To appear in IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

Cardinal Exponential Splines:

Part II—Think Analog, Act Digital

Michael Unser

The author is with the Biomedical Imaging Group, STI-IOA, Swiss Federal Institute of Technology, Lausanne (EPFL), CH-
1015 Lausanne, Switzerland (e-mail: michael.unser@epfl.ch, phone: +41 21 693 51 43, fax: +41 21 693 37 01)

July 8, 2004 DRAFT



To appear in IEEE TRANSACTIONS ON SIGNAL PROCESSING 2

Abstract

By interpreting the Green-function reproduction property of exponential splines in signal processing terms,
we uncover a fundamental relation that connects the impulse responses of all-pole analog filters to their discrete
counterparts. The link is that the latter are the B-spline coefficients of the former (which happen to be exponential
splines). Motivated by this observation, we introduce an extended family of cardinal splines—the generalized E-
splines—to generalize the concept for all convolution operators with rational transfer functions. We construct the
corresponding compactly-supported B-spline basis functions which are characterized by their poles and zeros, thereby
establishing an interesting connection with analog filter design techniques. We investigate the properties of these
new B-splines and present the corresponding signal processing calculus, which allows us to perform continuous-time
operations, such as convolution, differential operators, and modulation, by simple application of the discrete version
of these operators in the B-spline domain. In particular, we show how the formalism can be used to obtain exact,
discrete implementations of analog filters. Finally, we apply our results to the design of hybrid signal processing
systems that rely on digital filtering to compensate for the non-ideal characteristics of real-world A-to-D and D-to-A

conversion systems.

Index Terms

Splines, A-to-D and D-to-A conversion, filter design, hybrid signal processing, sampling, analog

signal processing, differential systems

I. INTRODUCTION

The gap between the continuous-time and discrete-time—or, analog versus digital —approaches to
signal processing and electronic instrumentation in general, has been widening ever since our technological
society has entered the all-digital era. There is a strong tendency nowadays to emphasize and promote
discrete signal processing techniques, as opposed to analog solutions. This is certainly justified by the
current state of technology, and also because there is a formal equivalence with continuous-time processing
that is backed by Shannon’s sampling theory. However, one should not forget that this equivalence, which
holds for bandlimited functions only, excludes many practically-relevant signals; in particular, those that
are causal or of finite duration. The bandlimited hypothesis is an idealization, which is extremely useful
for explaining basic concepts, but which also has practical limitations; indeed, ideal lowpass filters are
theoretical constructs that do not exist in the physical world, and real-world signals, at best, are only
essentially bandlimited [1]. Interestingly enough, and despite the fact that the technological move to
digital is almost complete, there has been a recent revival of continuous-time signal processing thinking
which has been triggered, for the most part, by recent advances in wavelet theory [2]-[4]. The powerful

notions of multiresolution analysis [5], self-similarity (e.g., fractals) [6], singularity analysis [7], and
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even the more mundane task of signal interpolation [8], [9], are undissociable from a continuous-time
interpretation. It is therefore crucial to have efficient mathematical tools at our disposal that allow us to
easily switch from one domain to the other—and this is precisely the niche that splines, and to some
extent wavelets, are trying to fill.

Our purpose in this paper is to present a unifying continuous/discrete approach to signal processing
that departs from the traditional bandlimited formulation. Our motivation and general philosophy is
summarized by the motto: “think analog, act digital”. Indeed, we believe that there are many signal
processing problems that are better suited for a continuous-time domain formulation, even though one
is ultimately looking for solutions that should be transposable into efficient digital signal processing
algorithms. Typical examples are the implementation of fractional delays [10], [11], the evaluation of
differential operators [12]-[15], signal interpolation and approximation for sampling-rate conversion [16],
[17], as well as the whole class of wavelet-based signal analysis techniques. Another important category
that should benefit from a unifying formulation is hybrid signal processing which combines analog and
discrete components.

The starting point for the present formulation is the signal processing theory of exponential splines that
was developed in a companion paper [18]. In Section II, we apply these results to uncover a remarkable
link between the elementary analog signals of classical system theory (causal exponentials/polynomials)
and their discrete-time counterparts. Unlike the classical bandlimited approach, the present formulation
uses compactly-supported basis functions and allows for an exact representation of the continuous-time
response of an all-pole system. In Section III, we extend the class of cardinal exponential splines to
encompass the reponse of operators with rational transfer functions. Specifically, we show that the poles
and zeros of an analog filter uniquely specify a subspace of generalized E-splines which admits a B-
spline-like Riesz basis. We also present an extended calculus for the exact computation of continuous-time
signal processing operators. In Section IV, we apply these techniques to the discrete implementation of
analog filters. The approach that we propose constitutes an interesting alternative to more traditional
analog-to-discrete conversion techniques such as the impulse invariance method (also included in our
formulation) and the bilinear transform. Finally, in Section V, we apply our formalism to the design of
hybrid signal processing systems that use digital techniques to compensate for the distortions inflicted

by non-ideal A-to-D and D-to-A conversion.
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II. BRIDGING THE GAP BETWEEN THE DISCRETE AND THE CONTINUOUS

In this section, we reinterpret some of the basic results in [18], and show that the exponential B-
splines have an important conceptual role in that they connect some fundamental aspects of discrete and

continuous-time signal processing.

A. B-splines as discrete-to-continuous translators

The basic continuous-time convolution operators that are encountered in most courses on signals and
systems are listed in Table I [19], [20]. These are characterized either by their impulse response, h(t),
or their frequency response, h(w) = F{h(t)}, which is defined as h(w) = fj;o h(t)e“tdt when
h(t) € Ly. The discrete-time counterpart of these operators are given in Table II, together with their
z-transform. The Fourier transform of these sequences are obtained by making the substitution z = /.
Note that the two upper rows in Table 1 and 2 describe distortion-free systems (identity or pure delay),
while the four bottom rows correspond to all-poles systems. The link between the two tables is that, for
each row, the poles are in exact correspondence through the mapping 2z = e°, or s = log z, that connects
the Laplace and the z-transform (cf. [20], p. 695). We also note that there is a family resemblance between
the analog and discrete signals in corresponding rows, even though the connection is not necessarily as
simple as the sampling relation that holds for the first-order systems (unit step and simple exponential).

In fact, the mathematical relation between these two tables is provided by the Green-function repro-

duction formula:

+oo
pa(t) =Y palk] Ba(t — k) M
k=0

that we have encountered in Part I [18]. The corresponding B-spline functions are represented in Table
III. In the present situation, the Green function pgz(t) = Lgl{é (t)} = Hz{d(t)} is the impulse response
h(t) of the system Hz, which is the causal inverse of the exponential-spline defining operator L. This
simply means that the discrete signals in Table II are the B-spline coefficients of the impulse responses
in Table I. The case of the Dirac distribution is also covered by our formulation provided that we define
0(t) (or, 6(t — 70)) as a B-spline of order zero.

Another, perhaps even more illuminating way to understand the connection is to observe that the
Fourier transforms of the B-splines in Table III are obtained by dividing the analog ones in Table I by
the discrete ones in Table II. The remarkable consequence of forming this ratio is that the poles of the

analog system are cancelled by the j2m-periodic zeros of the B-spline numerator, which are precisely
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the poles of the discrete system in Table II. Another beneficial side effect of this division is the zeroing
of the Dirac distributions appearing in the 3rd and 4th row of Table 1.

To exemplify this link, we give the explicit time-domain formulae that relate—and also specify—the
signals in the bottom row of Tables I, II and IIL:

= [(n—1+k
e =3 (" L ) Bl (E = F) @)

k=0
where the relevant B-spline of order and multiplicity n is given by

ﬂ(a,...,a)(t) = Z (Z) (—ea)k (t _ k)i—lea(t—k)

k=0

n

This latter formula is obtained by inverse Fourier transformation of the expression in the bottom row in
Table III. The crucial step for this computation is to expand (1—e“e /)" using the binomial formula and
to interpret each factor e /¥ as a shift operator. Note that (2) and (3) extend two well-known relations

for polynomial splines which correspond to the case a = 0.

B. Differential interpretation of the localization operator

The spline-defining differential operator Ly = DV + any_;D¥~! + ... + qol is entirely characterized
by the zeros, a,, n = 1,---, N, of its characteristic polynomial Lz(s) = ngl(s — ay,). These zeros
also specify its null space Nz. The time-domain equivalent of the frequency-domain division process that
has been described is the B-spline generating formula [5(t) = Az{ps(t)} where A is the localization
operator and pz(t), the Green function of Lgz. This is consistent with the property that the Fourier
transform of Az{0(t)} = fgv:() dz[k]o(t — k), which is given by

. N . 1
As(e) =[] A —e) = 55 @
n=1
is the inverse of that of pz[k] in (1). The Laplace transform Aj(s) is obtained by making the formal
substitution jw = s in (4); this function vanishes for s = o, + j27wk, k € Z,n = 1,..., N, meaning that
it has zeros in perfect correspondence with those of Lz(s). Consequently, Az has the same ability as Ly
to annihilate the exponential polynomials in Az. We may therefore think of Az, which is equivalent to a

digital FIR filtering with dz[k], as a discrete approximation of L. This interpretation is further justified

by the remarkable distributional identity
V€S, Aa{f}=Ba*Lalf}
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which is a direct consequence of the Fourier definition of the B-spline. Here, S’ stands for Schwartz’s
class of tempered distributions. This shows that the discrete operator Az provides a smoothed version
(convolution with the corresponding B-spline) of the continuous one. It also guarantees that the distortion
effect is maximally localized because of the minimum-support property of the B-spline. Likewise, we

have the scaled version of this equation

Vi €S, Aarlf} = ghar *Lalf)

which characterizes the convergence of the discrete operator to the continuous one as the sampling step
goes to zero. In the limit, we have a perfect identity due to the property that % Ba,r(t) converges to 6(t)

as T — 0.

III. GENERALIZED EXPONENTIAL SPLINES

The discrete-to-continuous connection that has been described in Section II.A is appealing; unfortu-
nately, in its current version, it is only applicable to all-pole systems. This motivates us to extend the
exponential spline family and the corresponding signal processing framework by considering a more

general class of differential operators.

A. Extending the family to rational operators

The exponential splines that we have investigated in [18] are associated with ordinary differential
operators whose transfer functions are polynomials. To extend the family, we propose to consider the richer
class of operators with rational transfer functions. To this end, we introduce the augmented parameter
vector @ = (g, ,an; Y1, -+ ,vm) with M < N which specifies the new spline-defining operator

Lz{-}, whose transfer function is given by

N J—
La(s) = M 5)
Hm:l (3 - Vm)
with 7,, # «;, for all m and n. The null space of this operator, denoted by N3, is determined by the

zeros of Lz(s) which do not depend on the denominator. Consequently, Nz, which is of dimension N,
remains the same as before.

We can then define a generalized exponential spline in exactly the same terms as before (cf. Definition
1 in [18]): s(¢) is a generalized E-spline with parameter & if and only if Lz{s(¢)} is a weighted sum
of Dirac impulses which are positioned at the knots (spline singularities). Note that we are not imposing

any restriction on Lg: the ~,,’s can be freely chosen and need not be located in the left complex plane.

July 8, 2004 DRAFT



To appear in IEEE TRANSACTIONS ON SIGNAL PROCESSING 7

To construct the corresponding splines, we must specify the Green function of L5, which is equivalent

to determining the impulse response of the causal inverse operator Hz, whose Laplace transform is
M

Hm:l (S - ’Ym)
N

Hn:l(s - an)

This leads to the following generic representation of a generalized E-spline with parameter & and knots

Ha(s) = ©)

—00 < ot <tpyyp <0 < H00

s(t) =Y arpa(t — t) + po(t) Q)

k
with pg(t) = L~1{Hg(s)} where £L~! stands for the inverse Laplace transform; py(t) € N is a global

exponential polynomial component that is selected such as to satisfy some additional boundary conditions

(N linear constraints). The Green function takes essentially the same form as before:

Na T(m) 1
o — + Q(m)t
pa(t) _;;cm(nme ) ®)

where the ¢, ,,’s are the coefficients of the partial fraction decomposition of Hz(s) in (6). The important
difference, which is is due to the presence of the numerator in (6), is that pz(t) € CN~M=2 (the class
of functions with continuous derivatives up to order N — M — 2), meaning that it has a lesser degree
of differentiability than before. While these splines do still coincide with a function in N within each
interval [t tx+1), their nature has become somewhat different because the pieces are no longer connected
together as smoothly as before. Technically, they are not 7-splines nor even L-splines anymore, according

to the general definition of these splines given in [21].

B. Generalized exponential B-splines

From now on, we focus again on the cardinal splines which have their knots at the integers. The
first important step is to construct some local (i.e., compactly supported and shortest-possible) basis
functions for these spline spaces, which can be done in essentially the same fashion as in the standard
case. This leads us to the definition of the generalized B-spline of order N with parameter & =
(Q, -+ yan; Y1, YM):

Ba(t) = Aa{pa(t)} ©

where pg(t) = £L71{1/L5(s)} with Lg(s) specified by (5), and where the localization operator is the
same before; i.e., Az{f(t)} = Zgzo dz|k]f(t — k) where the Fourier transform of dz[k]| is given by (4).
It is easy to see that these generalized Nth-order B-splines are supported in [0, V). The argument is

that they can be generated from the standard ones by applying the differential operator Ly = (D — /1) *
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-+ % (D — 1) whose impulse response is a point distribution. This also explains why their regularity is
reduced by M; ie, Bz(t) € CN-M=2,

Note that the generalized exponential B-spline 35 (t) is well-defined (bounded and compactly supported)
as long as M < N, irrespective of the stability of Hz = Lgl. Its Fourier transform is given by

N M1 eoniw )
Pa) = | 11 — =) - 11 G = vm). (10)

n=1 m=1

We will therefore refer to the «v,’s as the poles of the B-spline and to the +,,’s as the (non-periodic)
ZEeros.

The class of these new B-splines is obviously much richer that the standard E-splines, not to mention
the polynomial ones. Interestingly, the family contains some known basis functions that have not been
classified as splines so far. A notable example is the family of MOMS (maximum order, minimum
support) functions that has been characterized in [22]. They correspond to the parametrization «,, = 0,
n=1,...,Nand v, € R,m=1,..., M. Three prominent 4th-order members of the MOMS family are
shown in Fig. 1: the cubic B-spline with @ = (0, 0,0, 0), the O-MOM with & = (0,0, 0, 0; —j\/42, j\/42)
and the cubic Lagrange interpolator with & = (0,0, 0, 0; v/6, —/6).

C. B-spline properties

The generalized B-splines have essentially the same properties as the standard ones (cf. [18, Section
II.B]). The only critical difference is that one has to adapt the B-spline composition rule, keeping
the poles and zeros separate. This means that the concatenation of the augmented parameter vec-
tors a7 and Ay of size Ny + M; and Ny + Mo, respectively, now yields the vector (dp : ds) =
(O 1y ooy QNG Q2 15wy Q2N V1 1s -+ > YL, My» V2,15 - - - s Y2,M, )> Which is of size (N1 + Na) + (M +

M>). With this convention, we can write the generalized B-spline convolution formula

(ﬂ&1 * ﬁ&g) (t) = 5(&1:&'2)(75)7 (11)

which is easily established in the Fourier domain.

As in the standard case, changing the sign of the roots (poles and zeros) has a mirroring effect

N
Balt) = (~)M (H ) Ba(—t + N), (12)
n=1

Thus, in order to construct symmetric basis functions, we have to select roots that are either zero or
grouped in pairs of poles (or zeros) of opposite sign. Symmetry is a property that is desirable for image

processing applications.

July 8, 2004 DRAFT



To appear in IEEE TRANSACTIONS ON SIGNAL PROCESSING 9

The formula for the cross-correlation of two generalized B-splines also needs to be adapted slightly:
(Ba, (), Ba - +7)) = (Ba, *Ba,) (1)
N,y
= (=)™ (H 60“‘") B(—a:a3) (T + N1) (13)

n=1

with the notation f(t) := f*(—t).

D. B-splines representation

The B-spline representation theorem in [18] can also be extended for the generalized E-splines.

Theorem 1: The set of functions {35(t — k) } rez provides a Riesz basis of Vz —the space of cardinal
generalized E-splines with finite energy —if and only if o, — ., # j27k, k € Z for all pairs of distinct,
purely imaginary poles.

This is established by adapting the proof of [18], which carries over without difficulty if we make use

of the following properties:

1) The null space is the same as in the standard case, as we have already mentioned.

2) The Green-function reproduction formula (1) is still valid provided that one uses the appropriate
generalized B-spline. This is because the localization operator is the same as in the standard case.

3) The exponential polynomial reproduction property is still true as well. Indeed, we have already
mentioned that the generalized B-splines include a standard B-spline convolution factor, which
makes them inherit the polynomial reproduction property (by [18, Proposition 1]). The necessary
condition is Lz (s) # 0 for s = a,, which is obviously satisfied as long as o, # v, Ym,n.

4) The Riesz-basis condition is satisfied. The upper bound is well-defined because the Gram sequence
ag is in £;. The lower bound exists as well because the additional factors (jw — ~,,) in (10) cannot
induce any 27-periodic vanishing of [z (w).

The Riesz bounds can be computed as described in [18, Eqgs., (30) and (31)], provided that one uses

the following extended formula for the calculation of the Gram sequence:
N

aglk] = (Bx(), Ba(- — k) = ()M <H eafl) Bla—an(N + k) (14)

n=1

To facilitate this type of computations, we have written Mathematica software that symbolically
evaluates the generalized B-splines and other related quantities for any given parameter vector &. This
package is briefly described in the Appendix and is made available to the research community over the

WEB.
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E. Continuous-discrete signal processing

Many of the formulae in Part I, Section III remain valid for our generalized splines, the reason being
that the effect of the new zeros is entirely absorbed in the B-spline basis functions. However, there are
also a few additions to the spline calculus because the class of functions has become richer.

1) Interpolation: The interpolation procedure is the same as in the standard case. However, we now
have considerably more freedom for designing new basis functions, which could be advantageous for
applications such as high-quality image interpolation [8]. In particular, we note that the best interpolation
methods known to date are either based on polynomial splines or on OMOMS [22], which are both part
of our enlarged family. This opens up the quest for even better ones.

2) Comvolution: The convolution procedure carries over directly because of the generalized B-spline
convolution property (11).

3) Modulation: The modulation property is unchanged except that its generalized version also requires
the frequency shifting of the zeros. Interestingly, our exponential spline family is closed under an even
more general operation which is the modulation with a complex exponential e*°? for arbitrary sq € C.

Proposition 1: Let s(t) = >, ., cx PBa(t — k) be a spline signal with exponential parameter & =

(a1,...,an; 1,--.,7vm). Then, the exponentially-modulated signal, e - s(t) with sy € C, is a spline
with exponential parameter & + 1sg = (a1 + So, - .., n + 50; Y1 + S0, -+ ,Yar + s0) that is given by
s(t) - e = cpe* By g, (E—F) (15)
kEZ

Proof: We compute the Laplace transform of the exponentially-modulated B-spline

oo et e — T N1 onm(o=s)
Ll Ba®)} = | Bae 7 dt = J] = so =) | [I S5 = |

0 §— 80— Qn

m=1 n=1

which also yields the Fourier transform if we replace s by jw. This clearly shows that e®! . 55(t) =

Baiis, (t) Where T =(1,---,1). Next, we note that e®! . S5(t — k) = e®F . B t — k), which we

+Tso(
then substitute in the B-spline representation of the modulated signal. [ |
Note that this property can be used to derive the relation (3) that connects the exponential B-spline of
multiplicity N to its polynomial B-spline counterpart.

4) Differential operators: The differential formula given by [18, Eq. (37)] is still valid when &)
consists of poles only. However, the family of B-splines is now rich enough so that we can generalize

the procedure for arbitrary differential operators.

Proposition 2: Let L {-} be the differential operator of order M’ whose Laplace transform is Ly (s) =
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H%/zl(s —~/.). Then, we have the explicit B-spline differential relations

Ly{Ba(t)} = Blay,.an; %...,W,%...%ﬂ)(t) (16)

Ly{Ba:a) ()} = Ay{Ba}(t) 17

where the conditions for the validity of (16) are 7/, # a,, Vm,n and M'+ M < N there is no restriction
for (17).

Proof: These relations are easily derived in the Fourier domain. The second one, for instance, is

obtained through the following manipulation (cancellation of the factors (jw — 7,,))

M
F{ls{Bm.a) ()} = H (jw — Vi) * By ()
m=1
M’ N _ M .
I —jw l_Inzl(1 —en ]w) Hm:l (]w B ’Ym)
— 1 — e¥m—J
mH1( ) Hfzvzl(jw - Oén)

Ba(w)
|

5) Dilation by m: Here, there is a slight change that requires an extended definition of the generalized

spline scaling filter

manz m

1—e
Hgm(2) = mN =" H — (18)

which has a mild dependence on the zeros through thelr number ), meaning that the same filter is

shared by different types of splines. As in the standard case, the filter is FIR of size m/N — 1, which is
not immediately apparent from its rational representation.

Proposition 3: The generalized exponential B-spline with parameter & satisfies the m-dilation relation

Ba(t/m) = hz ,,[K]Bz (t k) (19)
keZ
where hs ,, k] is the impulse response of the filter (18) with rescaled exponential parameter (%, .- -, 22;
2o ),
Proof: The result is established by direct manipulation in the Fourier domain:
F{Ba(t/m)} = m - Ba(mw) (20)
N M
1— eanfjmw . ,
= mH m H (Jmw — )
n=1 m/=1

N an _ M

B M+1 1—6a”€ Jmw 1—6m Jjw ' _’Y;n

- omN o e—jw jw — 4o (jw H)
n=1 n=1 m  m'=1

Batjm (w)
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where the two factors on the right-hand side can be readily identified. Note that the division/multiplication
by (1 — e®/™e™7%) is legitimate even when there are roots on the unit circle since the zeros of the
denominator are cancelled by those of the numerator—this is precisely the reason why the filter Hg ,,(2)

in (18) and the exponential B-spline are both FIR! ]

IV. DISCRETE IMPLEMENTATION OF ANALOG FILTERS

Shannon’s sampling theory guarantees that there is a perfect equivalence between continuous-time
and discrete-time signal processing techniques for bandlimited functions. Unfortunately, the bandlimited
hypothesis excludes all physically-realistic signals. In particular, it is incompatible with causality!, mean-
ing that it is impossible to exactly represent the impulse response of analog filters, including all the
elementary signals in Table I, within the classical bandlimited framework. We will now show how the
present formalism can circumvent this limitation and yield exact computational schemes for implementing

continuously-defined signal processing operators in the discrete B-spline domain.

A. Analog filtering in the B-spline domain

We consider the task of evaluating y(¢t) = Hz{xz(¢t)} where z(¢) is some continuously-defined input
signal and where Hy is a stable analog filter whose rational transfer function is given by (6). Because
of the stability hypothesis, the poles of Hyz(s) are in the open left complex plane (i.e., Re(ay,) < 0,Vn)
which insures that the impulse response of the system, pz(t) = Hz{d(¢)}, is in Lo N L;.

We assume that the input signal is an exponential spline with parameter &; specified by its B-spline
expansion:

z(t) = ch[k]ﬁo?l (t—Fk)

kEZ

This representation is either given to us, or is fitted to a series of input samples {xz[k]}rcz using the
interpolation procedure discussed in [18, Section III.B]. Note that this model also covers the case of
idealized sampling since §(t) is formally equivalent to a B-spline of order 0.

From the theory in Section III, we know that p5(¢) is a generalized E-spline with parameter & and that
its B-spline representation is given by (1) (Green-function reproduction formula). Since the poles are in
the left complex plane, the all-pole digital filter Pz(z) = Agl(z) = HnNzl(l — ez~ 171 ig stable as

well, implying that the B-spline coefficients pz[k] in (1) are decaying exponentially fast.

'In fact, it is much worse than that: one cannot construct a non-zero bandlimited signal f(t) such that f(t) = 0,Vt € [t1, t2]

for any t1 < to.
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The output signal y(t) = (pg * =) (t) can now be easily calculated, thanks to the B-spline convolution

property:
+o00o
w0 = [ Y elk)alr k) 3 palklda(t — 7~ ) dr @1
X kez kez
= > (1 %pa) [K] Ba,at — k). (22)
keZT

This shows that y(¢) is an E-spline with parameter 4> = (&1 : @) and that its B-spline coefficients cz k]

are obtained by applying the digital filter P3(z) to the input coefficients c; [k].

B. Practical considerations

In most practical applications, the samples y[k| of the output signal y(t) are the desired end result. These
can be calculated efficiently by post-filtering with B, () (the sampled version of the basis functions).
This operator can be combined with the previous one into a single filter whose transfer function is

Bg,(z) SN Bl (k)2 F
Az(z) TV, (1= eonz 1)

n=1

Ry(2) =

Note that the corresponding digital filter is causal, rational of order /N, and that it can be implemented
recursively. It has poles that are in exact correspondence with those of its continuous-time counterpart.
Thus, the proposed discretization procedure provides an efficient digital implementation that perfectly
mimics the corresponding continuously-defined system.

When the input signal is specified by its samples x[k| rather than by its B-spline coefficients ¢, [£],
we must also include the initial interpolation step. The block diagram describing the complete process
is shown in Fig. 2. For the practitioner who is primarily interested in computing y[k] from z[k], these

steps can all be combined into one global digital filter whose transfer function is

R12(2) _ RQ(Z) _ ngvjz]Nl /8(&1;52) (k:)z*k

Ba(2) (S0 B, (k)=F ) TN (1 = ez

It is interesting to note that for N; = 0 (the case of an ideally sampled input), the proposed technique

is computationally equivalent to the impulse-invariance method which produces a recursive digital filter
whose impulse response is pg(k). However, it is important to emphasize that the interpretation of the
process is quite different: the impulse-invariance method considers that the output signal is discrete (or
eventually, bandlimited), while in our case, it is described by a continuous-time model (E-spline).

At any rate, the case N; = 0 is quite extreme because the bandwidth of the input signal is infinite

which can lead to aliasing artifacts when the output y(¢) is converted back to discrete form. From our
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point of view, it makes better sense to represent the input signal by a polynomial spline of order N; > 1;
typ., N1 = 1 (piecewise constant) or N; = 2 (piecewise linear). By increasing the order N;, we can
construct an equivalent digital filter that is arbitrarily close to the response of the continuous one over the
entire Nyquist band. This is because: 1) the proposed discretization procedure is exact for the underlying
signal representation, and, 2) the input signal will tend to be more and more bandlimited as N; increases

[23].

C. Design example

One of the preferred strategies for designing recursive filters is to start with an analog filter prototype
and to apply some analog-to-digital mapping technique, such as the impulse-invariance method or the
bilinear transform, to transpose it into the discrete domain [20]. The reason for this is that there are
powerful analog design techniques that yield closed-form solutions (e.g., Butterworth and Chebyshev
filters), which have no direct counterpart in the discrete domain. Interestingly, low order designs tend to
be the most challenging for the standard conversion techniques because they are more prone to aliasing
artifacts. The technique that we are proposing here does not have this problem—the implementation is
exact provided that one thinks in terms of splines—and may therefore be an interesting alternative.

To illustrate the procedure, we consider the discrete implementation of the first-order Butterworth filter

o

H(s) = =% = —aH,(s) with a = —log2. The corresponding localization filter is A, (2) =1 — 32

_ —1
s—a *

The recursive filters R12(z) obtained for three input spline models of increasing order N; are:

o Ideal sampling model with N; = 0: Ry2(2) = 19&%3;1,1
« Piecewise-constant input with Ny = 1 and &; = (0): Ri2(z) = 19’5’.%;1,1
« Piecewise-linear input with N; = 2 and &1 = (0,0): Ryp(z) = 227804022132

Their amplitude and phase responses are shown in Fig. 3 and compared to the characteristics of the analog
filter H(jw). As expected, the least favorable response is obtained for N; = 0, which also corresponds
to the standard impulse invariance method. This filter does not even reproduce the unit gain at the
origin, which is not very satisfactory for a lowpass design. The filters based on higher-order splines
do not have this defect because the underlying input models (polynomial splines) can reproduce the
constant (polynomial of degree 0). The amplitude characteristic of the second filter is quite good, but its
phase response is significantly different from the reference one. The third filter has by far the best phase
response, and also the amplitude response that is the closest to the analog one at low frequencies. However,
it tends to attenuate higher frequencies more strongly than the prototype (which is not necessarily bad for

a lowpass filter). Fig. 4 illustrates the property that we can match the frequency response of the analog
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filter as closely as we wish by increasing the order /N; of the input spline model. However, there is a
catch: the filters associated with these higher-order models (here, cubic with N; = 4 and septimic splines
with N; = 8) are no longer causal; yet, they can still be implement recursively using the algorithm
described in [24].

Unlike the impulse-invariance method, the proposed procedure is also applicable for the design of
bandpass or even highpass filters. In such cases, it is judicious to replace the polynomial spline input
model by a modulated one with poles matching the resonance frequencies of the analog filter. This will
have two beneficial effects: (1) it will ensure a good match of the discrete and analog frequency responses
around those frequencies, and (2) it will help reducing aliasing artifacts because the bandwidth of the

input signal is adapted to the filter characteristics.

V. HYBRID SIGNAL PROCESSING

The proposed framework is ideally suited for designing hybrid systems that combine analog and
discrete signal processing components. In this section, we describe three such systems that rely on digital
filtering techniques to correct for distortions incurred by non-ideal A-to-D and D-to-A conversion. Their
design is based on the generalized sampling theory for non-ideal acquisition devices proposed in [25],
which is briefly reviewed in Section V.A. All three systems reconstruct an analog signal y(t) that is
undistinguishable from the original input, at least, as far as the measurement system (non-ideal sampling

device) is concerned.

A. Review of generalized sampling

The generalized sampling theory presented in [25] provides a method for reconstructing an unknown
input signal x(t) € Lo from a series of measurements c;[k] = (z(t),p1(t — k)) in a given “shift-
invariant” function space Vo = span{ya(t — k)}rcz. Among all possible reconstructions of the form
Y(t) = > pey c2lk]p2(t — k), there is only one that is consistent with x(t) in the sense that it has exactly
the same measurements : Vk € Z, (z(t), p1(t — k)) = (y(t), p1(t — k)). Theorem 1 in [25] states that
the coefficients of this optimal solution are given by co[k] = (¢*c;1)[k] where ¢ is the digital filter whose
transfer function is:

1
- Yrezler(t — k), 2(t)z7H

This solution corresponds to the oblique projection of x(¢) onto V5, perpendicular to Vi = span{¢; (t —

Q(2) (23)

k)}rez (see also [26]). The sampling theory guarantees that the filter is stable and well-defined provided
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that the cosine of the angle between the two spaces, V1 and V5, is non-zero. It also provides an optimal
error bound that compares this solution to the optimal least-squares approximation that is typically not

realizable.

B. Consistent sampling system

We consider the application of this theory to the case of a realistic A-to-D conversion system that uses
an analog lowpass filter prior to sampling to reduce aliasing artifacts. We seek to reconstruct an output
signal y(¢) that is a E-spline with parameter d’a which corresponds to the choice 2 (t) = (5,(t) in our
generalized sampling formulation. We also assume that the analog prefilter is given to us and that it has
a rational transfer function H,(s) of the form (6) with poles {1, }r=1,..~, and zeros {Vi m tm=1... ;-
This model is rich enough to specify any physical system described by ordinary differential equations
(e.g., electric circuit). The sampling is performed by a standard sample-and-hold, A-to-D converter, which
yields the discrete samples c; [k] (measurements). What we are proposing here, is to add a digital post-
filtering step to compensate for the fact that the analog prefilter H;(s) is non-ideal and that it introduces
amplitude and phase distortions. The corresponding block diagram is represented in Fig. 5. As in Section
IV, we use the fact that pg, (t) = p1(—t) (the impulse response of Hi(s)) is a E-spline with parameter
A7 that satisfies the Green-function reproduction formula (1). To determine the optimal correction filter

Q1(z), we evaluate the convolution product:

(pd'1 * (102) (t) = (Zpal Bal t_ )) * 6072 (t) (24)
keZ
= ) pa k] Bt — k) (25)
kEZ

which is a spline of increased order N; 4+ No. By plugging this result into (23) and recalling that
P; (2) = 1/Ag,(2), we obtain the transfer function of the optimal correction filter for the system in Fig.
5:

Agz, (2)
SN Bl (k)2 F

where Az, (2) = Hfj;l(l — e™nz~1), Based on the interpretation given in Section I.B, we see that

Qi(z) = (26)

this latter FIR filter is a discrete approximation of the differential operator that compensates the all-pole
component (denominator) of H(s). The B-spline part in the numerator of (26) refines this correction to
have a consistent solution, while also taking into account the differential part (numerator) of H;(s). In

fact, it corresponds to the interpolation filter for the augmented-order spline space V{4, .4,). In most cases,
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the corresponding IIR correction filter will be stable—but not necessarily causal—meaning that it can
be implemented recursively using the procedure described in [18, Section IV.A]. For special situations
where the interpolation problem is ill-posed, it is in principle possible to introduce a non-integer shift in

the response to stabilize the filter as discussed in [18].

C. Digitally-compensated D-to-A conversion

We now consider the D-to-A conversion problem which is the converse of the preceding one. We are
given a discrete input signal x[k] and we want to design a D-to-A conversion system that generates a
continuously-defined output signal y(¢) which interpolates these samples exactly; i.e., Vk € Z, y(t)|i=x =
x[k]. Our system utilizes standard electronic components: (1) an off-the-shelf D-to-A converter which
produces a piecewise-constant output (first-order polynomial spline interpolator), and (2) an analog post-
filter that smoothes out the response of the convertor. There are two well-documented problems associated
with such a circuit: First, the D-to-A converter, which uses ﬂ(o) (t) as basis function, will distort the in-
band portion of the Fourier spectrum of the input signal by multiplying it with a sinc function— the
so-called “droop” effect. Second, the analog output filter, which is intended to suppress the out-of-band
frequency components, will necessarily introduce distortions; in particular, some phase distortion because
its impulse response is causal. Here, we are proposing to include a digital prefilter g2 in the chain to
compensate for these effects. The corresponding system is shown in Fig. 6.

As in the previous case, we assume that the analog filter has a rational transfer function Ha(s) of
the form (6) with poles {2, }n=1,. N, and zeros {72 }m=1,. r,. Its impulse response, denoted by
pa,(t), is an E-spline with parameter & which can be represented by its B-spline expansion (1). We now
reformulate the problem so that we can apply the sampling theory in Section V.A to derive the digital
correction filter. To this end, we note that the required interpolation condition can be rephrased as a
consistency requirement with o1 (¢t) = d(¢). The digital filtering of the input signal yields the coefficients
c2[k] = (g2 * =) [k] which are fed into the D-to-A convertor. After analog filtering, the resulting output
signal is given by y(t) = > ;< calklpa(t — k) with po(t) = B(o)(t) * pa,(t). Next, we evaluate the
cross-correlation function {(p1(- — 7),¢2(-)) = > <z Pa,[n]B0:a,) (T — n) using our B-spline calculus.
By plugging this result into (23) and recalling that Pz, (2) = 1/Ag, (%), we obtain the transfer function
of the optimal correction filter for the system in Fig. 6:
Az, (2)
@2(2) = 0t Blog) (k)2

As example of design, we consider the case of a second-order, all-pole smoothing filter with dy =

@n
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(—1,—2). The corresponding digital filter that is obtained from (27) is Q2(z) = z- 1_%‘51%%28':&3%%27,%[2.

It is composed of a stable, causal filter (with a pole at zyp = —0.367) that can be implemented recursively
in real time. The presence of the factor z in the transfer function is not too surprising since the system
needs to correct for the phase distorsion of the analog filter. Practically, this means that the output will
be delayed by one sample with respect to the input. Fig. 7 illustrates the type of output signal that is
provided by this system and compares the solution to a simple sample-and-hold reconstruction. Despite
the fact that the analog filtering is relatively mild, the output signal is smooth (in fact, y(¢) is twice-
differentiable) and does not present visible reconstruction artifacts. The generated output signal is such
that it interpolates the input samples perfectly.

We believe that the present solution is an interesting alternative to the more complex quadratic spline
interpolation circuit that has been proposed by Kamada et al. [27], [28]. The advantage of the present

design is that it does not require any active components such as integrators, which tend to drift.

D. High-fidelity reproduction system

Finally, we consider a beginning-to-end system where the input and output signals are analog, but
the intermediate representation (storage or transmission) is digital. The standard approach for this type
of problem is modular. For instance, one may simply combine the solutions for A-to-D and D-to-A
conversion that have just been proposed. We believe that we can do better by looking at the problem in
its entirety and applying the same methodology as before to specify a solution that is globally optimal.

The corresponding hybrid system is summarized in Fig. 8; it qualifies as a high-fidelity reproduction
system because its output is undistinguishable from its input on the basis of the measurements that are
performed. For instance, if this was a hypothetical sound recording/reproduction system with an input
microphone and an output speaker, the system specification would ensure that one would record exactly
the same sound again if one would replace the initial source by the acoustic output of the system. Because
the solution of the generalized sampling problem is unique, there is only one digital filter g3 that can
ensure this property for arbitrary input signals, without any restriction whatsoever (in particular, the input
need not be bandlimited).

The relevant analysis and synthesis functions are now ¢1(t) = pg, (—t) and p2(t) = (B(o) * pa,) (1),
which is a mix between the formulations in Sections V.B and V.C. To determine the optimal solution,

we compute the cross-correlation function (i (- —7), p2(+)), which is done by using the same technique
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as before. This ultimately yields the globally optimal correction filter

Ag (2)As,(2)
Q3(z) = - ? :
;gV;E)’—NTH ﬁ(&'1:0:o_22) (k)z_k

which is generally IIR and can be implemented recursively.

VI. CONCLUSION

In this paper, we introduced an extended family of cardinal E-splines, each type being associated with
a continuous-time differential system. Practically, this means that a spline family is specified by a list of
poles and zeros, in essentially the same way as one describes an analog filter. Schoenberg’s polynomial
splines, for instance, correspond to a system whose poles are all placed at the origin.

Cardinal E-splines have several important properties that make them particularly attractive for signal

processing:

« B-spline representation: they can be expressed very efficiently in terms of compactly supported basis
functions (B-spline expansion).

« Continuous-time signal processing: the family is closed with respect to the primary continuous-
time signal processing operations: convolution, differential operators (including analog filters with
rational transfer function), and modulation. These can be implemented directly by applying the
discrete counterparts of these operations in the B-spline domain.

o Ease of manipulation: E-splines are as simple to manipulate as polynomial splines. In particular,
spline fitting and approximation procedures can be implemented efficiently via recursive digital
filtering.

o Generality: our extended E-splines family contains all known brands of cardinal splines (polynomial,
trigonometric, hyperbolic, and exponential splines), as well as other families of functions such as
the OMOMS that had not been catalogued as splines so far. The bandlimited model is also included

as a limiting case since it can be assimilated to a spline of infinite order [23].

The proposed formalism has an interesting conceptual role in that it really brings together the continuous
and discrete aspects of signal processing. In particular, it explains why there is such a strong resemblance
between the basic continuous-time and discrete-time results of linear systems’ theory. There are also
practical benefits because the proposed spline calculus simplifies the mathematical analysis of hydrid
signal processing systems, while, at the same time, suggesting some new solutions. We believe that these
methods may also be useful for the digital simulation of analog circuits and that they are well-suited for

control applications which are increasingly relying on digital controllers.
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We have presented some examples of hybrid signal processing to illustrate the ease-of-use of our spline-
based formalism. The designs were kept simple on purpose to demonstrate the type of signal processing
tasks that could benefit from our techniques. To make these systems really practical, one would need to
optimize the analog filter parameters and also consider higher order models. These applications also raise
a number of theoretical issues that call for further investigations. What is the best analog reconstruction
filter for a hybrid system? How can one take into account, and eventually reduce, the effect of measurement
noise? Are there high-order configurations of poles and zeros that lead to compensation or interpolation
filters that are causal, which would be advantageous for on-line processing? The answer to the last
question, which is likely to be positive, is practically quite relevant and could represent a new interesting

challenge for filter designers.
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APPENDIX I

SOFTWARE FOR THE COMPUTATION OF B-SPLINES

To obtain the analytical expression of the generalized exponential B-splines and other related quantities,
we recommend using a mathematical software package for symbolic manipulations. We have made an
implementation available for Mathematica at http://bigwww.epfl.ch/demo/Esplines/. The spline type in
each routine is specified by two list variables: poles, and zeros (which is optional). For example,
the OMOMS in Section III.C corresponds to the parameters: poles={0,0,0,0} and zeros={-I
Sqrt[42],I Sqrt[42]}.

The available functions are:

e« BsplineE[t, poles, zeros]: Evaluates the generalized B-spline from equation (9).

e« B[z, poles, zeros]: Returns the discrete B-spline filter B(z) = legv:o Bz (k)z7F.

e A[z, poles, zeros]: Returns the z-transform of the Gram sequence (14).

e Localization[z, poles]: Returns the z-transform of the localization operator (4).

e GreenE[t, poles, zeros]: Evaluates or returns the symbolic form (8) of the Green function

pa(t), which is obtained by inverse Laplace transformation of (6).
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Operator Notation Impulse response Frequency response
Identity y} a(t) 1
Shift SAf}=rf-v &(t-7) e
D 1
Int I = 1,(¢ (W) + —
ntegral D{} __{dt X0 () o
n-1 n-1_ s(n-1)
Multiple integral D{} L M+ !
(n=-1! (n=-1! (Jw)"
Simple differential system D-ab{ } 1,(1)- e L Re{a} <0
jo-a
i . tn—lem 1
lterated differential system  (D-al)™{ } * ————  Re{a}<0
(n-1! (jo-0)
TABLE 1

BASIC CONTINUOUS-TIME CONVOLUTION OPERATORS

Name Discrete time specification 2-transform
Unit impulse k] 1
Shift Ok - ko1 7o
Unit ste k 0, k<0 1
P L I 1-z"
1
0, k<0 -
| . i1 2] = n-1 (1 _ z—l)
Discrete mononial Py [kl H(k +m), k=0
m=1
Causal 0, k<O 1
exponential p,lkl= % k20 e
1
Discrete 0, k<0 ( _1)"
exponential =115 ] = n-l 1-¢€2
monomial P M e"‘n(k+ m), k=0
m=1
TABLE 1I

ELEMENTARY CAUSAL DISCRETE-TIME SIGNALS
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Dirac distribution

Polynomial B-splines

/L

Exponential B-splines

B-spline Operator L Order N Frequency response
o f} 0 1
60_1) Sr{ } 0 e—inn
d .
Bo® p{}-4 —e® )
“ o
e
Bo..0(®) D"{ } n (l—e J )
Jjo
%
_pa-jo Y\
B.(® (D-an{ } 1 1-¢
jo-a
>
e wmr) a2
jo-a
J
TABLE III

D-TO-A TRANSLATING B-SPLINES:

24

THE INTEGER SHIFTS OF THESE B-SPLINES ARE THE BASIS FUNCTIONS THAT ALLOW THE RECONSTRUCTION OF THE

IMPULSE RESPONSES IN TABLE I FROM THE DISCRETE SIGNALS IN TABLE II.

Fig. 1. Three generalized B-splines of order N = 4: (a) cubic B-spline, (b) cubic OMOMS, and (c) cubic Lagrange interpolator.

To facilitate the comparison, the B-splines have been normalized to have a unit integral.
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C1 [k] Co [k]
o[kl [ 1 1 B y[k]
T Ba® [T Ae) [ e
Interpolation B-spline processing Resampling
(IR filter) (IR filter) (FIR filter)

Fig. 2. Implementation of an analog filter in the B-spline domain.

Amplitude response

(b)

Fig. 3. Comparison of the frequency responses (amplitude and phase) for three filter designs using input models of increasing

order. The response of the analog prototype (first-order Butterworth filter) is represented with a thick line.
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Amplitude response
1

0.8

0.6

0.4

0.2

Fig. 4. Approximation of the frequency response of a first-order Butterworth filter for input spline models of increasing orders
Ny =2,4 and 8.

(1) c1 (k] c2 ]
— Hg, (jw) A/D o Qi(z) ——

v

Analog filter A-to-D converter Digital filter

Fig. 5. Consistent sampling system: the input signal xz(t) is prefiltered in the continuous-time domain prior to sampling

(A-to-D conversion). The measured samples are then corrected by digital filtering so that the underlying signal model y(t) =

Y rez C2[k]Ba, (t — k) is a consistent spline approximation of the input.

O
\v}
O
O
>

HO_Z2 (]w) —>

Correction filter D-to-A converter Analog filter

Fig. 6. Digitally-compensated D-to-A convertor: the signal samples are digitally prefiltered prior to D-to-A conversion to ensure

that the output signal y(¢) is a correct interpolation of the input.
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Fig. 7. Comparison between the outputs of two D-to-A convertors: (a) piecewise-constant reconstruction, (b) 2nd-order digitally-

compensated system with & = (—1, —2).

x(t)

— Héfl (]w)

C1 [k]

Co [k]

Analog filter

A 4

A/D

Q3(2)

D/A

Digital filter

\4

HO_ZQ (]w) ‘

Analog filter

Fig. 8. High-fidelity reproduction. This system produces a consistent reconstruction of an analog input signal from a series of

equally spaced measurements (samples). It includes a digital correction filter that compensates the distortions introduced by the

two analog filters that are used in conjunction with the A-to-D and D-to-A converters.
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