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Abstract
Mutual information is a widely used similarity measure for aligning

multimodal medical images. At its core, it relies on the computation of a
discrete joint histogram, which itself requires image samples for its estima-
tion. In this paper, we study the influence of the sampling process. We show
that quasi-random sampling based on Halton sequences outperforms meth-
ods based on regular sampling or on random sampling. Our results suggest
that sampling itself—and not interpolation, as was previously believed—
is the source of two major problems associated with mutual information:
the grid effect, whereby grid-aligning transformations are favored, and the
overlap problem, whereby the similarity measure exhibits discontinuities.
Both defects tend to impede the accuracy of registration; they also result in
reduced robustness because of the presence of local optima. By estimating
the joint histogram by quasi-random sampling, we solve both issues at the
same time.
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1 Introduction

The formulation of a registration task usually requires three basic ingredients: a
spatial transformation model to define the space of possible solutions, an objec-
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tive similarity measure to estimate the quality of fit of each potential solution,
and an optimization algorithm to identify which of all solutions within this space
results in the best quality of fit [2, 8, 24, 26]. The type of registration task im-
poses specific design requirements for each of these three ingredients.

The focus of this paper is on the similarity measure, for which many forms
have been proposed, for example based on moments [12], on Fourier [35], on
optical flow [22], on landmarks [1], on the mean-square error [37], or on a com-
bination of mean squares and landmarks [33], among others. In the specific
context of multimodal registration, this measure ought to be able to cope with
images for which the mapping between intensities is not necessarily one-to-one;
in a variety of applications [6, 17], good success has been reported when using
the mutual information, first proposed for signal alignment in [25]. The justifi-
cation for this choice, and the comparison of the merits of mutual information
to those of several other similarity measures, can be found elsewhere [28, 31].

The mutual information between two images is obtained by subtracting their
entropy from their joint entropy. This results in a measure of the degree of the
mutual dependence of the gray levels of two images, or, put differently, of the
degree to which a given gray level of one image can predict gray levels in the
other. It is therefore an attractive criterion to register images or volumes, as-
suming that their correct alignment coincides with that for which the gray levels
of one image collectively best explain those of the other. Mutual information
is particularly useful when the images are acquired through different modalities
because it does not depend on the specific mapping between their gray levels. It
also offers some degree of robustness to features that would be discernible in one
modality but absent from the other. It is also very well suited to registration
problems where illumination is uniform, such as many of the problems that are
prevalent in medical imaging where it is desirable to bring into registration data
obtained by several types of scanner. However, as it relies on an analysis of the
gray levels that is global, it is not well suited to tasks where the statistical as-
pects of the gray levels vary within the image, such as may typically be the case
with natural images which introduce shadows, vignetting, and overall gradients
due to directional illumination.

At its heart, the mutual information relies on the computation of a joint
histogram between discrete intensities of the images or volumes to register. Its
computation can be performed in a variety of ways; in particular, it depends
strongly on details of the method of computing the joint histogram. An innova-
tion of this paper is to propose that the samples that are used to build the joint
histogram are taken at truly arbitrary coordinates. Rather than applying a ran-
dom perturbation to integer coordinates, as was done in [21], we let the location
of the samples follow a random pattern that is not related to integer coordinates
anymore. This offers us more freedom to design the registration method by giv-
ing full control over the number of samples and by allowing us to carefully choose
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the random sampling pattern itself. The conclusions regarding the benefits of
our approach are applicable to several other contexts as well, such as estimations
of the joint histogram based on the traditional partial-volume method or on its
generalized version [4, 5], or estimation of the joint probability density function
based on Gaussian Parzen windows.

Here, we investigate novel issues that take relevance only in the context of
random sampling, but not in that of regular sampling. We propose two key
contributions and perform their systematic evaluation. These contributions are:

• Halton sampling. The selection of samples follows a quasi-random Hal-
ton sequence in this paper. This sequence enjoys a property called low-
discrepancy [7], which ensures that data are represented by their random
samples in a way that is much more faithful than if the probability den-
sity function of the samples would be uniformly distributed. While Halton
sequences are well known [44], to the best of our knowledge it is the first
time that they are applied in a registration context.

• Overlap independence. The use of a Halton sequence allows us to com-
pletely untie the link between image-defining pixels and histogram-defining
samples since the randomness applies globally, as opposed to having local
randomness attached to a pixel—or no randomness at all in the case of
regular sampling. This allows for an arbitrary choice of the number of
samples that does not depend in any way on the number of pixels. This
is an attractive feature that will be exploited as follows:

1. Very small or very large data. Multiresolution is a seductive approach
for registering data. For methods that rely on a joint histogram,
however, it is necessary to pay attention to the dwindling statistical
power at coarse resolution, for example by introducing prior joint
probabilities or by reducing the number of gray levels. Unfortunately,
when the original data are intrinsically small, priors may not exist or
may be difficult to come by; meanwhile, maintaining the statistical
power of the joint histogram may require an excessive coarsening of
the quantization of the gray levels.
In the present paper, we could compensate a low statistical power
by arbitrarily choosing a sufficient number of samples, without being
constrained by the size of the data or by the number of gray levels.
Conversely, when the data are large, we could conveniently choose to
pick less samples than there are pixels without concern for the actual
downsampling pattern. In practice however, for irregular sampling we
observe the disappearance of those local extrema of the registration
criterion that were associated with regular sampling; the remaining
local extrema are benign and our method is so robust that there is
no need for multiresolution altogether.
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2. Restored continuity. In many implementations where a binary mask
is used to define the domain of overlap of the images to register, a
discrete change of overlap would result in a discontinuous similarity
measure, which is difficult to optimize. In the present paper, we
sever the dependence between the number of samples and the overlap;
in this way, we take advantage of the new freedom to escape the
discontinuities associated with the overlap problem altogether.

To perform our experimental evaluations, we have computed the joint his-
togram thanks to an estimate based on Parzen windows made of splines. We have
used cubic-spline interpolation—a high-quality interpolation method—to apply
the geometric transformations involved in the alignment of an image with respect
to the other. Our experiments allow us to clearly demonstrate and quantify the
advantages of using random sampling in general, of using Halton sampling in
particular, and of uncoupling the number of samples from the number of pixels.

This paper is organized as follows: in Section 2, we introduce notations and
definitions. In Section 3, we present two published methods for computing a
joint histogram. We explain how to generate a Halton sequence in Section 4.
In Section 5, we first give a methodic illustration of the problems associated
with regular sampling, and then solve them; we finally validate our approach
according to a methodology that involves the blind-folded comparison to a gold
standard. We conclude in Section 6.

2 Notations and Definitions

2.1 Spatial Transformation Model

To align the source (or test, or floating) image g to the target (or reference)
image f , we apply to g a geometric transformation T that depends on a series
of parameters that we collect in a vector a. This spatial transformation model
is such that a coordinate x of the target image f is made to correspond to a
coordinate y = T (x;a) of the source image g; the best transformation that
maps g to T{g}—respectively, that maps the sample g(x) to g(T (x,a))—is
obtained for the vector of parameters â for which the similarity measure reaches
an optimum. The theoretical underpinnings of this paper do not depend on
any specific type of transformation model, even though the experiments are all
performed within a rigid-body transformation framework.

2.2 Mutual Information

The mutual information I of images f and g is defined by

I{f, g; F, G} =
∑
φ∈F

∑
γ∈G

h[φ, γ] log2

N h[φ, γ]
hf [φ]hg[γ]

, (1)
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where h[·, ·] is the discrete joint histogram of the two images, where N =∑
φ∈F

∑
γ∈G h[φ, γ] is the global weight of h, where hf [·] =

∑
γ∈G h[·, γ] and

hg[·] =
∑

φ∈F h[φ, ·] are the marginal histograms of h, and where F and G are
discrete sets of gray levels associated to f and g, respectively. As it is custom-
ary to measure the mutual information in bit units, the base of the logarithm is
chosen to be 2.

The focus of this paper is on the computation of the joint histogram h which
is also at the heart of several other similarity measures, such as the joint entropy
H{f, g} = −

∑
φ∈F

∑
γ∈G

h[φ,γ]
N log2(

h[φ,γ]
N ), or the normalized mutual informa-

tion Y = 1 + I/H.
We want to mention here two key points of (1). First, we observe that the

notion of mutual dependence between f and g is explicitly captured by the
ratio h/(hf hg). For example, should the two images be independent, this ratio
would be 1/N and the contribution of the pair of gray levels {φ, γ} to the mutual
information would vanish. Second, it is essential to keep in mind at all times that
F and G are discrete. This is inherent to the definition of mutual information;
moreover, it would be wrong to assume that, by varying these greyscale sets, one
would simply perform various estimates of a hypothetical gold-standard Mutual
Information. There is no such thing. In particular, (1) has the unusual property
that it does not converge to a finite value when the quantization of F and G is
made to be finer and finer.

2.3 Domain of Overlap

For every similarity measure, it is customary to introduce a binary mask F that
will indicate by F (x) = 1 which coordinates x of f are relevant, and by F (x) = 0
which are not. Typically, this mask is used to reject part of the background—
if so desired—or to reject parts of the data where it is expected beforehand
that matching would be meaningless (e.g., over tissue that would be present
in f but absent from g because of some surgical procedure). Additionally, a
mask G indicates the relevance of the coordinates of g. Then, the similarity
measure is computed only over those coordinates that are relevant with respect
to both f and T{g}. The set of these coordinates is called the domain of overlap
D = {x : F (x) G(T (x)) = 1}.

3 Previous Work

On one hand, the determination of a joint histogram is a central aspect of every
registration algorithm based on mutual information or on its various versions,
whether directly based on information-theoretic grounds [23], or indirectly [16].
On the other hand, these algorithms must also perform an optimization task,
which is made easier and much more efficient by the availability of the gradient
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∂I/∂a of the mutual information I with respect to the deformation parameters
a that control the geometric transformation T used to align g to f . Therefore,
a differentiable I is a desirable asset, and so is a differentiable h. This is the
main reason why the trivial binning approach does not qualify when it comes to
determining a joint histogram, since its gradient with respect to the deformation
parameters is ill-defined.

We now revisit two methods of the literature that overcome this limitation.
These two methods are very different: the first one may sometimes populate the
entry h[φ, γ] of the joint histogram even if no pixel of f ever takes the gray value
φ (same for g and γ), while the second method avoids this state of affairs. The
first method may simultaneously update up to four times more entries of h than
the second one; it also considers many more image pixels and volume voxels
(four times in 2-D, and eight times in 3-D) to perform one histogram update. A
definite interpolation model is a necessary ingredient of the first method, while
the second method requires none. Despite these deep differences, we shall see in
Section 5 that the two methods of the present section suffer from very similar
artifacts under regular-sampling conditions, while these artifacts disappear for
quasi-random sampling. Therefore, more than anything else, proper sampling
appears to be a central aspect of the determination of a joint histogram.

3.1 Spline Parzen (SP)

In general, the nonparametric estimation of a density function requires a discrete
set of K samples taken at abscissa xk. In one dimension, the Parzen estimate
p̃ξ of a density function p is given by

p̃ξ(x) =
1
K

K−1∑
k=0

1
ξ

ϕ(
x− xk

ξ
),

where ϕ(·/ξ)/ξ is the kernel of the estimate, also called the Parzen window,
and where ξ is a scale factor that ought to depend on K. This dependence
should obey certain technical conditions for p̃ξ to be asymptotically unbiased
and consistent; in addition, all kernels are not admissible. A full discussion of
the technical requirements is available in [13]. In q dimensions, it is usual to
consider that kernels are given by a Cartesian tensor product such that

p̃ξ(x) =
1
K

K−1∑
k=0

q∏
i=1

1
ξi

ϕi(
[x− xk]i

ξi
), (2)

where the operator [ · ]i must be understood here as returning the i-th component
of its vector argument.

In [39], we have proposed a method that is based on Parzen windows, with
B-splines in the role of the weight functions. Rewriting (2) with the symmetric
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quadratic B-spline β2(·) = ϕ(·/ξ)/ξ in the role of the kernel of the estimate, and
multiplying p̃ξ by the number of samples K to consider a histogram instead of
a probability density, we obtain a first form of the Parzen estimate of the joint
histogram

h̄(s, t) =
∑
xk∈D

β2(f(xk)− s) β2(g(T (xk))− t).

In this expression, the joint intensities (s, t) may take values in a continuum.
Since the computation of (1) requires sets of intensities F and G that must

be discrete, we need to discretize the continuous Parzen estimate h̄. Rather than
simply evaluating h̄ for a discrete set of arguments {(φ, γ)} ∈ F × G, we prefer
to average all values inside a bin of unit width centered on φ and γ. We write

h(φ, γ) =
∫ φ+ 1

2

φ− 1
2

∫ γ+ 1
2

γ− 1
2

h̄(s, t) dsdt

which, thanks to the property
∫ x+ 1

2

x− 1
2

βn(t) dt = βn+1(x), we can also rewrite as

h[φ, γ] =
∑
xk∈D

β3(f(xk)− φ) β3(g(T (xk))− γ). (3)

This allows us to produce a simple expression of the gradient ∂I/∂a. One
component of the corresponding gradient is then expressed as

∂h

∂a
=

∑
xk∈D

β3(f(xk)− φ)
(

∂

∂a
g(T (xk;a))

)

·
(

β2(g(T (xk))− γ +
1
2
)− β2(g(T (xk))− γ − 1

2
)
)

︸ ︷︷ ︸
dβ3(x)

dx

˛̨̨
x=g(T (xk))−γ)

. (4)

We observe that interpolation of g is required since terms of the form g(T (x)) do
appear in (3) and (4). To avoid having to interpolate f , the condition D ⊆ Zq

was assumed in [39] but will be relaxed in this paper. Finally, the mutual
information is computed according to (1) with explicit F and G. In the present
paper, we call this approach “Spline Parzen” (SP).

3.2 Image Model

The registration of g with respect to f involves a transformation T such that a
coordinate x in f is put into correspondence with a coordinate T (x) in g. Since
f and g are sampled, this correspondence takes an unambiguous meaning only
for those pairs of coordinates x and T (x) that coincide with the coordinates
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of existing samples {xi, f(xi)} and {xj , g(xj)}, with xj = T (xi). In principle,
a fair similarity measure should take only such coincident pairs into account.
Unfortunately, there are very few coincident pairs—often none—because it is
almost always the case that the transformation T is such that f(xi) and g(T (xi))
cannot be both well-defined by the available data samples.

A better solution is to introduce an interpolation model to allow the evalua-
tion of g over a continuous range of arguments. This is the approach followed by
SP, with a firm theoretical grip on the resulting quality of the interpolation [38].
In our case, a single interpolation model will allow us to handle at the same
time the determination of f(x) or g(T (x)) for non-integer x or T (x), and the
determination of the spatial gradient ∇g(T (x)). In 1-D, this model is given by

f(x) =
∑
k∈Z

ck βn(x− k),

where the B-spline of degree n is computed as a weighted sum of polynomial
simple elements ςn(x) = 1

2 n! sgn(x) xn; more precisely, it is given by βn(x) =∑n+1
m=0 (−1)m

(
n+1
m

)
ςn(x + n+1

2 − m). Because B-splines have a low error of
approximation, the use of this model ensures high fidelity to the data, as long as
the coefficients ck are computed properly [38, 40]. Moreover, the spatial gradient
is easy to obtain. It can be expressed as

∂f

∂x
=
∑
k∈Z

ck β̇n(x− k) =
∑
k∈Z

(ck − ck−1) βn−1(x +
1
2
− k),

where β̇n(x) =
∑n+1

m=0 (−1)m
(
n+1
m

)
ςn−1(x + n+1

2 −m).
The expressions above are valid for all x ∈ R. The extension to Rq is obtained

by computing
∑

ck βn(x − k), where βn(x) =
∏q

i=1 βn([x]i), x ∈ Rq, is the
Cartesian tensor product of unidimensional B-splines of degree n. Therefore,
these expressions can be applied directly to interpolate f or g or ∇g over the
whole domain D. We have used cubic splines throughout this paper, except in
the cases that involve partial volume, for which no explicit interpolation takes
place.

3.3 Partial Volume

In the approach called “Partial Volume” (PV), an explicit joint histogram is
built as a sum of independent contributions, while the need to build an explicit
transformed image is avoided—this is peculiar to the PV method. To understand
this approach, suppose that a coordinate k of the reference image f is aligned
with a coordinate T (k) of the test image g. If one would produce g(T (k)) by
linear interpolation, one would have to compute a weighted sum of the intensities
g([T (k)] + ∆k). Here, [ · ] indicates rounding to the nearest integer, and ∆k is
a symbolic representation of the integer coordinate offsets needed to reach some
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close-range neighborhood of [T (k)]. The PV method puts emphasis on the
weights of this sum. More precisely, the joint histogram can be expressed as

h[φ, γ] =
∑

k1∈K1

δ[f(k1)− φ]
∑

k2∈K2

δ[g(k2)− γ]β1(T (k1)− k2), (5)

where K1 = K2 = D is the domain of overlap of the two images, and where δ(x) =
1−|sgn(x)| is the Kronecker delta. In (5), we observe that only terms of the form
g(k) are computed, but that no term of the form g(T (k)) appears. Consequently,
for this approach to the computation of h to be well-behaved, it is necessary that
D ⊆ Zq, with q = 2 for images, and q = 3 for volumes. In other words, all samples
must necessarily be chosen at integer coordinates, a requirement which is still
present for the related technique known as “Generalized Partial Volume”, where
β1 in (5) is replaced by splines of higher degree [4]. Meanwhile, the discrete
set F must be identical to the range of the quantized image f , and likewise for
G and g. (Some freedom in the specification of F and G can be recovered by
re-quantizing the images, whether linearly, or not [3].) One component of the
corresponding gradient can then be expressed as

∂h

∂a
=

∑
k1∈K1

δ[f(k1)− φ]
∑

k2∈K2

δ[g(k2)− γ]

·

(
dβ1(x)

dx

∣∣∣∣
x=T (k1)−k2

)>
∂

∂a
T (k1;a). (6)

In practice, h is never computed as the full double sum implied by (5) or
(6). The preferred approach is to pick k1 ∈ K1 and to determine the small set
K = K2 ∩ {k : β1(T (k1) − k) 6= 0}. Then, it is sufficient to let k2 range over
K ⊆ D instead of over the whole set K2 ⊆ D.

4 Halton Sampling

4.1 Low-Discrepancy Sequence

To perform random sampling, it is necessary to have a series of random coor-
dinates at our disposal. Here, we show that some distributions are better than
others for computing the mutual information. For example, let us consider the
uniform distribution, which is the simplest of all and which is readily available in
virtually every computer language. Many implementations are possible; a good
discussion of some of them is available in [18]. In the left of Figure 1, we show
5,000 coordinates that are uniformly distributed within a square.

It is apparent from the left part of Figure 1 that the square is not filled out as
uniformly as expected. Clustering effects are obvious; conversely, some spots are
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Figure 1: Random distribution of 5,000 dots. Left: uniform. Right: Halton
sequence.

not covered. The quality of uniformity of a point set of size N in q dimensions
is called “Discrepancy” [7, 44]. It is given by

D∗
N ({x0, . . . ,xN−1}) = sup

0<vi≤1,i∈{1,...,q}

∣∣∣∣∣
q∏

i=1

vi

−
card(

∏q
i=1 [0, vi[ ∩ {x0, . . . ,xN−1})

N

∣∣∣∣ ,
where, without loss of generality, the coordinates x belong to the unit cube
[0, 1[q. This expression measures by how many the number of points in a sub-
volume deviates from the number of points that would be expected under an
isorepartition assumption. The worst deviation is of interest here.

A low-discrepancy sequence is such that its discrepancy decays asymptoti-
cally at least as fast as O((log N)q /N), where q is the dimension. A Van der
Corput sequence has this property for q = 1; it can be constructed easily by map-
ping a sequence of N = (K − k) consecutive nonnegative integers U = {k, k +
1, . . . ,K−1} into a sequence of rational numbers V = {rk, rk+1, . . . , rK−1}, such
that each member of the new sequence is the radical inverse of the corresponding
member in the original sequence [7]. We write

rn = B−L
L−1∑
l=0

bL−1−l B
l, (7)

where {b0, b1, . . . , bL−1} are the digits of the expansion of n in base B ∈ N\{0},
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with L = 1 for n = 0 and L = 1 + blogB nc for n > 0. More precisely,

n =
L−1∑
l=0

bl B
l, bl ∈ {0, 1, . . . , B − 1}.

Obviously, the inspection of (7) reveals that rn ∈ [0, 1[ for n ∈ N. Moreover, it
ensures that all samples rn are relevant because none can ever be taken twice—
they all have a different value.

A Halton sequence [7, 14] is the multidimensional equivalent of Van der Cor-
put sequences; it is obtained by mapping the original unidimensional integer
sequence U into the multidimensional rational sequence Vq, using a different
base for each dimension. These bases must be relative primes; as the asymp-
totic regime is reached earlier for small primes, it is recommended to use the
smallest primes available. We show in the right part of Figure 1 a series of 5,000
coordinates that correspond to a Halton sequence with B1 = 2 and B2 = 3.
Visually, the distribution of the set of coordinates that are shown in the right
part of Figure 1 is better spread out than that in the left part of the same
figure, which confirms the theoretical predictions about the discrepancy of the
respective sequences. Many other constructions of low-discrepancy sequences
are known [9, 10, 15, 34], but they are more complicated to generate [19], and
they play a significant role only when the number of dimensions is much larger
than what we consider here.

4.2 Computational Cost

With respect to computational demands, the main disadvantage of the proposed
method over previously published ones is its need for interpolation of the target
image f , in addition to the traditional interpolation of the source image g. How-
ever, since the sequence of (K − k) coordinates xn ∈ Vq is uniquely determined,
the sequence of values {f(xn)} can be precomputed. When xn /∈ D, replacement
realizations are required; those can either be produced on demand, or precom-
puted too, for example by ensuring that (K − k) exceeds the prescribed number
ND of realizations by a sufficient margin.

The cost of high-quality interpolation, which we believe is necessary to obtain
high-quality registration, is much higher than that of all other contributions. For
example, the use of cubic-spline interpolation in 3-D requires the computation
of 4 · 3 = 12 values of a basis function; those values are then used to build a
weighted sum of 43 = 64 image samples. By contrast, we estimate the cost of
generating one Halton-based random coordinate xn to be equivalent to the cost
of computing a couple of values of a basis function. Similarly, the cost of com-
puting the geometric transformation T (xn) is negligible. Because Vq does not
correspond to a raster array, we cannot benefit from acceleration techniques that
take advantage of a structural interaction between a regular grid of samples and
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some types of global transformation (e.g., rigid-body, affine, polynomial), but
the resulting loss in efficiency is not relevant because most of the computation
time is spent in interpolation anyway.

5 Experimental Validation

In Sections 5.1–5.3, we first illustrate the problems that typically arise with
the use of regular sampling. To isolate the cause of each artifact as clearly as
possible, we paint this illustration gradually, starting by a bland canvas (Sec-
tion 5.1), and proceeding stroke by stroke to introduce the grid effect and the
overlap problems in Sections 5.2 and 5.3, respectively. Then only, we introduce
irregular sampling in Section 5.4–5.7, and show that it removes every blemish of
our illustrative example. From Section 5.8 on, we address the issue of objectively
validating our approach.

5.1 Ideal Case

We start by performing a simple experiment to investigate the behavior of the
mutual information under ideal conditions. We take the classical (512 × 512)
Lena image in the role of both f and g, and let the transformation T (x; 0,∆y)
be a vertical translation of ∆y pixels, which amounts to sliding up and down
the source image g over a fixed target image f . Restricting this translation to
the range [−2.5, 2.5] pixels, we ensure that the domain of overlap D remains
constant by setting to 1 each of the (512 × 512) elements of G and each of the
(512 × 512) elements of F , except for a 5 pixel-wide margin on the four sides1

of F , which results in an effective size (502 × 502) for D. Thus, the pristine
mask G(T (x; 0,∆y)) slides over the eroded mask F . We present the resulting
plot of I vs. vertical translation ∆y in Figure 2. The dotted curve corresponds
to the Partial Volume (PV) approach, while the solid curve corresponds to the
Spline-Parzen (SP) approach. Both assume that the joint histogram needed
to compute (1) has been obtained by regular sampling of the images. Both
satisfy card(F) = card(G) = 200, an arbitrary choice. We observe a well-defined
maximum at ∆y = 0, a translation for which f = T{g}. One could deduce that
mutual information is always well-behaved near the optimal registration, but,
as we shall see shortly, this is not true.

5.2 Grid Effect

The conditions that lead to Figure 2 were exceptionally favorable, in the sense
that the trajectory in the space of parameters—in the present case, the (∆x,∆y)-
space—was reaching the global optimum. In practice, we are almost never so

1The width of this margin is arbitrary. The horizontal component of the margin will come
useful for the experiments of Section 5.2.
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Figure 2: Mutual information I vs. vertical translation ∆y of the Lena image
for the partial volume (PV) and spline Parzen (SP) methods of computation of
a joint histogram. Perfect registration is obtained for ∆y = 0, which coincides
with the maximum of I. The area of the domain of overlap remains constant.

lucky and the trajectory often misses the global optimum. Thus, in order to
perform an experiment that is more representative of a real registration task,
where the global optimum is not reached directly, we now change slightly the
conditions by enforcing and maintaining a constant horizontal offset of ∆x = 2
pixels. In other words, we consider the translation T (x;∆x,∆y) with ∆x = 2
instead of ∆x = 0. We present the resulting plot of I vs. vertical translation ∆y
in Figure 3, where it is obvious that the slight change that we have introduced
produces dramatic effects. The top curve (PV) now exhibits many local extrema,
which exacerbates the difficulty of the optimization problem. Moreover, the
pattern of maxima clearly coincides with the grid of samples over which f is
defined. The SP method suffers less from these artifacts which are called “Grid
Effect”; nevertheless, they are not totally suppressed.

The experiments above have been conducted with a single modality, but the
specific interest of the mutual information is to solve for registration problems
where correlation methods fail—in other words, where f and g are very different.
We now investigate just such a case and replace the Lena image by the the pair
of brain volumes shown in Figure 4. When we perform a translation experiment
along an axis perpendicular to the displayed slice, we observe a grid effect that is
even stronger than in Figure 3, as seen in the curves PV-co and SP-co of Figure 5.
For this experiment, the domain of overlap remains constant—“co” stands for
constant overlap, and “vo” for varying overlap. These curves have been obtained
by making again the arbitrary choice card(F) = card(G) = 200. The PV method
has many local maxima which are strongly biased toward integer values, while
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Figure 3: Mutual information I vs. vertical translation ∆y of the Lena image
for the partial volume (PV) and spline Parzen (SP) methods of computation of
a joint histogram when a horizontal translation ∆x = 2 is enforced. The grid
effect is less pronounced for SP than for PV. The area of the domain of overlap
remains constant.

the SP method is biased toward half integers. We see that the bias is lesser
for SP than for PV, which reduces the risk of being trapped in a non-global
optimum—over the range considered, PV-co exhibits five maxima out of five
integer translations ∆z, while SP-co exhibits only two objective maxima out of
six half-integer translations ∆z. But it would be even better if there would be
no bias at all; we defer its complete removal until Section 5.4.

5.3 Overlap

By sliding a large G over a small F , we were able to keep constant the domain
of overlap between f and g in Sections 5.1 and 5.2. We could control the overlap
because we knew in advance the maximal extent of the translation, but this
knowledge would not have been available in the uncontrolled situation of a real
registration task.

By setting now F = G = 1 over the support of the whole image, and by
sliding G under F , we obtain that the overlap is maximal when T is the identity
transformation, and that it decreases in step with the translation. This results
in the curves PV-vo and SP-vo shown in Figure 5, where we observe a severe loss
of regularity in the SP case—the overlap problem—in addition to the grid effect.
For example, a discontinuity of the SP-vo curve is clearly visible for ∆z = 0.5;
optimization algorithms that rely on a local model of the similarity measure,
such as [39], do not fare well under those conditions and require multiresolution
to bypass this issue.
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Figure 4: Left: Slice of a 3-D scan of a human brain acquired by Positron
Emission Tomography (PET). Right: Slice of a 3-D scan of the same brain
acquired by Magnetic Resonance Imaging (MRI-T2). Here, the alignment of
these two slices is approximate only.

Figure 5: Mutual information I vs. translation ∆z of the volumes shown in
Figure 4, perpendicularly to the slices. The curves PV-co and SP-co have been
built with a constant volume of overlap. A varying overlap characterizes the
curves PV-vo and SP-vo. The volume of the domain of overlap varies gradually
in the partial volume (PV-vo) case and varies stepwise in the spline Parzen
(SP-vo) case—the transitions happen when ∆z is half-integer. The overlap
problem manifests itself as discontinuities in the curve I(∆z).



16 P. THÉVENAZ, M. BIERLAIRE, AND M. UNSER

The overlap problem is especially pronounced in the present experiment be-
cause the translation direction is such that the volume of overlap varies by
increments of a whole slice at a time. As the volume consists of few slices only,
the ratio ∆card(D)/card(D) is substantial. Meanwhile, the PV curve remains
continuous, thanks to the use of a soft-edge mask. Although this last improve-
ment is applicable to many methods of computation of the joint histogram, we
have not applied it to SP in this paper because the much larger support of
the basis function introduces additional complexity which we are not willing to
deal with—while there are only eight neighbors to consider for PV, there are
sixty-four for SP. In Section 4, we propose an alternative solution to the over-
lap problem that restores continuity, even in the difficult conditions of these
experimental settings.

5.4 Stochastic Sampling

We now remove the assumption of regular sampling inherent in the SP approach.
Irregular sampling does away with the grid effect and is extremely beneficial to
the robustness and accuracy of registration; the cost is that interpolation is
needed to know the value of the sample f(x), in addition to that of g(T (x)),
since the coordinate x is not necessarily integer anymore.

In the context of the SP method, this results in Figure 6, where the conditions
are exactly the same as those of the SP-vo curve in Figure 5, but for the fact that
the coordinates x of the samples used to build the joint histogram h are now
realizations of a 3-D random variable. Those realizations of x that fall outside the
domain of overlap of F and T{G} are rejected, and replacement realizations are
produced until a prescribed number ND of realizations is reached; this procedure
is responsible for the strong attenuation of the discontinuities that were present
in the curve SP-vo of Figure 5. Obviously, the curves in Figure 6 do suffer
much less from non-global maxima than the curves in Figure 5, and are easy
to optimize, particularly near the expected optimum for the translation that we
considered.

5.5 Number of Samples

Stochastic sampling offers the freedom to specify an arbitrary number of samples
ND. On one hand, reducing the number of samples can accelerate the compu-
tations. On the other hand, since we have introduced a random process, our
similarity measure is not deterministic anymore; a reduction in ND leads to a
greater variance VAR{I}, and to potential aliasing.

We show in Figure 6 what happens if we let the nominal ND be reduced by
a factor sixteen. We see that the change in variance is not the only effect; the
amount of mutual information (i.e., the measure of the quality of prediction)
also increases when reducing ND, because it is easier to predict few samples
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Figure 6: Mutual information I vs. translation ∆z of the pair of volumes shown
in Figure 4, perpendicularly to the slices. The volume of the domain of overlap
varies stepwise—the transitions happen when z is half-integer—but the number
of samples remains constant. The curve is much smoother than those in Figure 5
because of random sampling. The solid curve has been obtained by using as
many samples as there are voxels in the target volume; the dotted curve has
been obtained by reducing this number of samples by a factor sixteen.

than many. This has for consequence that the use of a prestored set of random
coordinates comes at a risk since comparing I{f, T1{g}} to I{f, T2{g}} may
introduce a systematic bias when T1 and T2 are such that ND1 6= ND2 , which is
a situation that typically occurs for a change of overlap.

5.6 Variance Reduction

We have estimated the empirical standard deviation of I for the plain curve
in Figure 6 by computing 100 realizations of this curve. We have considered
two cases. In the first one, we build the joint histogram h by picking random
coordinates that follow a uniform distribution. In the second case, the random
coordinates are members of a Halton sequence in which a random choice of the
first member k of U ensures that a different sequence of consecutive integers
U ⊂ N is used for every new estimate of h.

When the random coordinates follow a uniform distribution, the largest stan-
dard deviation over all curves and all translations is max(σ) = 0.0024, which
is small when compared to the range of I observed in Figure 6. Despite its
already diminutive size, this standard deviation can be further reduced by care-
fully controlling the randomness of D. For spaces that possess a low number
of dimensions (images or volumes), the use of Halton sequences can substan-
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tially abate the variance of a quantity estimated by stochastic sampling [14].
In the present case, at least a fivefold reduction of the standard deviation has
been observed. The largest standard deviation over 100 realizations then re-
duces to max(σ) < 0.00039 (worst case). Meanwhile, the median of all standard
deviations reduces more than tenfold, from 0.0019 to 0.00017.

Because of random sampling, we are facing the task of optimizing a non-
deterministic similarity measure I. The best approach would be to fully ac-
knowledge the existence of the random component of I, which typically would
lead to designing an optimizer that must evaluate I(a) several times over for
any given parameter a, so as to obtain a reliable estimate of the expected value
E{I(a)}. Unfortunately, this approach comes at an overly high computational
cost. We propose instead to ensure that the variations due to the randomness
of I have a very small amplitude, which is precisely what the use of a Halton se-
quence offers. Practically, we can then safely disregard the random component
of the similarity measure. The optimization procedure remains deterministic
and gains in efficiency because it is sufficient to evaluate I(a) once only.

5.7 Gradient

It is often possible to boost the performance of an optimizer when information
about the gradient is made available. In our case, we never estimate ∂I/∂a by a
finite-difference approach, but we use instead the analytical forms of this gradient
developed in (4) and (6). This leads to a gradient that is the realization of a
random variable (which exhibits a small variation), as opposed to the “gradient”
of the realization of a random variable—which could be realized by a central-
difference scheme but would be erratic and meaningless. We have used cubic
splines throughout this paper to build the data model, except in the cases that
involve PV, for which no explicit interpolation takes place.

The component of the analytical gradient of the bottom curve in Figure 6, in
the direction of the displacement, is given in Figure 7. We see that this curve has
a single zero-crossing that neatly coincides with the maximum in Figure 6. We
observe that this maximum is near ∆z = −0.95, but it is unrealistic to assume
that this translation corresponds to the best overall alignment because other
parameters such as rotations and translations along the remaining axes should
be jointly optimized to reach the global optimum. In the present case, only
translation along z is considered, whereas the other parameters do not take their
optimal value. This situation is akin to that encountered in Figure 3. Repeating
the estimation of this curve for 100 different realizations of the Halton sequence
for each translation ∆z, we obtain the mean curve and its standard deviation
that we show in Figure 8. We observe that the largest standard deviation over
100 realizations is less than max(σ) = 0.0031 (worst case).
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Figure 7: Single realization of the gradient of the mutual information ∂I/∂∆z
vs. translation ∆z of a pair of volumes for random sampling based on Halton
sequences.

Figure 8: Mean gradient of the mutual information 〈∂I/∂∆z〉 vs. translation
∆z of a pair of volumes for random sampling based on Halton sequences. The
dotted curves indicate ±3 standard deviations. The plain curve is the mean of
100 realizations.
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5.8 Objective Validation

We perform now the following experiment to validate our method objectively:
We start with two images f and g that are already in perfect registration, albeit
with a nonlinear and noninvertible mapping between the intensities; we then
perturb this alignment by applying by cubic-spline interpolation a known trans-
formation Ti of parameters ai to the second image, which becomes the perturbed
source image g′i = Ti{g}. Adding noise results in fi and gi. The principle of the
registration task is then to register gi to fi, using the identity as initial guess for
the iterative optimization algorithm. When the estimated registration parame-
ters âi are close enough to the true ai, the registration is said to be successful;
else, it is said to have failed. The set of parameters âi for which the registra-
tion is almost always successful is called the capture range of the registration
algorithm.

We compare the capture range of the method proposed in this paper to
that of the algorithm presented in [39]. The one major difference between the
two approaches is the set D of coordinates from which the joint histogram is
estimated. In the present paper, it is given by a Halton sequence, while in [39],
the coordinates are deterministic and sit on the nodes of a regular Cartesian
lattice.

The Simulated Brain Database2 presents us with convenient data consist-
ing in three modalities (PD, T1, T2) that, being simulated, are in perfect co-
registration [20]. For the present experiment, we consider all six pairings of
modalities, noting that the attempt to register data from modality A to data
from modality B may not be experimentally equivalent to registering B to A. To
achieve better statistical significance, instead of registering a single 3-D volume
we have multiplied further the number of cases by performing experiments over
several 2-D slices independently; more precisely, from a (181×217×181) volume
we have retained the five (181×217) slices indexed {35, 40, 45, 50, 55}. Then, we
have conducted 200 experiments for each pair of modalities and for each slice, for
a total of 6,000 experiments per method. To make the task more challenging, for
each experiment i we have added to both f and g′i a new independent realization
of noise nf,i and ng,i, so that gi = g′i +ng,i = Ti{g}+ng,i and fi = f +nf,i. This
added noise, which follows a normal distribution, and which has been added
after the application of the transformation Ti so as to keep it uncorrelated, is
such that VAR{nf} = 0.1VAR{f} and VAR{ng} = 0.1VAR{g}. This cor-
responds to 10 dB signal-to-noise ratio. We illustrate a pair of noisy slices in
Figure 9.

To simplify the interpretation of the results of our experiments, we have
chosen to work with rigid-body transformations. The angle of rotation θi is uni-
formly distributed in [−10◦, 10◦], while the translation {∆xi,∆yi} is uniformly

2http://www.bic.mni.mcgill.ca/brainweb/
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Figure 9: Left: One of the target image f is the forty-fifth slice of the T2
modality of the simulated brain database with 10 dB added noise. Right: One
of the source images g is the forty-fifth slice of the PD modality of the simulated
brain database with 10 dB added noise.

distributed in [−10, 10] pixel. The estimated registration parameters âi can
then be represented in homogenous coordinates as the matrix Ĝi, while the true
transformation matrix is Gi. We report the success of the registration as a quan-
tity that we call the mean-square warping index $2 = trace((G−Ĝ)> (G−Ĝ)),
the initial mean-square warping index (before registration) being given by $2

0 =
trace((G−I)> (G−I)). The precise meaning of $2 is detailed in the Appendix.

We have explored six registration methods. Among them, the traditional
partial-volume method (PV), the single-resolution spline-based Parzen-window
(SRSP), and the multiresolution spline-based Parzen-window (MRSP) provide
a baseline to which our proposed approach (HSP) and its variations (HSPO and
USP) can be compared.

With critical sampling (as many samples as there are pixels in the target
image) and with card(F) = card(G) = 100, the method of this paper (Halton-
based Spline Parzen, HSP) results in subpixel registration all of the time. When
pooled over all 6,000 experiments, the warping index of our proposed method is

1
6000

∑6000
i=1 $2

i = 0.0045, with a maximum max6000
i=1 ($2

i ) = 0.17. This result has
been obtained without multiresolution, and no outlier was observed.

Our previous algorithm (SP) required multiresolution to achieve robustness
(Multi-Resolution SP, or MRSP). Under the same conditions as above, but
with regular sampling and a five-level pyramid, we observe that the registra-
tion reaches a subpixel accuracy 85% of the time. This is somewhat better than
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the traditional PV approach, which succeeds only 66% of the time. These im-
perfect results testify that the current registration problem is a difficult one due
to the presence of heavy noise. We had explained in [39] that SP was designed to
work hand-in-hand with a multiresolution pyramid. If the multiresolution stage
is skipped and registration is attempted on full-scale data directly (SRSP), then
we observe a host of outliers. Without multiresolution, our previous method
often stalls right at the start of the optimization. By contrast, the method of
this paper exhibits excellent robustness, even in the absence of a multiresolution
pyramid.

We provide detailed results of these experiments in Tables 1 and 2. In the
first table, we report the result of every experiment. There, it is interesting to
note that some registration attempts are able to produce a final error that is
much larger than the worst initial error max($0) = 196.8. This can happen
because nothing prevents the solution to drift to an absurd position. When this
mishap occurs, multiresolution ceases to be an ally because of the magnification
of those erratic drifts at low resolution. In particular, the consequence of a
failure at the coarse level of MRSP is sometimes spectacular, because the drift
of the solution is amplified when the erroneous result is propagated to finer
levels. This explains why, in the MRSP case, the mean-square warping index
is much larger than max($0). Meanwhile, SRSP stalls right at the beginning
of the optimization, which results in its final mean-square warping index being
barely different from the initial one. As the contribution of these extreme cases
dominate when computing mean and standard deviation, the results of Table 1 is
not a fair representation of the intrinsic performance of the methods. Therefore,
we report in Table 2 the result of those experiments that produced a subpixel
final error. We observe that HSP performs best, both in terms of accuracy and
robustness.

We have provided two suboptimal variations of our methods (HSPO and
USP) to gain more insights into the approach of this paper. In the first case
(HSPO), we wanted to highlight the magnitude of the overlap problem. To that
effect, we have built a registration method that is exactly identical to HSP in
every respect, but for the fact that no additional realization of coordinates has
been produced whenever xn /∈ D. Thus, the number of samples effectively de-
pends on the area of overlap for HSPO. Under such conditions, the robustness
suffers since 200 non-subpixel occurrences are observed whereas there were none
before. We attribute this loss in robustness to the fact that the optimizer builds
a pointwise Taylor-like model of the similarity measure [39], which is usually a
desirable property (being pointwise, this model enjoys a better accuracy than
constructions based on finite differences), but which is bound to fail near the
discontinuities resulting from the overlap dependence since the domain of con-
vergence of the pointwise model does not extend beyond them. In addition, we
observe that the final accuracy is reduced too, even in the subpixel cases.
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Table 1: Mean-square warping index $2 for all runs, including failures. HSP:
Halton-Based Spline Parzen. HSPO: HSP with Overlap dependence. USP:
Uniform sampling Spline Parzen. MRSP: Multi-Resolution Spline Parzen. PV:
Partial Volume. SRSP: Single Resolution Spline Parzen.

Sampling Failures Mean ± Std. Dev. Max
$2

0 None 5958 66.8 ± 42.6 196.8
HSP Halton 0 0.0045± 0.0066 0.17

HSPO Halton 200 194.0 ± 1452.7 18971.4
USP Uniform 1 0.0064± 0.0561 4.3

MRSP Regular 912 837.0 ± 4629.7 39663.1
PV Regular 2070 17.2 ± 40.5 196.8

SRSP Regular 5921 65.4 ± 43.3 196.8

Table 2: Subpixel Mean-Square warping index $2 for successful runs only. HSP:
Halton-Based Spline Parzen. HSPO: HSP with Overlap dependence. USP:
Uniform sampling Spline Parzen. MRSP: Multi-Resolution Spline Parzen. PV:
Partial Volume. SRSP: Single Resolution Spline Parzen.

Sampling Successes Initial Final
HSP Halton 6000 66.8± 42.6 0.0045± 0.0066

HSPO Halton 5800 64.0± 40.4 0.0050± 0.0102
USP Uniform 5999 66.8± 42.6 0.0057± 0.0083

MRSP Regular 5088 61.3± 39.8 0.0069± 0.0364
PV Regular 3930 61.0± 37.6 0.0947± 0.2034

SRSP Regular 79 1.5± 1.9 0.4416± 0.2916
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The second additional method (USP) helps us to investigate the effect of
the sampling pattern. USP is identical to HSP in every respect, including the
production of additional realizations of coordinates when needed, but differs by
the fact that samples drawn from a uniformly distributed probability density
function have been used instead of using Halton sampling. The effect on robust-
ness is negligible, but not the effect on accuracy, which confirms the benefit of
using a low-discrepancy sampling pattern, as we saw already in Section 5.6.

5.9 Validation on Clinical Data

We have applied our algorithm to the registration of volumes acquired by CT
(Computed Tomography) or PET (Positron Emission Tomography) with respect
to three different MRI (Magnetic Resonance Imaging) modalities: PD (Proton
Density), T1 (T1 Relaxation Time) and T2 (T2 Relaxation Time). The goal
was to align the CT or the PET volumes with the MRI ones. The MRI volumes
were available in two versions: uncorrected (PD, T1, T2), and corrected for
scanner-dependent geometric distortion (PDr, T1r, T2r). There were up to
seven patients in most cases.

We compare the results of our intermodal brain image registration algorithm
to those of several other approaches. The comparison is based on a methodology
proposed by West et al., who let researchers access a standard set of volumes to
be registered [41, 42, 43]. They also act as a repository for the ideal registration
transformations (gold standard) acquired by a prospective method using fidu-
cial markers. These markers are erased before the volumes are disclosed to the
investigators, who then face a retrospective blind registration task. (We were
blinded in exactly the same way as the researchers listed in [42], and still are.)
After registration, the investigators report back a set of transformation param-
eters that are compared to the gold standard. This results in a geometric error
measured in mm, and allows for a simple ranking of the competing algorithms—
from an accuracy point of view. The errors are measured at 10 specific locations
of clinical interest. Those locations that happen to lie outside of the field of view
for some of the volumes are discarded from the evaluation.

We show in Figure 10 an example of registration of a CT to a rectified T2.
We have shown the bones from the CT as bright saturated features that overlay
the T2. Before registration, the initial fit is clearly off, both within slice and
in the direction perpendicular to the slice. After registration, the CT has been
properly aligned to the T2 and no multiresolution optimization was required to
achieve this apparently good fit. For this specific patient and for the CT-T2r
case, the median error related to the gold standard is 0.85 mm.

We give in Tables 3 and 4 the summary of all results obtained by our algo-
rithm. We present the mean, the median, and the maximum error for each pair
of modalities. The number of patients is P . We have also provided the stan-
dard deviation σ of our errors—outliers included. For comparison purposes, the
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Figure 10: Registration in 3-D of a CT to a rectified T2. Left: initial correspon-
dence. Right: final registration.

numbers in parentheses correspond to the results of our previous algorithm [39]
which was computing the similarity measure with a spline Parzen method too,
but with regular sampling.

These results are representative of the accuracy of our method only if the
gold-standard provides perfect registration; unfortunately, this is impossible to
obtain in a physical world. The authors of [42] have conducted an error and
sensitivity analysis of their data. Based on simulations, they reach the conclusion
that the root-mean-square error of the gold standard itself is about 1.65 and
0.39 mm, for PET-to-MR and for CT-to-MR cases, respectively. In addition,
they claim that the standard deviation of registration methods that achieve an
accuracy similar to that of the gold standard is expected to be around 2.33 and
0.55 mm, for PET-to-MR and for CT-to-MR cases, respectively.

In the case of PET-to-MR registration, we see that our score for the median
error nears the assumed accuracy of the gold standard (1.65 mm), particularly
for cases involving the T2 or T2r modality. Except in the PET-T1 case, all
our scores are within one millimeter of this limit. At the time of writing this
paper, we know of no other method that could reach a better agreement with
the gold standard in the PET-T2 case over the whole data set; our results in
the PET-PD case are also the best obtained so far. In the PET-T2r case, we
are second only to Rohlfing [32], who reached the median error 1.57 mm. The
same investigators reached 1.56 mm in the PET-T1r case; both values are below
the expected accuracy of the gold standard. The other best scores are from
Woods [45] (PET-T1, 2.35 mm) and from Nikou [27] (1.93 mm, PET-PDr).
These comparisons include only the investigators who processed the data for all
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Table 3: Residual difference in mm between a fiducial-marker prospective regis-
tration technique and the proposed retrospective algorithm (HSP) for PET-MRI
modalities. Parenthesized results are obtained with multiresolution regular sam-
pling [27].

PET-T1 PET-PD PET-T2 PET-T1r PET-PDr PET-T2r
P 7 7 7 4 5 5
Mean 4.18 3.23 2.31 2.48 2.80 2.17

(4.52) (3.37) (2.83) (2.16) (2.93) (2.59)

Median 3.07 2.66 1.85 2.54 2.47 1.73
(3.10) (2.68) (2.61) (1.89) (2.05) (1.96)

Max 16.40 9.38 6.13 4.65 10.25 6.23
(14.34) (9.65) (5.95) (4.85) (9.60) (8.44)

σ 3.81 2.24 1.31 1.04 2.14 1.38
(3.85) (2.17) (1.40) (1.07) (2.12) (1.97)

Table 4: Residual difference in mm between a fiducial-marker prospective regis-
tration technique and the proposed retrospective algorithm (HSP) for CT-MRI
modalities. Parenthesized results are obtained with multiresolution regular sam-
pling [27].

CT-T1 CT-PD CT-T2 CT-T1r CT-PDr CT-T2r
P 7 7 7 6 7 7
Mean 1.36 2.04 1.50 0.90 0.82 1.09

(1.56) (1.90) (1.38) (1.05) (0.99) (1.07)

Median 1.27 1.93 1.14 0.77 0.73 0.87
(1.49) (1.74) (1.11) (0.90) (1.01) (0.91)

Max 2.65 4.09 3.45 1.97 1.85 2.95
(2.87) (4.18) (4.17) (3.11) (1.64) (2.78)

σ 0.50 0.68 0.77 0.48 0.38 0.71
(0.50) (0.85) (0.80) (0.59) (0.37) (0.56)
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P patients; this still represents more than fifty complete submissions for each of
the twelve pairs of modalities [11].

In the case of CT-to-MR registration, no automatic retrospective registration
method could as yet reach the assumed accuracy of the gold standard (0.39
mm). Examining first the results for uncorrected volumes, we observe that we
nearly match the CT-T2 score that we obtained in [39], which is the best score
reported so far by all investigators; despite this encouraging result, our accuracy
is still about three times worse than the inferred accuracy of the gold standard.
Qin [29] obtains the best scores on the CT-T1 uncorrected volumes (0.85 mm),
and Tanács [36] reaches 1.51 mm in the CT-PD case. Not surprisingly, the
best results available at the time of writing this paper are obtained for the
three rectified volumes (T1r, PDr, T2r). By working with those volumes, we
clearly obtain submillimeter scores. A comparison of our results to those of
other investigators reveals that we are within 0.15 mm of the best contenders.
Chen [4] obtained 0.62 mm in the CT-T1r case, while Ren [30] obtained 0.68
and 0.77 mm in the CT-PDr and CT-T2r cases, respectively.

To summarize, the accuracy of the proposed method as reported in Tables 3
and 4 compares favorably with similar published results obtained by other groups
on the same data, especially for CT-T2, PET-PD, and PET-T2. However, when
comparing accuracy to variance, we observe that the latter is not negligible with
respect to the former. Hence, the accuracy reported by most other investigators
who used the mutual information as similarity measure cannot be distinguished
from ours when statistical significance is taken into consideration. It is, however,
a fact that the best all-purpose methods are all based on the mutual information;
we have shown in this paper how to avoid two problems that were previously
associated with this similarity measure.

6 Conclusion

The geometric alignment of a source to a target volume requires an objective
similarity measure to compute the quality of fit. Many experiments, including
those presented in this paper, point out that the similarity measure called “Mu-
tual Information” is an excellent candidate that is applicable to many types of
multimodal registration. However, its traditional computation involves a regu-
lar sampling grid, which leads to artifacts that are called “Grid Effect”. These
artifacts are detrimental to robustness and impede subvoxel accuracy.

Known solutions involve irregular sampling based on uniformly distributed
random coordinates around a voxel. Instead of using a uniform distribution,
we have proposed in this paper to achieve irregular sampling by the way of
a Halton sequence. Because a Halton sequence enjoys a property called low-
discrepancy, it is better suited than previous methods. An added benefit is the
possibility to prescribe the number of samples; by enforcing that this number
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remains constant irrespective of the size of the domain of overlap, we also avoid
the “Overlap Problem” which is characterized by discontinuities in the similarity
measure.

Because of the random component inherent in our method, the similarity
measure is non-deterministic. Nevertheless, the resulting variance of the mutual
information is negligible thanks to the use of Halton sequences. Therefore, the
use of a deterministic optimizer is more legitimate than in previously published
approaches. Experimental evidence on the Vanderbilt retrospective registration
task shows that the proposed approach performs well, at least within the limits
on accuracy assessment imposed by the gold standard. We consistently reach a
median accuracy that compares favorably with that of the best results obtained
by more than fifty other groups of investigators. In three cases, we obtain the
best results at the time of writing this paper (PET-PD 2.66 mm, PET-T2 1.85
mm, CT-T2 1.14 mm).
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Appendix A: Warping Index

In q dimensions, the squared registration error at a coordinate x is given by the
quantity ‖Gx−Ĝ x‖2. We collect all errors by integrating them over a spherical
(or circular) ball B centered on the origin of the coordinate system in which G
and Ĝ are expressed. Because we want to build a global error measure that
depends on G and Ĝ only, but not on the radius R of the ball B, we normalize
the resulting quantity by the integral of the squared distance to the origin. This
defines the warping index $2 as

$2 =
q
∫
x∈B

∥∥∥Gx− Ĝ x
∥∥∥2

dqx∫
x∈B ‖x‖2 dqx

= trace(
(
G− Ĝ

)> (
G− Ĝ

)
).

We now show that $2 does not depend on the radius R of the q-dimensional
hyperball B. We first compute the matrix

∫
x∈B xx> dqx = ρq Iq, where Iq is
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the identity matrix in q dimensions, and where ρq = 2
√

πq Rq+2

q (q+2)Γ(q/2) . Then, the
denominator of $2 is given by∫

x∈B
‖x‖2 dqx =

∫
x∈B

x> xdqx =
∫
x∈B

trace(xx>) dqx = q ρq.

Meanwhile, the numerator of $2 is

q

∫
x∈B

∥∥∥Gx− Ĝ x
∥∥∥2

dqx

= q

∫
x∈B

x>
(
G− Ĝ

)> (
G− Ĝ

)
xdqx

= q

∫
x∈B

trace(
(
G− Ĝ

)> (
G− Ĝ

)
xx>) dqx

= q trace(
(
G− Ĝ

)> (
G− Ĝ

) ∫
x∈B

xx> dqx)

= q trace(
(
G− Ĝ

)> (
G− Ĝ

)
ρq Iq)

= q ρq trace(
(
G− Ĝ

)> (
G− Ĝ

)
).

The conclusion follows.
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