image processing in Java. Upper Saddle River, New Jersey, USA, Prentice
Hall PTR, 1999.

[43] D. Roman, M. Fischer, and J. Cubillo, "Digital image processing—An object-oriented
approach," IEEE Trans. Education, vol. 41, no. 4, pp. 331 -333, 1998.

