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Abstract

Background

The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle.
The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis,
is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN
proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with
both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late
mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation
of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of



organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled
with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved;
the cell outline must be detected automatically, and the position and signal intensity associated with
the structures of interest within the cell must be determined.

Results

We present a new 2D and 3D image analysis system that permits versatile and robust analysis of
motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis
system that we have implemented as a user-friendly software package allowing the fast and robust
image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms,
which we combined with existing methodologies to facilitate fast and accurate analysis. Our software
permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time
lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different
image channels. For 2D or 3D static images, the locations of the structures are identified, and then
intensity values are extracted together with several quantitative parameters, such as length, width, cell
orientation, background fluorescence and the distance between the structures of interest. Furthermore,
two kinds of kymographs of the tracked structures can be established, one representing the migration
with respect to their relative position, the other representing their individual trajectories inside the cell.
This software package, called “RodCellJ”, allowed us to analyze a large number of S. pombe cells to
understand the rules that govern SIN protein asymmetry.

Conclusions

“RodCellJ” is freely available to the community as a package of several ImageJ plugins to simul-
taneously analyze the behavior of a large number of rod-shaped cells in an extensive manner. The
integration of different image-processing techniques in a single package, as well as the development
of novel algorithms does not only allow to speed up the analysis with respect to the usage of existing
tools, but also accounts for higher accuracy. Its utility was demonstrated on both 2D and 3D static and
dynamic images to study the septation initiation network of the yeast Schizosaccharomyces pombe.
More generally, it can be used in any kind of biological context where fluorescent-protein labeled
structures need to be analyzed in rod-shaped cells.

Availability

RodCellJ is freely available under http://bigwww.epfl.ch/algorithms.html, (after acceptance of the
publication).

Keywords

Cell segmentation, Protein tracking, Rod shape, Kymograph, Asymmetry, Fluorescence time-lapse mi-
croscopy

Background

Common biological image-analysis tasks typically involve some sort of cell or protein analysis. It is be-
coming increasingly apparent that spatial control of protein function plays a central role in many aspects
of the life of an organism or an individual cell, influencing its development, proliferation, migration or
communication between cells. To analyze spatial regulation, image-processing techniques are needed
to detect and track fluorescently-tagged proteins, and to measure the intensity of the signal at partic-



ular locations, as well as its size and shape. Many well-known model organisms such as the fission
yeast Schizosaccharomyces pombe and the bacterium Escherichia Coli are rod-shaped. In this paper we
present an image analysis package to characterize motile structures in rod-shaped cells recorded in flu-
orescence images. We successfully have tested it on synthetic and real data. In the following subsection
we briefly describe the biological application that we used to validate the implementation of our image
analysis system.

Biological application: analyzing spindle pole asymmetry in S. pombe

Asymmetry is a key feature of many biological processes; for example, it is essential for specifying cell
fate during development, and also for maintenance of stem cells in the adult organism [1]. Asymmetric
segregation of regulatory molecules is also important in simple, single celled organisms, such as yeasts;
for example, the correct pattern of mating type switching in S. cerevisiae requires the sequestration of
an RNA in the daughter cell [2]. The fission yeast S. pombe has proved to be an excellent model for
the study of cell division, including the final step of the cell cycle, cytokinesis. The Septation Initiation
Network (SIN) is a key regulator of cytokinesis (reviewed in [3]). SIN proteins associate with the poles
of the mitotic spindle (SPBs) via a scaffold of three coiled-coil proteins. In the absence of SIN signaling,
cytokinesis does not occur, and cells become multinucleated. In contrast, if SIN signaling is deregulated,
cells undergo multiple rounds of septum formation and cytokinesis is uncoupled from its dependency on
other cell cycle events. Some SIN proteins distribute asymmetrically on the SPBs during mitosis [4-6],
which is thought to be important for regulation of SIN activity [7-9], (reviewed in [10]). We have applied
our image-analysis system to characterize spindle pole asymmetry in S.pombe.

Requirements for the image analysis

The task of screening images of cell populations and tracking the SPBs poses several problems. First,
all the rod-shaped cells of interest in the images need to be segmented simultaneously, regardless of
their orientation. Second, the image quality is inconsistent with respect to parameters such as contrast
and noise level. The third problem to be solved is to identify the structures of interest (SOI). In order to
analyze the signal intensities of SIN proteins associated with the two SPBs during mitosis, the two SPBs
must be located and tracked individually. Since the signal associated with one of the SPBs approaches
the threshold of detection at the end of mitosis, we use a second, SPB-associated protein whose fluo-
rescence intensity does not vary significantly throughout mitosis as a reference. Therefore, the software
must track two structures (the two SPBs) in two different channels (red, for the reference protein, green,
for the SIN protein of interest). Finally, since the orientation of the mitotic spindle is variable with
respect to the long axis of the cell, particularly in the earliest stages of mitosis, the software has been
designed to analyze both 2D and 3D image stacks.

Related work and state of the art

Cell segmentation and protein tracking are widely studied subjects in biological image processing. Usu-
ally the two tasks are tackled separately. For cell segmentation well-known models range from machine
learning-like algorithms [11] to level set methods [12] and texture analysis [13]. Recent developments
in wavelet theory have also contributed to the topic of cell segmentation [14,15] as well as to the re-
search in object tracking [16]. Other popular models include graph cuts [17] or approaches based on
probabilities [18]. The implementation of our image-analysis system, called “RodCellJ” has several
advantages over existing tools for cell segmentation and tracking of fluorescently labeled structures.
Our model combines the task of cell segmentation and protein tracking into a single algorithm and
introduces several steps to increase the robustness of the tracking routine. For example, unlike other
”two-step” tracking algorithms that first detect structures and then link them through a minimizing cri-



terion [19,20], we implemented a dynamic programming approach to reconstruct the globally optimal
track that ensures robustness with respect to intensity variations and can be applied to data with a high
noise level. Our segmentation approach has been optimized for the analysis of rod-shaped cells [21], by
designing a novel parametric active contour model [22]. We also use of the fact that the structures to
be tracked remain inside the cell to increase the robustness of the analysis. Finally, since an asymmetry
of signal intensities of only two-fold can be considered significant, we implemented an algorithm that
estimates the local shape of the structure being studied, taking into account spatial correlations, as well
as background fluorescence, image noise and image quality.

By combining multiple analysis tasks into a single package, RodCellJ provides an additional benefit
to the user: the use of different software to solve bio-image analysis tasks often results in file format
conversion issues that force people to do a substantial part of the analysis by hand, which can be time
consuming and makes it more difficult to take full advantage of computational accuracy and speed.
Though the software was designed with a specific task in mind, the algorithm has been implemented in
a generic manner to make it useful to a wider community interested in rod-shaped cells. RodCellJ is easy
to run and is freely available as an ImageJ [23] and Fiji [24] plugin. ImageJ is a popular open source
and public-license image analysis software that can be easily extended by additional plugins. The fact
that it is open-source facilitates the reproduction of results through its transparent processing pipeline.
To our knowledge, there exists no software yet, implementing these image analysis tasks into a single
algorithm, allowing an efficient and rapid analysis of migrating structures inside rod-shaped cells in the
possible context of high-throughput screening.

Results and discussion

Algorithm

The goals in designing the algorithm were as follows; first, the algorithm for signal detection should
account for background noise and background fluorescence within the cells, in order to provide a level
of accuracy that cannot be achieved when evaluating the images by eye. Second, after image-analysis,
we wished to visualize the result of detected asymmetry of SPB-associated SIN proteins as kymographs
representing the SPB migration with respect to each other, as well as the movement of SPBs with
respect to the cell. Third, the relevant parameters of the cell being analyzed, such as its width, length,
orientation angle, location of its extremities points, must also be extracted. Finally, information about
the fluorescently labeled structures of interest, such as their exact position and intensity on each frame
should be displayed in a table and saved in a tab-delimited text file for further statistical evaluations
(e.g. with Excel, Matlab, etc.). Though RodCellJ is capable of analyzing a time-lapse series of image
stacks, if an image representing a single time-point is used as the input, RodCellJ, only does the cell
segmentation and protein identification including the calculation of cell and protein specific parameters.
The implementation of the algorithm that leads to the final result is generated in a sequential manner,
allowing the user to verify and edit intermediate results in a semi-automatic and user-friendly way to
guarantee robustness and accuracy.

Modularisation

The different sub-tasks that are carried out by the software to yield quantification of the fluorescent-
protein labeled, SPB-associated SIN protein signals are implemented in a modular way (Figure 1).
Their execution is handled in an interactive way through a graphical user interface (GUI) as shown
in Figure 2. Its purpose is to guide the user through the different steps allowing for the verification
of intermediate results giving the possibility of editing them. In the following sections the different
modules and their underlying algorithm are explained in detail. We first describe the tracking algorithm,
then the segmentation method, since that corresponds to the order of their implementation.



Figure 1 Modularization of the RodCellJ-package. 2D and 3D static and dynamic images can be
analyzed with the software. The core modules of the software are the protein detection-, the DP- and the
Rodscule-modules. Quantitative cell and protein related parameters can be calculated and saved. In the
case of dynamic images kymographs can be established. The plugin for cell segmentation implementing
the Rodscule is also separately available.

Figure 2 GUI. Front panel of the graphical user interface for the 3D-dynamic case.

Structure-associated fluorescent-protein detection (static images) and tracking (dynamic images)

In this section we describe a robust algorithm to determine the spatio-temporal trajectory of structures
(in this case, SPBs) in very noisy dynamic image sequences, such as time-lapse movies. Since the
SPBs appear as spots in the image, we will refer to them as such in the following discussion. First, the
images are processed with a spot enhancing filter, the Laplacian of Gaussian (LoG) [25], which also
has smoothing characteristics enabling noise and background removal. The LoG has the advantage that
it is fully characterized by only one parameter (σ), which is directly related to the size of the spot that
has to be detected. In addition to the noise level of the image a spot does not have the same intensity
throughout the image sequence. In some images the spot is no longer clearly distinguishable from the
noise. To overcome these difficulties we track the spots with a dynamic programming algorithm [25],
a robust method that is able to deal with time-varying signals in noisy conditions. For this purpose we
take advantage of the aspects that characterize the behavior of the spots. The biological context allows
us to make the following assumptions:

• the spots remain in the region within a (segmented) cell.

• the movement of the spots is limited by a few pixels from frame to frame.

• the starting point is defined by the spot detection in the first image of the time-lapse movie.

Dynamic programming

We can reformulate our problem of spot tracking in terms of finding the optimal path for a spot through-
out the image sequences taking into account the characteristics of the data mentioned above, which in
turn is the same as finding the optimal path between a pair of vertices in an acyclic weighted graph. In
this context “optimality” refers to the assumptions made above.

We define a vertex as Υi and the path from Υi to Υj as Ωij . We observe that if the optimal path Ωkl

passes through Υp, then the two sub-paths Ωkp and Ωpl also must be optimal. Therefore, the problem
satisfies Bellman’s principle of optimality, which states that the globally optimum solution includes no
suboptimal (local) solution. Hence, we can solve our problem by dynamic programming (DP) [26].

For an analytical formulation of the problem we first need to state the following conditions:

• A path Ωij has cost C(i, j).

• The graph contains n vertices numbered 0, 1, . . . , n − 1 and has an edge from Υi to Υj only if
i < j (causality condition).

• Υ0 is the source vertex and Υn−1 is the destination (which is unknown).



If we define G(x) the cost of the optimal path from Υ0 to Υx, then

G(x) =

{
0 if x = 0
min
0≤j<x

{G(j) + C(j, x)} if 1 ≤ x ≤ n− 1 (1)

Thus, for every possible spot Sk, with k ∈ {0, . . . ,K} on the last frame n − 1, we end up with a path
Ω0n−1,k with cost Gk(n− 1). Note that K is the number of possible spots on the last frame. The overall
optimal path then is given by

Ωopt = Ω0n−1,ω (2)

where ω verifies
Gω = min

0≤k≤K
{Gk(n− 1)} (3)

The cost function is defined as follows:

C(i, j) =
Q∑
q

λqfq(i, j) (4)

where the λq are weighting factors that can be adjusted through the GUI and the fq(i, j) are parameters
relevant to the image data such as intensity, intensity variation, distance of migration as well as possible
directional persistence if required. For example the cost function penalizes heavily a spot that is out-
side of the segmented cell that surrounds the starting location. Therefore, without imposing absolute
restrictions the optimal path through the noisy data can be found. An additional criterion that we have
to be aware of is that the spots are not necessarily visible until the last frame of the time-lapse movie,
because in the usual asymmetric case the signal strength of one of the two spots decreases significantly
at some point in the time trajectory. Therefore, we implemented an additional global criterion to detect
the frame Ft0, where it was last visible. This consists of calculating a threshold that depends on the
noise and background level of the image sequence, below which a spot is no longer distinguishable from
noise (Figure 3).

Figure 3 Detection of loss of fluorescence of the tracked particle. The blue curve represents the decay
of fluorescence of a protein. The frame where fluorescence is lost is represented as the intersection
between the red and the blue curve. (Theoretically it corresponds to the time point where the correlation
between the blue and the red curve is maximal.)

Estimating the signal intensity of the spot

In the case where they appear as spots in images, a common method that is used to estimate signal
intensities of labeled proteins is to take the extreme value that is detected in a certain neighborhood (e.g.
local minima/maxima). This method may yield inaccurate values because it does not account for the
influence of local background, noise or the shape of the structure being analyzed. A much more precise
method for fluorescence particle intensity estimation is to take into account the point spread function
(PSF) of the microscope. According to [27,28] an unbiased estimation of the PSF can be obtained by
modeling it with a 2D Gaussian function taking into account the diffraction limit for the microscope and
the pixel size of the image. In our algorithm we implemented a model that accounts for these issues
(the default microscope related parameters can be specified by the user through the GUI of the plugin).
After the detection of the local extrema we fit a 2D Gaussian curve to it including a possible offset for



noise/background estimation (5) and a rotation angle θ.

A ∗ e
−
[{

cos2θ

2σ2
x

+ sin2θ

2σ2
y

}
(x−µx)2+2

{
− sin(2θ)

4σ2
x

+
sin(2θ)

4σ2
y

}
(x−µx)(y−µy)+

{
sin2θ

2σ2
x

+ cos2θ

2σ2
y

}
(y−µy)2

]
+B (5)

where the value of B captures the background and noise, x, y stand for the two dimensions of the
image plane and µx, µy and σx, σy are the center of the 2D Gaussian and its variance respectively. The
initial variances to initialize the optimization algorithm can directly be estimated by dividing the value
obtained for the diffraction limit by the corresponding value of the pixel size. Therefore, the actual value
estimated for the protein intensity corresponds to A. The rotation parameter θ describes the rotation with
respect to the Cartesian coordinate system (i.e. if θ = 0 we end up with the general expression of a 2D
Gaussian, where the variances point in x and y direction). Using this method we additionally circumvent
the drawback of the discretization of the image in terms of intensities and spatial coordinates to obtain
much more precise values than in the case of doing only integer calculations. For the estimation of the
parameters of the Gaussian we use the Levenberg-Marquardt algorithm [29].

Cell segmentation with an active contour model

The method that we use for cell segmentation strongly depends on the nature of the image data. In order
to use our algorithm the cells need to be rod-shaped and immobile. There is no restriction with respect to
the size and orientation of the cells (even in the same image cells with different sizes can be segmented
simultaneously as long as they are rod-shaped). The cells can have arbitrary and different orientations
within the same image and the number of cells that has to be segmented in an experiment is unlimited, as
long as they do not overlap each other in the image. The algorithm requires that the area in the image that
is delimited by the cell membrane (i.e. the inside of the cell) should have a different intensity than the
background of the image. To test our software package we used S. pombe cells expressing cdc7p-GFP.
This protein associates with the SPBs during mitosis. There is also a significant cytoplasmic signal,
which allows us to identify cells against the background. The protein is excluded from the nucleus,
generating a dark “hole” in each cell (two in late mitotic cells).

Active contour model a.k.a. “snake”

Models that do not exploit shape information such as watershed or region growing approaches may
produce oversegmentation due to the noise level and possible intensity inhomogeneities within the cell
background. The problem cannot be solved by a a simple conversion to a binary image followed by
“filling the holes” because the cell’s cytoplasmic fluorescence intensities are not sufficiently consistent to
enclose a convex set. Taking into account these considerations, we decided that an active contour model
suits our needs best. Therefore, we took advantage of the cells’ rod-shape to formulate a parametric
shape model which ensures robust segmentation.

Since the position of the cells remains fixed throughout the image stack we first calculate the (average)
z-projection of the image stack, where the z-axis is perpendicular to the image plane. This reduces noise.
Afterwards a contrast enhancement is performed. For the actual segmentation of the cells we designed
an active contour model, in the literature often called “snake”, in the form of a rod shaped structure.
Following the annotation of the snakes described in [30,31] we call it the “Rodscule”. The Rodscule is
a surface snake, which means that a certain energy function can be associated to it that depends on the
image data enclosed by it. It consists of an inner rod Σ′ and an outer rod Σ (Figure 4).

Figure 4 The Rodscule. The inner and outer rod, Σ′,Σ, (red) are defined by an inner and an outer
ellipse, Γ′,Γ, (blue). The 3 points P,Q,R (yellow) define the ellipse and, hence, the Rodscule. M is
the barycenter, K1 and K2 the centers of the semi-circles of the inner rod, C1, C2 the centers of the



semi-circles of the outer rod. e1, e2, e3, e4 and E1, E2, E3, E4 are the extremal points of the inner and
outer ellipse respectively. They define the common points of each ellipse with its corresponding rod,
where it is inscribed.

The Rodscule optimizes an energy term that should be minimal when the contrast between the image
data averaged over |Σ′| and |Σ| \ |Σ′| is maximal. Here, |Σ| is the area of the outer rod Σ and |Σ′| is
the area of the inner rod Σ′. The energy term is given by (6), where the directions of x and y define
the Cartesian coordinate system. It is important that |Σ′| = 1

2 |Σ|. Thus, none of the two energy sub-
terms overweights if we apply the Rodscule over a region where everywhere the intensity is constant (in
that case we have ER = 0). For simplicity, we want the inner rod to have the same orientation as the
outer rod. To find the minimum of ER we use a conjugate gradient-based method (the derivation of the
gradient ∇ER can be found in the Additional file 1).

ER =
1

|Σ|

(∫
Σ\Σ′

f(x, y)dxdy −
∫
Σ′

f(x, y)dxdy

)
(6)

To minimize the computational cost we imposed some restrictions on the parametrization of our snake.
First, we used as few parameters as possible, with the additional condition that they should be indepen-
dent of each other. Second, we want the impact on the area of a changing of a parameter by a small δX
to be the same for every parameter. This excludes the possibility of parametrizing the Rodscule by two
points P,Q representing the centers of the two semi-circles and a third point R where the distance PR
determines the radius of the semi-circles (Figure 4).

From the Ovuscule [30] we know that an ellipse can be parametrized by three arbitrary points that define
a triangle. These three points belong to the border of the ellipse. Since our rod shape can be defined by
an ellipse where the four extremal points of the ellipse belong to the border of the rod shape, this means
that the rodscule can be defined by exactly the same three points which define the ellipse and, hence, the
Ovuscule (Figure 4). The two ellipses and the two rod shapes all have the same barycenter. The complete
derivation of the expression of ER(P,Q,R) as well as a detailed description of the construction and
implementation of the Rodscule can be found in the Additional file 1.

Validation

Cell segmentation on synthetic data simulating noisy conditions

In this experiment we validate our active contour model on synthetic data. We successively augmented
the presence of additive Gaussian white noise in the artificially created phantom image shown in Fig-
ure 5, while running our algorithm on it. In the top left image (Figure 5), the initial configuration of
the Rodscule is shown. It remains the same throughout the experiment. In the remaining 5 images the
standard deviations (std) of the noise were increased. They correspond to {10, 30, 60, 90, 120} (with
respect to an 8-bit gray scale image, where the pixels take values between 0 and 255) and the resulting
decrease in the signal-to-noise ratio (SNR) for the same remaining 5 images is equal to {26.2, 16.8, 11.1,
7.6, 5.3} dB. In all 5 images the Rodscule found the correct segmentation only through the optimiza-
tion process demonstrating the robustness of the algorithm with respect to the presence of photo-metric
noise. Figure 6 represents the same image as the bottom-right of Figure 5 (std = 120, SNR = 5.3
dB). It additionally shows a close-up of a boundary region between the segmented artificial cell and its
background to emphasize the advantage of the Rodscule over segmenting by human eye. While it seems
very difficult to find the ground truth segmentation in this image manually, the Rodscule does so due to
the optimal way it minimizes the corresponding energy function. Figure 7 shows an analogous example
of a real cell.



Figure 5 Robustness of the Rodscule in the prescence of noise. The top-left image shows the initial
configuration of the rodscule before triggering the optimization for cell segmentation. In the remaining
images the additive white noise was successively augmented. Its standard deviations are {10, 30, 60,
90, 120} and the corresponding SNR is equal to {26.2, 16.8, 11.1, 7.6, 5.3} dB.

Figure 6 Close-up of a boundary region between an artificially created cell and its background.
The phantom image that is shown was corrupted by withe noise (std = 120, SNR = 5.3).

Figure 7 Close-up of a boundary region between a real cell and its background.

Segmentation of yeast cells

We demonstrate the utility of the segmentation algorithm on real data using images of the fission yeast
S. pombe. They are typically rod-shaped but the length of the cell can vary within the same experiment.
In contrast to the previous experiment, we now want to segment many cells simultaneously. Since the
outcome of the optimization algorithm for cell segmentation depends on the location of initialization, the
two spots (SPBs) were detected before segmentation. Since they approximately define the longitudinal
axis of the cell (they are oriented towards the two poles of the cell) we can use them to initialize the
Rodscules. Figure 8 shows the result of such an experiment. In an experiment where 212 cells had to be
segmented we segmented 184 cells correctly, yielding a rate of 87% of true positives. In the case where
the segmentation fails, the user can reinitialize the segmentation by one mouse-click and subsequent
dragging of the mouse to change the initialization position. The editing of a cell takes about 3 seconds.

Figure 8 Simultaneous segmentation of yeast cells. The two red spots in each cell are proteins attached
to the spindle pole bodies that were detected before the segmentation. They are used to initialize the
approximate orientation of the snake. The blue line connecting them shows the initial orientation. The
cells are outlined by a yellow contour. The cells that are not segmented did not express fluorescent
protein attached to the SPB and therefore did not show any POI.

Protein tracking

For the evaluation of the protein tracking algorithm implemented with the DP routine we refer to the
results of prior work (Sage et al.) [25], where we have shown that with our tracking algorithm we are
able to trace particles in images where the peak signal-to-noise ratio (PSNR) on average is as low as 0
dB. The PSNR is defined as

PSNR = 20log(A/σ)

with σ being the noise variance and A the amplitude of the Gaussian-shaped spot. Figure 9 illustrates
an example of a result obtained with our tracking routine. It shows a comparison between two particles,
one yielding a high SNR, whereas the fluorescence of the second spot decreases with time (decreasing
SNR).

Figure 9 Protein (particle) tracking in different SNR conditions. The images originate from a 42-
frame time-lapse movie. For both images (left/right column) the evolution of x and y respectively in
time are shown. The left column shows a spot where the fluorescence decreases in time. x, y and z
correspond to the usual 3D Cartesian coordinates.



Spot signal intensity estimation

For the evaluation of our routine for spot intensity estimation, in a first step we compare it to two existing
standard techniques commonly used by biologists. For this purpose we created artificial images showing
cells, each containing two simulated spots (SPBs) (Figure 10, bottom). The shape and intensities of the
spindle pole bodies (i.e. the two white spots located towards the poles of each cell) are calculated using
our 2D Gaussian approximation to estimate the PSF described above. Table 1 shows the discretized
Gaussian kernel that we used to carry out this experiment. In order to test the robustness of our algorithm
we added an arbitrarily chosen offset value to the kernel of the 8-bit test image (i.e. intensity values are
between 0 and 255) as shown in Table 2. Additive Gaussian white noise (std= 15) was then added
to the whole image. Figure 10 (top row) shows an example of such a corrupted Gaussian kernel used
to simulate such proteins of interest. In our synthetic images we gave the cells significant cytoplasmic
fluorescence. However, our spot intensity estimation can also be applied when this is not the case,
since the intensity of the signal in the vicinity of the spot does not influence the algorithm. To further
demonstrate the robustness of the algorithm we chose three different image/petri dish backgrounds for
testing as shown in Figure 11. The two techniques that we used to compare our method with, are the
well-known “rolling ball” algorithm [32] and the maximum intensity technique, where the maximum
intensity value in a well-defined neighborhood (e.g. 5×5 pixels) of the protein is evaluated. Table 3

summarizes the results of the comparison. It shows the mean absolute error, emean−abs =
n∑

k=1

|Ik −

Ireal|, as well as the standard deviations obtained with the three different methods. Here k is the index
that runs over all detected spots n = 38, ik is the intensity obtained with respect to the method applied
and Ireal is the actual intensity that should be detected (i.e. 95.9719, the maximum of the Gaussian
described in Table 1). Looking at the values shown in Table 3, it becomes evident that our algorithm
is very robust with respect to noise and, additionally, is quite independent from the background of the
image. Furthermore, because the algorithm approximates the PSF of the microscope in theory it is
totally independent from the vicinity of the 2D Gaussian and only depends on the values enclosed by it.
Even though there is great variability between the three test images shown in Figure 11 (bottom row),
our algorithm only introduces little variability in terms of spot intensity estimation. The percentage
error is ePSF−fit = 0.14 = (11.5199+10.8913+12.6662)

256 , whereas with the rolling ball algorithm we obtain
erol.−ball = 0.58 and with the maximum intensity method emax.−int. = 0.96. Analyzing these results
we notice that the two latter methods are highly dependent on the background values. Furthermore the
maximum intensity method is also very susceptible to the different kind of noise in the image. The
rolling ball algorithm is less influenced by noise, however it still remains unsuitable if the background
of the image is not uniform or if the image contains other features than the background, such as in our
test images, where the cell has significant background fluorescence and the petri dish is also visible in
the image.

Figure 10 Protein intensity estimation by a 2D Gaussian kernel. Top, from left to right: 2D Gaus-
sian kernel without offset (specified by Table 1); 2D Gaussian kernel including offset (specified by
Table 2); 2D Gaussian kernel after adding additive Gaussian white noise (std = 15, enframed in blue);
2D Gaussian kernel after adding additive Gaussian white noise (std = 15, enframed in red); Bottom
image: synthetically created phantom image, where additive Gaussian white noise was added (std = 15).



Table 1 5 × 5 2D Gaussian kernel approximation
0.0074 0.2584 0.8439 0.2584 0.0074
0.2584 8.9997 29.3891 8.9997 0.2584
0.8439 29.3891 95.9719 29.3891 0.8439
0.2584 8.9997 29.3891 8.9997 0.2584
0.0074 0.2584 0.8439 0.2584 0.0074
The table shows the values used to approximate a 2D Gaussian with standard deviation 0.65. The values
are scaled to correspond to an 8 bit image (i.e. between 0 and 255).

Table 2 5×5 2D Gaussian kernel approximation with an offset of 80
80.0074 80.2584 80.8439 80.2584 80.0074
80.2584 88.9997 109.3891 88.9997 80.2584
80.8439 109.3891 175.9719 109.3891 80.8439
80.2584 88.9997 109.3891 88.9997 80.2584
80.0074 80.2584 80.8439 80.2584 80.0074
The table contains the values of the 2D Gaussian described in Table 1, where a constant offset, b = 80,
was added.

Figure 11 Protein intensity estimation on different background intensities. In each of the 6 images
the intensities of the cells and proteins remain the same. Note that each cell contains two bright dots at
its poles, which represent the SPBs. However, the image background and the intensity of the simulated
petri dish (disk containing the cells) vary from left to right. The bottom row shows the images of the top
row with additive random Gaussian white noise (std = 15).

Table 3 Comparison of different protein intensity estimation algorithms
Figure 11 - left Figure 11 - middle Figure 11 - right

mean error Gauss. fit. 11.5199 10.8913 12.6662
mean error max. int. 81.7386 81.6860 82.5018
mean error roll. ball 6.4447 76.7913 64.9228

std Gauss. fit. 13.8731 14.2601 16.7261
std max. int. 14.1286 14.0699 15.7938
std roll. ball 5.2605 14.0471 15.9506

The table shows the performance of the Gaussian fitting algorithm compared to the rolling ball algorithm
as well as to the maximum intensity detection.

Comparison of manual and automatic evaluation

A test protocol was designed in order to reflect the manual evaluation conditions in a realistic manner.
For this purpose four human observers (o ∈ {1, 2, 3, 4}) evaluated the 3 test images (i ∈ {1, 2, 3})
shown in Figure 11 (bottom) manually using the standard image analysis tools of ImageJ. The goal was
to measure the intensities of a previously defined number of spots in each image. The images were
resized using bilinear interpolation to obtain a 10x magnification in order to facilitate the observers’
task. The observers were free to use the available tools (e.g. image zoom, contrast adjustment, etc.)
knowing that the procedure was meant to simulate real work conditions (i.e. it was their choice how to
manage the trade-off between time constraint and accuracy of the result). The time of evaluation per
image was also measured. The whole procedure was repeated with the same images with a background
subtraction corresponding to the rolling ball algorithm [32]. In total all observers evaluated each image



three times (r ∈ {1, 2, 3}). We define the interobserver and intraobserver variability as

Vinter,s =
1

18 · P

3∑
r=1

4∑
i=1

4∑
j=i+1

P∑
p=1

|xp
s,i,r − xp

s,j,r|

Vintra,s =
1

12 · P

4∑
o=1

3∑
i=1

3∑
j=i+1

P∑
p=1

|xp
s,o,i − xp

s,o,j |

where s ∈ {orig, bckSub} refers to the original image or the image where the background was sub-
tracted respectively and p runs over all the spots, P , considered in an image. x ∈ {(x1, x2), I}, where
I = I(x1, x2) stands for the intensity and (x1, x2) represents the spatial coordinate of a point in an
image, implying that the interobserver and intraobserver variability can be measured with respect to the
evaluated intensity values itself, I(x1, x2), or their spatial coordinate (x1, x2). The subscripts of x cor-
respond to xs,o,r. The variabilities with respect to intensity estimation are shown in Table 4. We notice
that the very high interobserver variability makes it difficult to obtain reproducible results. Although the
mean intensity values calculated over all series of the 6 test images (Figure 11, bottom; 3 times without
and 3 times with background subtraction) were 105.19 and 76.58 respectively (the true intensity is 95.97,
all values are on a 8-bit scale, i.e. in the range [0, 255]) the high standard deviations of 20.33 and 58.90
again suggest that the manual method is unreliable and not well suited to obtain comparable results with
respect to a general norm that is independent of the operator or user. These results are clearly in favor of
our method, which yields stable results with low standard deviations (see Table 3). Furthermore, due to
the local convergence of our algorithm there is no interoperator variability when evaluating the results
obtained by different users. The average time required by the users to measure the intensity of 38 spots
was 1 min 37 sec, whereas (depending on the computer used) RodCellJ can evaluate the intensities about
100 times faster (c.f. section “Computational aspects”).

Table 4 Variability of the manual evaluation of spot intensity estimation
Original image Background subtracted image

mean intervariability 36.4 23.71
maximum intervariability 37.98 28.28

std intervariability 1.54 3.23
mean intravariability 0.84 0.28

maximum intravariability 1.03 0.47
std intravariability 0.16 0.13

variability RodCellJ 0.0 -
std RodCellJ 0.0 -

“original image” refers to the images in Figure 11 (bottom), whereas “background subtracted image”
refers to the same images but with subtracted background. The results for interobserver variability are
shown in bold font and for the intraobserver variability in italic respectively. Because of the nature of
our algorithm, RodCellJ produces zero variability, hence guaranteeing reproducible results.

Kymographs

Once the spots have been tracked, two different kymographs can be established. The first kymograph
(Figure 12, upper left) shows the movement of the spots with respect to the cell center (i.e. the barycen-
ter of the Rodscule), whereas the second plots the movement of the spots with respect to each other
(Figure 12, upper right). An illustration of these results is provided in Figure 12.



Figure 12 Kymographs. Upper left: kymograph representing the movement of the particles with respect
to the cell. The dotted red line corresponds to the blue line in the lower left figure, which represents
the line going through the center of the rod shape. Hence, this kymograph shows the migration of the
proteins compared to the cell center line. Upper right: kymograph showing the movement of the proteins
with respect to each other. As indicated by the scheme in the lower left part of the figure, the distances
between the proteins and the center line (red dotted) are always equal. It serves to highlight differences
in fluorescence. lower left: scheme explaining the different kinds of kymographs.

Computational aspects

RodCellJ is developed to run on multiprocessor architectures. Several tracking and segmentation algo-
rithms can therefore be run in parallel. There is no limit on the number of cells that can be segmented
or the total number of spots that can be tracked per session. On a 2.8 Ghz Intel i7 Quad-Core processor
with 16GB SDRAM on average (evaluating 48 cells, 83 tracked spots) it took 971 milliseconds to seg-
ment one cell and 823 milliseconds to track one spot through a time-lapse movie containing 50 frames.
Fitting the spot shape with the PSF approximation algorithm takes about 36 milliseconds per spot.

Conclusions

We have presented a new image analysis system to fully characterize the protein analysis in rod-shaped
cells. The image analysis system was implemented as an ImageJ/Fiji plugin called RodCellJ. It is able
to handle 2D or 3D static and dynamic images. It includes new and robust state-of-the art algorithms
to semi-automatically segment rod-shaped cells and detect and track up to four spots in two different
channels located within the cells. A novel algorithm to accurately estimate signal intensities independent
of their shape and background, which approximates the microscope’s point spread function was also
presented. The software outputs several cell- and protein specific parameters. In the case of dynamic
image analysis two different kymographs that represent spot migration can be displayed and saved. We
successfully demonstrated the utility of this tool to measure the asymmetry of the signal produced by an
SPB-associated, GFP-labeled signal transduction protein in S. Pombe. The rapidity and efficacy of this
tool will allow it to be used for screening large numbers of mutant strains to study their effects upon SIN
regulation. Though we have developed this software for the analysis of SPB behaviour during mitosis
in fission yeast, it is applicable to tracking other large structures in the cell, for example nuclei. It could
also be applied to track other fluorescently-labeled complexes that adopt a spot-like morphology in the
cycle.cell.

Methods

Cell lines and microscopy

The strains used in this study were obtained from crosses between 2 strains: cdc7(ura4+)EGFP, ura4-
D18, leu1-32 h+ and pcp1(ura4+)mCherry ura4-D18, leu1-32 h- to obtain a double mutant carrying
both tagged alleles. Cells were grown in yeast extract medium to early exponential phase (exponentially
growing culture) and centrifugal elutriation was used to isolate small G2 cells. Cells were concentrated
by filtration, and after 1 hour recovery time, the cells were imaged using a Plan-S-Apo 60x N.A. 1.42
objective lens mounted on a Perki-Elmer spinning disk confocal microscope. The culture was sampled
for imaging during both the first and second mitoses after elutriation. Images were exported and their
parameters were assessed using RodCellJ.
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Additional file

Additional_file_1 as PDF
Additional file 1: The Rodscule. Additional file 1 is a pdf containing a complete and detailed de-
scriptioin of the active contour model, named “The Rodscule”, that was implemented in RodCellJ as a
model for cell segmentation. It contains its mathematical description and the mathematical derivation of
the gradient needed for the optimization algorithm. Additionally a description of its implementation is
provided, explaining the issues that had to be solved when discretizing the continuously defined active
contour
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