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Abstract

Motivation: We introduce a formulation for the general task of finding diverse shortest paths between
two end-points. Our approach is not linked to a specific biological problem and can be applied to a large
variety of images thanks to its generic implementation as a user-friendly ImageJ/Fiji plugin. It relies on the
introduction of additional layers in a Viterbi path graph, which requires slight modifications to the standard
Viterbi algorithm rules. This layered graph construction allows for the specification of various constraints
imposing diversity between solutions.
Results: The software allows obtaining a collection of diverse shortest paths under some user-defined
constraints through a convenient and user-friendly interface. It can be used alone or be integrated into
larger image analysis pipelines.
Availability and implementation: http://bigwww.epfl.ch/algorithms/diversepathsj
Contact: michael.unser@epfl.ch, fred.hamprecht@iwr.uni-heidelberg.de
Supplementary information: Supplementary material is available at Bioinformatics online.

1 Introduction
A large number of problems in image analysis and computer vision can
be formulated as search for the shortest path. Given an edge-weighted
graph, the optimal shortest path between two nodes can be found efficiently
using dynamic programming (Bellman, 1952). The Viterbi algorithm is a
popular example of the latter. A solution is, however, always only optimal
with respect to its associated cost function or energy. In practice, due to
discrepancies between the model associated with an objective function and
reality, it is common for the optimal solution to differ from what would
be the best one from a human perspective. For this reason, obtaining a
collection of good solutions instead of a single one is often desirable.

The design of algorithms for obtaining theM most probable solutions
to combinatorial problems has been extensively studied in the context of
probabilistic random field models and is known as the M -best maximum
a posteriori (MAP) problem (Lawler, 1972; Batra, 2012). Further works
aimed at introducing supplementary constraints to ensure that theM -best
solutions are sufficiently diverse (Batra et al., 2012; Kirillov et al., 2015).
In Straehle et al. (2013), these very general formulations were adapted

for bioimage segmentation in the context of exploring various watershed
solutions by searching for the K-smallest spanning trees. Most similar
to our approach is the one from Fujita et al. (2003) in the context of
robot motion planning, which could also be viewed as a two-layers-graph
construction.

We make two contributions: first, we propose a more general
formulation for the diversity constraint and second, we provide the
first freely available, readily-usable, and general purpose open source
implementation of a diverse shortest path tool for bioimage analysis.

2 Method
The search for a diverse collection of M -diverse best solutions using a
layered-graph construction is implemented efficiently by modifying the
rules of the standard Viterbi algorithm. The mathematical formulation of
our approach is inspired from our more general work (Haubold et al., 2017)
and is provided in the Supplementary Material. Here, we give an intuitive
description of the algorithm.

To find the shortest path, the standard Viterbi algorithm is performed
from a source point σ to a target point τ by computing the cost to all

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



i
i

“main” — 2017/10/11 — 13:57 — page 2 — #2 i
i

i
i

i
i

2 Uhlmann et al.

intermediate nodes. We refer to this collection of costs as the forward
derived cost map (Figure 1a). The shortest path is found by backtracking
the minimal cost from τ to σ (Figure 1b). For the second shortest path,
another pass of Viterbi algorithm is first performed, this time from the target
τ to the sourceσ, to obtain the backward derived cost map (Figure 1c). The
forward and backward derived cost map are then summed (Figure 1d) and
all nodes laying within an exclusion corridor around the shortest path are
assigned an infinitely large cost (represented as white area in Figure 1e).
The exclusion corridor aims at enforcing that the second shortest path
differs from the first one. The node corresponding to the new minimal cost
in the summed map, denoted as (ν∗, x∗ν∗ ), is identified. Finally, the second
diverse shortest path is obtained by joining the two sub-paths obtained by
backtracking from (ν∗, x∗ν∗ ) to σ and from (ν∗, x∗ν∗ ) to τ . This amounts
to performing the Viterbi algorithm on a two-layers graph constructed by
copying the original graph and introducing layer-jump-edges (Figure 1f).

The nextM − 2 diverse best solutions can be computed efficiently by
updating the exclusion corridor to be the union of the exclusion corridors
built from previously found solutions, and searching for the next minimum
in the remaining available nodes of the summed cost map. TheM shortest
paths are thus computed at the cost of two standard Viterbi algorithm passes
plus M backtrackings. A possible refinement is to enforce in addition
that the new solution accumulates a given amount of diversity. Formally,
this requires the introduction of a supplementary input cost map on the
lower graph layer encoding the discrepancy between the new solution and
previous ones, refereed to as the diversity map. It can be combined with the
exclusion corridor to enhance diversity in the set of shortest paths. Layer-
jump-edges are then allowed only when the integrated diversity over the
path exceeds a threshold.

Our approach is implemented as a Java-based plug-in for ImageJ
and Fiji. The plug-in is designed to be generic and readily usable. A
full description of the GUI and all available settings is provided in the
Supplementary Material. The required input consists in two end-points
provided by the user or by custom automated pre-processing steps. The
collection of resulting (diverse) paths can then either be swiftly browsed
and displayed on the image using the arrow keyboard keys, or exported in
generic formats for further processing.

3 Results
Bioimages often feature several instances of the same object in a single
image (e.g., cells). Due to small differences between the appearance and
neighborhood of these individual objects, it is practically impossible to find
a cost function whose minimum always corresponds to the desired output.
Exploring several shortest paths, however, allows to analyze multiple
instances of the same objects exhibiting slight variations without the need
for fine-tuning of the cost function.

We illustrate the usefulness of searching for several shortest
paths in bioimage analysis with identification of the medial axis of
mycobacteria (phase contrast microscopy images) and of C. elegans
nematodes (brightfield microscopy images). The original images, their
characteristic, experimental protocols and plugin settings can be found
in the Supplementary Material. We use our approach with the same
parameters to analyze two similar objects in the same image. For one
of the objects (Figures 1g and 1j), the shortest path is the desired medial
axis. Conversely, for the second one, the shortest path does not correspond
to a correct medial axis (Figures 1h and 1k). The desired solution can,
however, be found in the set of additional diverse shortest path (Figures 1i
and 1l), the exploration of which is made easy through the interface of our
ImageJ/Fiji plugin. A full description of the software is provided in the
Supplementary Materials.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1. Algorithm for finding the second best path. (a) Forward derived cost map (from
source node σ), (b) shortest path, (c) backward derived cost map (from target node τ ), (d)
summed cost map, (e) exclusion corridor mask and node (ν∗, x∗

ν∗ ) with minimal cost,
and (f) resulting second shortest path obtained by backtracking paths from (ν∗, x∗

ν∗ )

to σ and τ . The underlying input image, source and target locations are those shown
in (k). Application examples in images of mycobacteria (phase-contrast) and nematodes
(brightfield). For some objects, the shortest path corresponds to the desired one ((g) and
(j)), but for others in the same image ((h) and (k)), only theM th shortest is correct ((i) and
(l)).

Medial axis outline serves as the first step for quantitative estimation
of shape features such as length and bending. The proposed approach is
however not restricted to this use-case and covers every problem in which
a path is to be searched between two end-points. Our implementation
only requires the specification of the source and target locations as ImageJ
points and of the input cost map specifying the cost associated to each
pixel in the image, in addition to data-independent parameters (number of
desired shortest paths and minimum amount of diversity between paths).
Ridge detectors and algorithms estimating probability distributions for
the identification of principal curves such as subspace constrained mean
shift (Ozertem et al., 2011) are good examples of relevant input cost maps.
DiversePathsJ can be used alone in an interactive way or integrated as a
module in larger automated image analysis pipelines.

Funding
This work was supported by the Swiss National Science Foundation under
Grant 200020_162343/1 (VU and MU); and by DFG SFB1129, DFG
HA4364/9− 1 and HGS MathComp (CH and FAH).

Conflict of Interest: none declared.



i
i

“main” — 2017/10/11 — 13:57 — page 3 — #3 i
i

i
i

i
i

DiversePathsJ: Diverse Shortest Paths for Bioimage Analysis 3

References
Batra, D. (2012). An efficient message-passing algorithm for the M-best

MAP problem. In Proc. 28th Conf. Uncertain. Artif. Intell. (UAI’12),
pages 121–130, Catalina Island, USA.

Batra, D. et al. (2012). Diverse M-best solutions in markov random fields.
In Proc. 12th Eur. Conf. Comput. Vis. (ECCV’12), pages 1–16, Florence,
Italy.

Bellman, R. (1952). On the theory of dynamic programming. Proc. Natl.
Acad. Sci., 38(8), 716–719.

Fujita, Y. et al. (2003). Dual Dijkstra search for paths with different
topologies. In Proc. IEEE Int. Conf. Robotic. Autom. (ICRA’03),
volume 3, pages 3359–3364, Taipei, Taiwan.

Haubold, C. et al. (2017). Diverse M -best solutions by dynamic
programming. In Proc. 39th Ger. Conf. Pattern Recognit. (GCPR’17),

Basel, Switzerland.
Kirillov, A. et al. (2015). Inferring M-best diverse labelings in a single one.

In Proc. IEEE Int. Conf. Comput. Vis. (ICCV’15), pages 1814–1822,
Santiago, Chile.

Lawler, E. (1972). A procedure for computing the k best solutions to
discrete optimization problems and its application to the shortest path
problem. Manag. Sci., 18(7), 401–405.

Ozertem, U. et al. (2011). Locally defined principal curves and surfaces.
J. Mach. Learn. Res., 12, 1249–1286.

Straehle, C. et al. (2013). K-smallest spanning tree segmentations. In
Proc. 35th Ger. Conf. Pattern Recognit. (GCPR’13), pages 375–384,
Saarbrücken, Germany.


