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Abstract

We present a new method based on B-spline snakes (active contours) for measuring high-
accuracy contact angles. In this approach, we avoid making physical assumptions by defin-
ing the contour of the drop as a versatile B-spline curve. When useful, we extend this curve
by mirror symmetry so that we can take advantage of the reflection of the drop onto the
substrate to detect the position of the contact points. To keep a wide range of applicabil-
ity, we refrain from discretizing the contour of the drop, and we choose to optimize an
advanced image-energy term to drive the evolution of the curve. This term has directional
gradient and region-based components; additionally, another term—an internal energy—
is responsible for the snake elasticity and constrains the parameterization of the spline.
While preserving precision at the contact points, we limit the computational complexity by
constraining a non-uniform repartition of the control points. The elasticity property of the
snake links the local nature of the contact angle to the global contour of the drop. A global
knowledge of the drop contour allows us to use the reflection of the drop on the substrate
to automatically and precisely detect a line of contact points (vertical position and tilt). We
apply cubic-spline interpolation over the image of the drop; then, the evolution procedure
takes part in this continuous domain to avoid the inaccuracies introduced by pixelization
and discretization.

We have programmed our method as a Java software and we make it freely available
(DropSnake, Biomedical Imaging Group, EPFL, (1)). Our experiments result in good ac-
curacy thanks to our high-quality image-interpolation model, while they show applicability
to a variety of images thanks to our advanced image-energy term.
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1 Introduction

Wetting phenomena have been studied scientifically during the past 200 years with
strongly varying interest. An excellent overview appeared recently in literature (2).
Thomas Young introduced in 1805 a simple equation that equilibrates the forces at
the contact point of a liquid drop on a solid surface (3).Thomas Young’s equation
is

γl,g cos θ = γl,g − γs,l, (1)

where γ denote the excess free energy per unit area of the interface indicated by its
indices g, l, and s, corresponding to the gas, liquid, and solid phases, respectively.
This expression is called Young’s equation and remains to this day the most-used
expression in the study of surface wetting. The well-known and tabulated values
for the liquid/gas-excess free energy γl,g correspond to the surface tension of the
liquid with its vapor. Of even more relevance to this paper is the contact angle θ,
which is the other experimentally easily accessible factor in Young’s equation.

In recent years, there has been an incredible renaissance of wetting studies, starting
with the discovery of the lotus effect (4) and leaving many questions open (5). The
measurements of static angles of contact are generally considered to be precise to
±3◦, this residual variation being due to experimental conditions and operator non-
reproducibility. The latter can be improved by less-subjective image-processing al-
gorithms, as we shall discuss in this paper.

The study of the dynamics of liquid drops impinging onto surfaces (6) has recently
been shown to help improving the fabrication of micro-arrays (7). (Micro-Arrays
are recognized as key devices in present and future biomedical research.) Another
way of studying dynamic aspects of wetting is by tilting the substrate or by in-
creasing or decreasing the volume of the drop. Such studies typically measure the
advancing and receding contact angle and reveal its hysteresis; they are carried out
on time scales of several seconds, if not minutes. During that long duration, liq-
uid molecules might spread on the not-yet wetted surface, and are considered as
being the cause for the existence of a wetting hysteresis (8). Meanwhile, fast dy-
namic measurements of liquid drops impinging onto surfaces can be carried out
by high-speed cameras. Since those show that the drops deviate strongly from be-
ing spherical, the determination of the contact angles is more difficult, but a single
movie of the interaction of the drop onto the solid surface is sufficient to measure
the dynamic angles of the liquids and to permit the determination of the advancing
and receding angles, at time scales coming close to the limit of supersonic mono-
layer coverage.

To better understand the temporal evolution of the contact angles, it would be very
useful to determine the latter at sufficient high speed and precision. We therefore
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need a rapid and robust method to determine the angle of contact for the systematic
study of wetting properties on micro- and nano-structured surfaces with homoge-
neous surface chemistry.

Nowadays, the technique of the sessile drop is the most-widely used method to
measure the contact angle. Due to the difficulties encountered to accurately estimate
the contact angle, the domain has had a long-standing development. Direct mea-
surement using goniometer on telescope, protractor on pictures (or its computer-
based equivalent) are still widely used. The major drawback of these methods are
the subjectivity due to the operator action. Therefore, it is often preferred to mea-
sure this angle indirectly. This can be done using either a global model of the drop
or a local model at its contact points.

By approximating the contour as a sphere, a few points from the profile of a drop
is all it takes to easily obtain a contact angle. But, in many situations, neglecting
gravity and using the spherical assumptions is inaccurate because the sessile-drop
method is most often used in the presence of gravity (or of any other field that
is constant and perpendicular to the surface). In such conditions, if the surface is
horizontal and homogeneous, one may consider the drop to be axisymmetric.

The ADSA method, which stands for Axisymmetric Drop-Shape Analysis (9; 10),
has been thoroughly investigated and its limitations are well-known (10). It requires
solving a Laplace equation, often by numerical integration. After discretization of
the contour of a drop on an image, it searches for the best Laplace profile that cor-
responds to this contour. One may then obtain an accurate contact angle as well as
a value for the capillary constant. However, drops are rarely perfectly axisymmet-
ric. When characterizing surfaces, the difference in contact angle on different sides
of a drop is a precious indicator of surface heterogeneities. Therefore, the use of
axisymmetric models is inherently limited because the axisymmetricity hypothesis
is not fulfilled in many cases.

Since global models have a limited validity, more local models may be preferable.
The polynomial-fitting approach is one of them, where a certain number of co-
ordinates from the contour of the drop near the contact points are extracted and
fitted to a polynomial of a certain degree. Unfortunately, the resulting contact an-
gle depends highly on the polynomial degree and on the number of coordinates
points (11). Despite these delicate issues, polynomial fitting remains the method of
choice when considering non-axisymmetric drops, as shown in several comparative
studies (11; 12).

In this paper, we propose an alternative method that retains the better aspects of
both local and global models. Our new approach, based on snakes, reconciles the
fact that the shape of a drop is global, with the fact that its angles of contact are
local. Conversely, a snake may reveal local contact angles while keeping a global
shape, because it depends on elasticity constraint which maintain it as a global
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entity, even though the forces influencing it are of limited range (13).

Although the position of the contact points is of critical importance when measuring
an angle of contact, up to now it has been mainly measured by hand because, when
using the sessile-drop method for characterizing surfaces, the position of the line
of contact may change from one experiment to the next due to surface thickness or
misalignments. In this paper, thanks to our global knowledge of the shape of the
drop, we have been able to automatize the detection of the interface between the
drop and the substrate it rests on. This interface may not be detected directly as it
appears blurry and curved on the image. However, the reflection of the drop from
the surface allows us to determine the position of the contact points. Finally, we
use the global shape of the snake to accurately detect the profile of the drop at the
points of contact.

In other words, the snake may be equivalent to the polynomial fitting approach for
the determination of the contact angle, while still using global knowledge of the
drop to accurately determine position of the drop and contact points. This is why
it is the perfect tool to analyze images of entire drops profiles with apparent drop
reflection.

Traditionally, the analysis of drop shapes was based on discrete contours which
were obtained using simple edge detectors such as Sobel (14) or using more ad-
vanced methods such as Jensen-Shannon divergence-based methods (15). Depend-
ing on the image characteristics and on the segmentation method, the edges of the
drop were detected with various degrees of success. In some cases, especially when
the image is not sharp, such discrete approaches fail (16).

A recent variant of ADSA, called Theoretical Image Fitting Analysis (TIFA), deals
with a continuously defined drop contour. It uses a gradient-based error function
and is consequently able to handle smooth images (e.g., captive bubbles) for which
ADSA fails (16). First, a theoretical gradient image is built using a numerical so-
lution to the Laplace equation; then, the error function is defined as the sum of the
square of the difference between an experimental gradient image and the theoretical
one. In this approach, the contour is no more discretized, and the optimization takes
into account continuously defined gradient values. This can extend the analysis of
drop shapes to domains where the approaches based on edge detectors would fail
because the images of the drops are too smooth.

To base segmentation on image energies is a very active research domain. For ex-
ample, it has been suggested that exploiting the direction of the gradient could be
useful in building some form of gradient-based image energies (18). (Indeed, the
direction of the gradient is certainly relevant when it comes to measuring angles.)
Meanwhile, region-based energies are no less interesting, in part because they are
known to be very robust. This is particularly true in the context of the analysis of
drop shapes, since measurements are realized most of the time in dedicated en-

4



vironments and result in images with well-controlled pixel intensities. Following
advances in this domain, we suggest to use a unified image energy that takes into
account both a directional gradient energy and a region-based energy (19).

Cubic-spline interpolation has already been used to sample the contour of the drop (14);
in that approach, the role of interpolation is to allow for a sub-pixel refinement of
the contour. In another contribution (17), horizontal spline interpolation on the gra-
dient image has been used in the context of gradient energies. In this paper, we too
choose to consider that the image pixels are the samples of a continuously defined
image; but then, we pay attention to ensure that all the subsequent operations we
apply are consistent with this model, in accordance with sampling theory. We pro-
pose to apply cubic-spline image interpolation to obtain sub-pixel resolution, and,
accordingly, to consider an image energy based on a continuously defined contour
of the drop. Due to its good properties, a spline-based gradient operator may also
be used (20).

2 Spline-Based Representation of the Drop Contours

Parametric spline curves are very common in computer graphics. A spline of or-
der d 1 is a piecewise-polynomial function consisting of concatenated polynomial
segments of order d that are joined at breakpoints (21). Such parametric curves
are attractive because of their capability to represent simple shapes with just a few
spans. In the particular form of splines called B-splines, the spline function is ob-
tained as a sum of a finite number of basis functions. As each basis function has a
finite support, this is a computationally efficient way of representing splines.

2.1 Parametric Spline Representation

Because of their minimum-curvature property, computational effectiveness, and
simplicity, cubic B-splines have been chosen as interpolating basis function. In-
deed, as B-spline produce smooth curves, drops present as well only continuous
regular contours. In addition, as the optimal solution for a curvature-constrained
snake is a curvilinear cubic spline (22), a B-spline snake may ideally represent the
contour of resting drop in the absence of external forces. If a contour deviate from
the minimum curvature property, the knots would deviate from their ideal mini-
mum curvature position. Eventually, if a contour deviate strongly from the mini-
mum curvature, non-curvilinear splines are suggested (subsection 4.1). A correct
representation of the contour of a drop may thus be expected using only a limited
number of B-spline segments.

1 Note that d = n + 1, where n is the degree of the spline or polynomial
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A cubic-spline parametric open curve in the x-y plane may be described

∀t ∈ [0,M] :

 x(t) =
∑M+1

k=−1 cx,k β
3(t − k)

y(t) =
∑M+1

k=−1 cy,k β
3(t − k)

(2)

and by its derivatives

∀t ∈ [0,M] :

 x′(t) =
∑M+1

k=−1 cx,k Dβ3(t − k)

y′(t) =
∑M+1

k=−1 cy,k Dβ3(t − k),
(3)

where β3 is the cubic B-spline, where (cx,k, cy,k) are the coordinates of the kth control
point among M control points ck, and where D is the differential operator d

dt .

Note that a cubic spline does not interpolate its control points. Using IIR filter, one
may obtain interpolating equivalents of control points: the knots, or nodes (22).

2.2 Boundary Conditions

A cubic spline at regular breakpoints has a continuity C2: the first and second
derivatives are continuous. However, the curve of the drop must have a disconti-
nuity of its first derivative in order to represent angles. Consequently, border con-
ditions must be applied to the spline at the contact points. In order to achieve that,
triple control points may be used (21). However, such an approach would introduce
straight segments and a spurious parameterization (23).

Phantom vertices are additional control points at boundaries. Phantom vertices con-
strain the spline to interpolate the boundary control points as well as to have its tan-
gent at these boundary points passing through the phantom point and its source (23).
In order to achieve such a goal, a phantom point added at one end of the spline must
be a prolongation of the spline by symmetry through the last control point. We il-
lustrate in Figure 1 an end-vertex interpolation that uses phantoms.

2.3 Symmetric Model of Drops Using Drop Reflection

When the reflection of the drop on the substrate is present in the image, the contact
points may be detected automatically. In order to do so, the drop spline should be
extended by mirror symmetry at its boundary control points. The contour of the
drop is now defined by one spline for its non-reflected contour, and by one spline
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Fig. 1. Illustration of end-vertex interpolation via phantom vertices. The phantom control
point c−1 is obtained by a symmetry of c1 through c0.

for its reflected contour. The non-reflected drop profile is defined by

 xsup(t) =
∑M+1

k=−1 cx,k β
3(t − k)

ysup(t) =
∑M+1

k=−1 cy,k β
3(t − k),

(4)

where (cx,k, cy,k) is the coordinate of the control point for the non-reflected profile
spline, and where (cx,−1, cy,−1) and (cx,M+1, cy,M+1) are the phantoms edge control
points coordinates. The reflected profile of the drop is defined by a symmetry of the
control points from the original profile, as in

 xinf(t) =
∑M+1

k=−1 cr
x,k β

3(t − k)

yinf(t) =
∑M+1

k=−1 cr
y,k β

3(t − k),
(5)

where (cr
x,k, c

r
y,k) is the coordinate of the control point for the reflected profile spline,

which is obtained by a symmetry transform of (cx,k, cy,k), and where (cr
x,−1, c

r
y,−1) and

(cr
x,M+1, c

r
y,M+1) are the coordinates of the phantom control points of the reflected

profile. (Note that c0 = cr
0 and cM = cr

M.) We illustrate in Figure 2 a model of the
drop that includes the phantoms at the boundary and the reflection defined by the
two edge control points.
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Fig. 2. Illustration of control-points parameterization. The native contour of the drop is rep-
resented with the spline defined by the cks. The reflected contour of the drop is represented
with the spline defined by the cr

ks. The mirror symmetry line is defined by the position of
c0 = cr

0 and cM = cr
M. It exhibits a tilt-angle θh with the horizontal.

3 Evaluation of the Image Energy

3.1 Image Interpolation

In order to minimize the influence of the discretization, it is suggested to interpolate
the image of the drop. B-spline interpolation offers good quality at a limited com-
putational cost. Consequently, cubic-spline basis functions have been used. The
interpolating coefficients should first be computed. This can be done using efficient
methods (20). Getting an image value at any position necessitates the evaluation of
a limited window of neighboring pixels (4 × 4 for cubic splines).

3.2 Unified Image Energy

3.2.1 General Formulation

Optimization schemes based on gradient energies are very accurate but their major
drawback is their convergence radius. The convergence radius may be increased by
first applying a smoothing filter to the image. On one hand, this may result in a loss
of details and a decrease in accuracy. On the other hand, statistical region-based im-
age energies provide good convergence, but less accuracy. In order to benefit from
the advantages of both methods, a unified image energy has been proposed (19).
This approach uses a new gradient energy that takes into account the gradient di-
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TABLE I
DIFFERENT ENERGY TERMS USED IN THE SNAKE OPTIMIZATION

the following sections and they are listed in Table I for easy
reference. The energy is minimized iteratively by updating the
snake coefficients.

III. IMAGE ENERGY

The image energy is the most important of the three energy
terms. In this section, we identify some limitations of the
widely-used gradient magnitude energy and propose a new
cost function that overcomes these problems. We also present
a unified framework which includes the edge-based and re-
gion-based approaches as particular cases.

A. Edge-Based Image Energy

Traditional snakes rely on edge maps derived from the image
to be guided to the actual contour. The most popular approach
is based on the magnitude of the gradient.

1) Gradient Magnitude Energy: Many of the parametric
snakes described in the literature use the integral of the square
of the gradient magnitude along the curve as the image energy
[6], [9], [10], [17]. Mathematically, we have

(6)

where denotes the gradient of at the point . As
pointed out in [22], one disadvantage of this measure is that it
does not use the direction of the gradient. At the boundary, the
image gradient is perpendicular to the contour. This extra infor-
mation can be incorporated into the external energy to make it
more robust.

A more fundamental problem is the dependence of on
the parametrization; we obtain a different value of if the
curve is represented in terms of a parameter , where
is a monotonically increasing one to one warping function. The
use of such an energy may therefore result in the curve re-ad-
justing its parametrization in trying to minimize (e.g.,
with B-spline curves, the knots will move to regions of the

Fig. 2. Gradient and normal to the curve.

contour where the gradient magnitude is relatively high). This
problem is demonstrated in Fig. 3(b).

2) New Gradient-Based Image Energy: The gradient mag-
nitude energy is the integral of a scalar field derived from the
gradient vector field. We propose a new energy that uses the
vector field directly

(7)

(8)

where is the unit vector orthogonal to the image plane. Here,
denotes the unit normal to the curve at . Note that this

approach of accounting for the gradient direction is similar in
philosophy to [22], even though the expression used by these
authors is different and parameter dependent.

This integration process is illustrated in Fig. 2; with our con-
vention, the vector is the inward unit normal to the curve,3
meaning that we are integrating the component of the gradient
orthogonal to the curve. Note that (7) is independent of the pa-
rameter and, hence, does not depend on the parametrization.
The improvement obtained by using the new energy instead of
the parameter dependent magnitude-based energy is shown in
Fig. 3(c).

3The vector is chosen depending on the direction in which the curve is
described, such that is the inward unit normal.

Fig. 3. Gradient and normal to the curve.

rection and that has the advantage of being parameterization-invariant.

Considering a simple surface S with a contour delimited by C, the gradient-based
image energy is given by

Eedge =

∮
C

k · (∇ f (r) × dr), (6)

where k denotes the unit orthogonal vector to the image plane, and where ∇ f (r) is
the gradient of the image f at the point r of the curve. We illustrate in Figure 3 this
integration process, where n is the inward normal vector.

Using Green’s theorem, this can be expressed as the surface integral

Eedge =

∫∫
S

∇ · ∇ f (s)︸     ︷︷     ︸
Te{ f }

ds, (7)

where ∇· is the divergence operator.

The region-based energy discriminates an object from its background by taking in
consideration the pixel intensities. It is given by

Eregion =

∫∫
S

Tr{ f }(s) ds, (8)

where Tr{ f } is the probability-distribution image.

In order to use region energies, one needs to establish the statistical value of the
drop and of the background. Considering that sessile drops are often taken in a
dedicated environment under standard lighting conditions, this may be determined
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only once. If the probability distribution is not known, it may be estimated from a
temporary contour during optimization.

Having expressed the gradient energy as a surface integral, the unified image energy
may be obtained as

Eimage =

∫∫
S

fu(s) ds, (9)

where fu = αTe{ f }+(1−α) Tr{ f }. Using Green’s theorem again, this unified energy
may also be rewritten as the contour integral

Eimage =

∮
C

f y
u (x, y) dx = −

∮
C

f x
u (x, y) dy, (10)

where

f y
u (x, y)=

x∫
−∞

fu(x, τ) dτ (11)

f x
u (x, y)=

y∫
−∞

fu(τ, y) dτ. (12)

3.2.2 Spline Parameterization of Drops

Let us define Csup and Cinf so that they represent the non-reflected profile and the
reflected profile, respectively, with C = Csup∪Cinf . The image energy then becomes

Eimage =

∫
Csup

f y
u (x, y) dx +

∫
Cinf

f y
u (x, y) dx (13)

=−

∫
Csup

f x
u (x, y) dy −

∫
Cinf

f x
u (x, y) dy, (14)

or, using the parametric representation,

Eimage =

M∫
0

f ysup
u (xsup, ysup)

∂xsup

∂t
dt +

M∫
0

f yinf
u (xinf , yinf)

∂xinf

∂t
dt (15)
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=

M∫
0

f xsup
u (xsup, ysup)

∂ysup

∂t
dt +

M∫
0

f xinf
u (xinf , yinf)

∂yinf

∂t
dt. (16)

3.3 Energy Derivation

3.3.1 Derivation for Normal Control Points

Using (16) and ∂ f x
u
∂x = fu, the derivative of the image energy may be calculated with

respect to the horizontal position of a control point as

∂Eimage

∂cx,k
=−

∮
C

fu
∂x
∂cx,k

dy

=−

M∫
0

fu
∂xsup

∂cr
x,k

∂ysup

∂t
dt −

M∫
0

fu
∂xinf

∂cr
x,k

∂yinf

∂t
dt. (17)

Note that the computation of ∂Eimage

∂cx,k
and of ∂Eimage

∂cy,k
can be realized efficiently (see

Appendix A).

3.3.2 Derivation for the Axis of Symmetry

The positions of c0 and cM are of great importance as they define the position of
the whole reflected profile. Furthermore, the position of these points is greatly in-
fluencing the contact angle. Consequently, in order to let them adjust to the image
energy in the best way, and considering that the symmetry axis is almost horizontal,
only their vertical derivative is affected by the symmetry derivative.

The position (xh, yh) is defined in the middle of the control points c0 and cM. The
angle of the axis of symmetry with the horizontal may then be written as

tan θh =
cy,M − cy,0

cx,M − cx,0
. (18)

We can derive the image energy with respect to the position of these boundary
control points as follows:

∂Eimage

∂cy,0
=
∂Eimage

∂yh

∂yh

∂cy,0
+
∂Eimage

∂θh

∂θh
∂cy,0

(19)
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∂Eimage

∂cy,M
=
∂Eimage

∂yh

∂yh

∂cy,M
+
∂Eimage

∂θh

∂θh
∂cy,M

, (20)

where

∂yh

∂cy,0
=
∂yh

∂cy,M
=

1
2
. (21)

Using (18), we finally get

∂θh
∂cy,0

= −
∂θh
∂cy,M

=
cos2 θh

cx,0 − cx,M
. (22)

The efficient computation of ∂Eimage

∂yh
and of ∂Eimage

∂θh
is reported in Appendix B.

4 B-Snake

Active contours, or snakes, are widely used in computer-assisted tools for segmen-
tation. Some of their applications are medical image analysis or feature tracking in
video sequences. Snakes were originally defined as a spline energy minimization
under internal and external forces (13). These forces provide at the same time a
way to ensure the smoothness of the curve and a way to adapt to specific features.
B-spline snakes (B-snakes) are a particular category of snakes that use a parametric
B-spline representation of the curve. While having the same basic philosophy than
snakes, they incorporate the smoothness constraint in an implicit fashion. Thus,
they provide a very intuitive model, which also requires fewer parameters and is
consequently faster. B-snake formulation is further justified by the fact that the op-
timal solution for a curvature-constrained snake is a cubic spline which may be
easily represented using B-spline basis functions (22).

In our implementation, external forces are governing the image energy from 3.2. A
re-parameterization energy is required for the snake to keep its smoothness (internal
energy), which we describe now.

4.1 Reparameterization Energy

It has been determined that the number of pixel coordinates taken in considera-
tion in a polynomial-fitting approach is of particular importance (11). A B-spline
is nothing else than a piecewise polynomial, so it is very similar to the polynomial
fitting approach for the determination of a contact angle. We can thus expect that
the contact angle measured with B-spline will be dependent on the length of the
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contour taken in consideration. With the phantom boundary conditions, a contact
angle depends on the interpolating control point at the edge as well as on the pre-
vious control point. Consequently, the control of the distance between knots at the
contact points is of particular importance.

A drop with no external forces applied tends to minimize its curvature and takes
a spherical shape. It has been shown that the optimal solution for a curvature-
constrained snake is a curvilinear cubic-spline snake (22). In order to increase the
curvature of a snake, the distance between knots may be reduced. Considering that
a sessile drop under gravity presents an increased curvature near the substrate inter-
face, it is interesting to decrease the distance between knots near the contact points.
Finally, in a contact-angle measurement application, it is more important to follow
closely the contour of the drop at its contact points than at its apex.

Consequently, a progressive (non-uniform) repartition of the control points is con-
strained and a curve velocity with linear variation is adopted as follows:

d(t) =
√

(x′(t))2 + (y′(t))2 = d̄
(
1 + γ − 2 γ

∣∣∣∣∣2 t
M
− 1

∣∣∣∣∣) (23)

with 0 ≤ γ < 1, where d(t) is the norm of the velocity, and where d̄ is the average
velocity. Note that, if γ = 0, the parameterization is curvilinear.

The internal energy penalizes the deviations of the snake from its ideal parameteri-
zation. It is given by

Eint =

M∫
0

( √
(x′(t))2 + (y′(t))2 − d(t)

)2
dt (24)

and can be differentiated with respect to the control points position, as in

∂Eint

∂cx,k
=

M∫
0

2

1 − d(t)√
(x′(t))2 + (y′(t))2

 x′(t) Dβ3(t − k) dt. (25)

∀ 1 < k < M − 1

4.2 Optimization

The final snake energy to be minimized is given by

E = Eimage + Eint. (26)
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Following the results from (19), we are using the simple steepest-descent algorithm.
In order not to try a too-big step, we normalize them at each iteration. During
optimization, we adjust the step length with respect to the variation of displacement
from one iteration to the next. Convergence is reached when the step length is below
a threshold, and after a prescribed number of iterations during which the contact
angles haven’t evolved (above a certain threshold). The convergence criterion on
the contact angle may be adjusted but a typical value is 0.01◦. In this way, we
achieve a finer control of the convergence of the critical points for the contact angle.

Before actually running the optimization algorithm, an initialization contour is re-
quired. This contour may be manually defined placing roughly a few knots or an
automatic approach may be adopted. We successfully used simple image size con-
siderations for automatic initialization in a certain number of standard drop images.
However, using more advanced initialization approaches could allow producing an
initialization scheme of wider applicability. From an initialization spline, the de-
tection of the contour of the drop is realized by a two-step evolution procedure.
First, the spline is evolved in a fast-snake mode with a limited number of knots and
a variable sampling period to globally detect the drop shape. Then, a finer spline
is evolved to accurately detect the contour of the drop. In this optimization step,
the number of knots is dynamically adjusted according to the desired knot-spacing
at interface and the sampling period is set to the unit pixel. The desired distance
between knots at the interface is an important parameter of the algorithm and it is
more logical to set this parameter rather than to set the total number of knots.

This simple optimization scheme yields satisfactory results at a reasonable speed
(a few seconds).

5 Implementation and Application

5.1 Software

The method described in this article has been programmed as a plugin for ImageJ,
which is a free open-source multi-platform Java image-processing program (24).
Our plugin is independent of any imaging hardware and, thanks to ImageJ, any
common file format may be used for the drop picture. This plugin is called Drop-
Snake and is made freely available (1).
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Fig. 4. Drop of ultra-pure water (resistivity 18 Mohms cm, produced by a Millipore MilliQ
device, 7 to 8 microlitres) on a vertical PMMA substrate (by Goodfellow, research grad).
Picture is courtesy of M. Brugnara, Polymers and Composites Laboratory, University of
Trento, Trento, Italy.

5.2 Application Examples

In the following examples, contact angles have been measured using an image en-
ergy based solely on the gradient. The relative good contrast of those images did
not justify the use of a region component. However, region-based energies are no
less attractive and should demonstrate their full power in low-contrast applications
where repeated measurements in similar conditions are performed so that an accu-
rate pixel probability distribution can be obtained.

5.2.1 Measurement of a Contact Angle with Automatic Interface Detection

In order to demonstrate the new possibilities offered by our method, it has been
tested on tilted drops as represented on Figure 4. In the setup used, the camera is
fixed to the sample holder which can be rotated. Due to a small misalignment of
the camera horizontal axis with the substrate, the line passing through the contact
points reveals a small tilt angle with respect to the horizontal axis of the image.
There is a limited drop reflection on the substrate. This image was taken with a
digital camera (Nikon995) connected to a 10× lens. The drop had back-light illu-
mination. After selection of the relevant part of the image, the size of the image
was 924 × 650.

The contour of the drop was determined using the following parameters: fast snake
with 6 knots after manual initialization, Laplacian smoothing-filter radius of 2.0
pixel, gradient-only image energy, knot-spacing constraint at interface 20 pixel,
knot-spacing ratio 2.0 (γ = 1/3), energy normalization Eint/Eimage = 0.3, conver-
gence criterion 0.01◦. The average computation time was 3 second on a Pentium
IV 2 GHz.
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Fig. 5. Detected drop contour and contact angles. The dots represent the position of the
knots. The tangents at the contact points are represented by the lines. CA stands for contact
angle.

The detected drop contour is represented in Figure 5. The measured contact angles
for this example are 98.964◦ and 66.486◦. The detected camera tilt angle was 0.2◦.

5.2.2 Measurement of Contact Angles for Projected Drops

As a second example to illustrate the potential of our method, we show contact-
angle measurements on projected, and therefore deformed, water droplets. The
droplet deformation originates mainly from the inhomogeneous detachment of the
droplet from the liquid supply needle by an air flow. The air flow is guided along
the needle using a tube that has a diameter slightly larger than the needle. The air
flow is launched for 50 ms by an electric valve operated by a function generator.
The pressure in the air tube is adjusted between 80 and 135 mbar, which results in
a speed of detached droplet of 0.28 m/s and 0.8 m/s, respectively. The outer needle
diameter is 260 µm, and the droplet diameter ranges from 1 to 1.4 mm. The flight
and the impact of the droplet on the surface was followed by a high-speed camera
(Photron Fastcam) at a rate of 10,000 image/s. The droplet shapes are changing
during flight, at impact, and bouncing. The droplet edges are then partially out of
focus, making them blurry and noisy. The snake-based algorithm allows the exact
determination of contact angles from blurred images. The development of dynamic
contact angles at surface impact (advancing and receding contact angles, Figures 6
and 7, respectively) can therefore be studied in detail.

The contour of the drop was determined using the following parameters: fast snake
with 5 knots after manual initialization, Laplacian smoothing-filter radius of 2.0
pixel, gradient-only image energy, knot-spacing constraint at interface 20 pixel,
knot-spacing ratio 2.0 (γ = 1/3), energy normalization Eint/Eimage = 0.3, conver-
gence criterion 0.01◦.
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Fig. 6. Advancing angles. The dots represent the positions of the knots. The tangents at the
contact points are represented by the lines. CA stands for contact angle.

Fig. 7. Receding angles. The dots represent the positions of the knots. The tangents at the
contact points are represented by the lines. CA stands for contact angle.

5.3 Robustness Experiments

In order to evaluate the robustness of our image-energy and contact-angle-measurement
approach, various filters have been applied to synthetic drop data. The synthetic
data set consisted of three binary images of spherical drops with perfect horizon-
tal symmetry. All the drops had a maximum radius between 300 and 400 pixel. In
order to assess the contact-angle dependence, each synthetic drop had a different

17



0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

3

4

Smoothing filter radius [pixel]

C
on

ta
ct

 a
ng

le
 v

ar
ia

tio
n 

[°
]

CA = 130°
CA = 81°
CA = 29°

Fig. 8. Measured variation of the contact angles vs. smoothing-filter radius for different
initial contact angles.

contact angle (29◦, 81◦, and 130◦).

5.3.1 Smoothness Dependence

To evaluate the robustness of our method, various Gaussian filters have been applied
to the synthetic data set. We have measured the angles of contact on the resulting
images and we have compared them to the measurements on the original image.
We report the results in Figure 8.

Logically, the contact angles near 90◦ should not be much affected by the smoothing
filter. Angles above 90◦ tend to be increased while angles below 90◦ tend to be
decreased. It should be noted that the measured contact angles remain within a
reasonable interval of ±0.36◦ for a Gaussian-filter radius of up to 2 pixel.

5.3.2 Robustness to Noise

Using the same synthetic data, we have assessed the effect of various noise levels
on the measured contact angle. Gaussian noises of increasing standard deviation
have been applied to the data set. The contact angles have then been measured and
compared to their original value. The average contact-angle error is represented in
Figure 9.

The contact-angle error increases as the noise influence is increased. However,
thanks to the robust image energy, it remains reasonable. The average contact-angle
error is still less than 1◦ for applied noise with a standard deviation of up to 100.

For illustration purposes, one image of the synthetic data is represented in Fig-
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Fig. 9. Contact-angle error vs. applied noise.

Fig. 10. Image of a synthetic drop with perfect reflection.

Fig. 11. Image of a synthetic drop with perfect reflection, with an added noise of standard
deviation 100.

ure 10. Upon addition of the maximum amount of noise, it corresponds to Fig-
ure 11.

5.4 Inter-knot distance

The contact angle dependence on the distance between knots has been assessed on
the drop from section 5.2.1. Thanks to the variety of contact angles that this drop
provides, we can evaluate the influence of the inter-knot distance for angles below
and above 90◦ on the same image. In order to represent clearly the effect of a lack of
control points, the image from section 5.2.1 has been resized to 231 × 162. Indeed,
with a smaller resolution, there is less control points for a same inter-knot distance.
As the distance between knots may not always be constant around the drop profile,
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Fig. 12. Contact-angle variation vs. inter-knot distance. The contact angle variation is given
in reference to the contact angle at 20.9 pixel inter-knot distance.

the distance between knots at the contact points is taken into consideration. The
contact angle variation with respect to the distance between knots at the contact
points is represented on Figure 12.

Figure 12, is giving contact angle evolution with progressing inter-knot distance.
The contact angles for a 20.9 pixel knot distance have been taken as reference sub-
sequently. At very small inter-knot distance, both contact angles could be visually
rejected. Indeed, due to the discrete property of images, considering a too short
segment of the contour in the contact angle determination may result in erroneous
results (in spite of the sub-pixel interpolation). In addition, due to the limited con-
trast at the contact points, the contact angle may become uncertain for too small
inter-knot distances. This is particularly visible for the small contact angle on Fig-
ure 12. At very large inter-knot distance, we also observe an increased contact angle
variability when the knots can no more represent correctly the drop contour. For an
inter-knot spacing of about 60 pixel, there was only 5 knots to define the drop con-
tour at this resolution. The maximum limit for the inter-knot distance is related to
the minimum number of knots required to accurately represent a drop contour. This
minimum number of knots is independent of the resolution but depends on the total
curvature of the drop. Thus, the maximum limit on the inter-knot distance may be
more easily reached at limited resolution or large contact angles. We see indeed
that at very high inter-knot distances both contact angles decrease, but the curve
corresponding to the largest contact angle is decreasing much faster.

With reasonable inter-knot distances, a limited dependence of contact angles on
inter-knot distance is observed. As a consequence, it is important to keep this pa-
rameter fixed for all measurements within a study. The inter-knot distance should
be set above a minimum value allowing a reasonable pixel averaging. However,
it should allow a sufficient number of knots in order to correctly follow the drop
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contour. The latter point represents normally no problem and is easy to ensure (10
knots are normally enough). We typically use an inter-knot distance of 20 pixel in
our studies.

5.5 Software evaluation

Comparison between contact angle measurements methods is a challenging task.
Indeed, different methods make different assumptions (e.g., axisymmetricity), ne-
cessitates different inputs (e.g., automatic or manual positioning of the substrate
level) and can give extra informations (e.g., capillary constant with ADSA). In addi-
tion, results can be highly dependent on a particular software application and a same
drop model can be used with several edge detection methods sometimes. However,
in order to give an evaluation of the implementation of the method, comparisons
have been performed with other methods for which the software implementation
was available to us. Thus this subsection cannot claim to compare methods but
only software applications based on different methods. In this subsection, we re-
fer to axisymmetric for our implementation of an axis-symmetric method based on
Laplace equation. Our axisymmetric implementation was done as a plugin for Im-
ageJ. It is largely based on (10; 9) but uses a segmentation method depending on
thresholded gradient. This latter point results in a slight overestimation of the con-
tour and of the contact angle. The measurements based on the polynomial method
were performed with a commercial software (Windrop++ V4.10, GBX, Romans
sur Isere, France).

Dynamic contact angles were measured on the same sequence of a drop of water
on an isotropic silicium substrate. Images were acquired on a commercial contact
angle meter (Digidrop, GBX, Romans sur Isere, France). For Dropsnake and the
axisymmetric method, the initialization on each frame but the first was using the
solution of the preceding frame. Results are presented on Figure 13.

Considering the offset of our axisymmetric implementation, absolute contact angle
considerations may difficultly be taken into account. However, the stability of the
measurements may be evaluated. The DropSnake curve is relatively smooth and its
measurements are much more stable than measurements from the other methods. In
the area of receding angle (frame 270-320) standard deviations were measured to be
0.2, 0.6 and 1.3 respectively for DropSnake, the axisymmetric and the polynomial
method. It should be noted as well that according to DropSnake and the polynomial
method, the drop is not perfectly axisymmetric although it was supposed to be. This
latter aspect appears redundantly in our studies as isotropicity is hard to achieve
during surface preparation and contact angle measurement.
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Fig. 13. Comparison of contact-angle measurement methods on a sequence of images (370
images). a) Snake method using our implementation on ImageJ, the DropSnake plugin pre-
sented in this paper, 370 measures of the left angle (symbol �) and right angle (symbol
�). b) Axisymmetric method using our implementation on ImageJ: 370 measures of one
angle (symbol H). c) Polynomial method using a commercial software (GBX Windrop++
V4.10): 370 measures of the left angle (symbol •) and right angle (symbol ◦). d) Hand–
made method: 10 measures of the left angle (symbol _) and right angle (symbol ^). For
visual simplification, symbols are represented every 5 samples.

5.6 Experiments Conclusion

Using the method described in this article, the contour of the drop as well as the
interface (vertical level and tilt) may be automatically detected. A limited presence
of drop reflection is sufficient to ensure accurate interface detection. Strongly non-
axisymmetric drops and non-spherical drops may be analyzed successfully.

The method proved to be very robust and little dependency on parameters has been
observed (with the exception of the inter-knot distance discussed in subsection 5.4).
It presented a limited contact-angle dependence when smoothing filters were ap-
plied. However, this is already a great improvement compared to methods based
on the discretization of the contour of the drop since they fail when confronted to
smooth images. Our method also presented excellent inherent robustness to noise.
Thus, these good properties allow the method to be used with a very broad range
of image types. The inter-knot distance is an important parameter influencing the
contact angle results. As a consequence, it is of particular importance to keep this
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parameter at a reasonable value and constant within a study.

6 Conclusion

A new image energy function based on statistical region and gradient information
has been applied to the domain of drop shape analysis. This energy function, com-
bined with cubic-spline image interpolation, provides a framework for the very ro-
bust and highly accurate detection of the contour of the drop, over a broad range of
images. The first results obtained with this approach are already promising and the
applicability surpasses methods based on a discretization of the contour. The snake-
based approach is a novel basis for measuring contact angles of general drops. As
it does not make limiting assumptions on the shape of the drop, it may be applied
to drops that do not follow any global model. This allows the method to be suitable
to a very wide range of applications (e.g. non-axisymmetric drops, tilted drops,
projected drops). It is based on a cubic B-spline snake whose minimum-curvature
property allows a good description of drop contours with a limited number of con-
trol points. In essence, it is similar to the polynomial-fitting approach, but, due to
its elasticity, the snake also takes advantage of the global shape of the drop. Thanks
to its unifying approach, the snake methodology offers the best tradeoff between
the use of the general drop shape to guide the detection of the contour of the drop,
and the use of an algorithm with local behaviour to compute contact angles. As a
consequence of the definition of a symmetric spline model of the drop, we were
able to detect the offset and tilt angle of the line of contact points.
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A Derivative computation for normal control points

Supposing θh small, the following approximation may be done:

∂xinf
∂cx,k
= ∂xinf
∂cr

x,k
, ∂yinf
∂cy,k
= −

∂yinf
∂cr

y,k
.

The energy derivative (17) may be rewritten as:
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(A.1)

Note that:

∂xsup

∂cx,k
=
∂ysup

∂cy,k
= β3(t − k) ∀ 2 ≤ k ≤ M − 2 (A.2)

and due to the phantom edge definition:
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= β3(t − 1) − β3(t + 1)

∂xsup

∂cx,0
=
∂ysup

∂cy,0
= β3(t) + 2β3(t + 1)
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∂xsup
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∂cy,M
= β3(t − M) + 2β3(t − (M + 1))

(A.3)

The spline representing the reflected contour has identical derivatives for its respec-
tive control points.

Note that the cubic spline basis function β3 as well as its derivative Dβ3 have a
finite support and the integral in (A.1) does not need to be computed over its whole
range. However, care should be taken with the boundaries.

Note also that the integral A.1 may be calculated as a finite sum. Although the
phantom border conditions are complicating the notation, the spline basis function
product may be pre-calculated. These computation considerations were thoroughly
investigated in (19), and the phantoms border conditions are only making things
(and notation) a little bit more complicated.

Similarly, using (15), the y-axis derivative may be obtained:
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B Derivative computation for the axis of symmetry

Here again, it is supposed that θh is small: ∂yinf
∂yh
= 2 and ∂xinf

∂yh
= 0

Hence:
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fuDβ3(t − l) dt (B.1)

The image derivative energy with respect to the angle θh may be written as an
average of its computations using f y

u and f x
u :
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Which can be rearranged as:
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The terms ∂ f y
u
∂x and ∂ f x

u
∂y may be computed, however that would require twice the

computation over the whole image. In practice, if we are close enough to the drop,
the path should remain parallel to the contour and its energy image. That means
that the product of the differentiation of the energy image in a direction and the
displacement in the same direction should remain small. Hence, we neglect the
products ∂ f x

u
∂y
∂yinf
∂t and ∂ f y

u
∂x
∂xinf
∂t

The computed derivative is then:
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