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Abstract

Measuring the quality of three-dimensional (3D) reconstructed biolog-
ical macromolecules by transmission electron microscopy is still an open
problem. In this article, we extend the applicability of the Spectral Signal-
to-Noise Ratio (SSNR) to the evaluation of 3D volumes reconstructed with
any reconstruction algorithm. The basis of the method is to measure the con-
sistency between the data and a corresponding set of reprojections computed
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for the reconstructed 3D map. The idiosyncrasies of the reconstruction al-
gorithm are taken explicitly into account by performing a noise-only recon-
struction. This results in the definition of a 3D spectral signal-to-noise ratio
which provides an objective indicator of the quality of the 3D reconstruction.
Furthermore, the information to build the SSNR can be used to produce a
Volumetric SSNR (VSSNR). Our method overcomes the need to divide the
data set in two. It also provides a direct measure of the performance of the
reconstruction algorithm itself; this latter information is typically not avail-
able with the standard resolution methods which are primarily focused on
reproducibility alone.

1 Introduction

The 3D reconstruction of biological macromolecules provides structural biolo-
gists with key information to fully understand the properties and functions of a
given complex. 3D Electron Microscopy (3DEM) of single particles is one of
the most useful imaging techniques since it allows the visualization of biological
macromolecules nearly in their native state without any constraint of size or any
need to crystallize (Baumeister and Steven, 2000; Ellis and Hebert, 2001; Frank,
2002; Ruprecht and Nield, 2001; Sali et al., 2003). The physical limits of 3DEM
resolution have been discussed in terms of macromolecule size, microscope fea-
tures, and number of images (Henderson, 1995). However, the assessment of the
quality actually achieved by a 3D reconstruction is still an open problem (Grig-
orieff, 2000).

To the best of our knowledge, the measures available to assess the quality of
3D reconstructions in single-particle electron microscopy are: the Fourier Shell
Correlation (FSC) (Harauz and van Heel, 1986; Saxton and Baumeister, 1982;
van Heel, 1987), the Fourier Ring Phase Residual (FRPR) (van Heel, 1987), the
Q factor (Kessel et al., 1985; van Heel and Hollenberg, 1980), and the Spectral
Signal-to-Noise Ratio (Penczek, 2002; Unser et al., 1996).

By far, the most frequently-used method to measure reconstruction quality
is the FSC. However, the threshold at which the FSC defines the reconstruction
resolution is still a questionable topic. Some classical thresholds are 0.8, 0.67,
0.5, 0.3, or 2 or 3 times the correlation with random noise (Penzcek, 1998). More
recently, the new threshold 0.143 has appeared (Rosenthal and Henderson, 2003).

The main drawback of the FSC, as well as of the FRPR, is that they deter-
mine the 3D resolution by first computing two independent reconstructions and
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then by testing the concordance of their 3D Fourier transforms. This approach
provides a fair assessment for the reproducibility of the experiment, but has also
some basic limitations. First, it constrains us to produce reconstructions using
subsets of the available data. Second, it does not explicitly test for the validity
of the reconstruction algorithm itself—reproducibility alone is not a guarantee
that the calculated density accurately represents the raw data. These problems
are avoided in the method developed by Conway et al. (1993) which performs a
FSC resolution assessment in the data domain using a reprojected version of the
3D reconstruction. This measure is also known in the literature as FRC3D. How-
ever, this non-standard way of using the FSC raises the difficulty of determining a
resolution threshold that is sound, mainly because of the very different statistical
properties of the images being compared (i.e., data versus reprojection).

Another more serious limitation of using FSC is that this correlation-based
measure turns out to be invariant to any isotropic filtering of the entire data set.
This is simply because such a global filtering will manifest itself by a radial rescal-
ing of all spectral components both on the input (data) and on the output (3D
reconstruction and reprojections). If the scaling is isotropic, the proportionality
factor is the same for all spectral components at a given radial frequency with the
result that the corresponding FSC value remains unchanged. Thus, we may very
well perform lowpass filtering of the whole data set and still obtain the same FSC
resolution estimate as before, which is obviously not satisfactory.

This motivated us to propose (Unser et al., 1996) an alternative criterion which
is inspired from previous work in 2D (Unser et al., 1987). This criterion takes into
account the whole chain of events in the reconstruction process and has a sim-
ple intuitive interpretation. This idea was further developed by Penczek (2002).
However, this latter work is restricted to the class of algorithms that performs the
reconstruction by interpolation in the Fourier space. In this paper, we extend the
3D use of the SSNR independently of the reconstruction algorithm. Computer
simulations in a well-controlled environment, as well as results with real data,
point out the validity of our extension. The image processing package Xmipp
(Marabini et al., 1996) incorporates the resolution measure defined in this paper.
The package can be found at http://www.cnb.uam.es/˜bioinfo.
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2 SSNR Resolution Assessment

2.1 Basic Assumptions

Our data set X =
{

x(i)
k,l; i = 1, ..., I

}

consists of I independent projective views x(i)
k,l ,

where the spatial location is indexed by (k, l). We make the standard assump-
tion of an additive signal+noise model: X = S + N, where S and N denote the
signal and noise components, respectively. Note that this assumption can also be
treated as a definition: we may define the signal to be the explained portion of the
data which is common to all measurements, and the noise to be the unexplained
part (residue). Ideally, we would like the noise component to be due to random
fluctuations only, but it can potentially also account for a whole variety of perturb-
ing factors such as the presence of outliers and/or an incorrect estimation of the
imaging geometry.

The second assumption is that the reconstruction process is linear in the sense
that Rec{X} = Rec{S}+Rec{N} (Rec{X} is the volume reconstructed from the
data set X). We only require that this relation holds in the case when all the recon-
struction parameters are the same. This is a quite reasonable hypothesis because
the ray transform is a linear operator (Natterer and Wübbeling, 2001). Thus, any
reasonable reconstruction algorithm that attempts to invert the ray operator should
be linear as well.

2.2 Spectral Signal-to-Noise Ratio

Our method estimates the relative energy contribution of the reconstructed sig-
nal and noise components (Rec{S} and Rec{N}) by performing two independent
computations. The first assesses the consistency between the input data and the 3D
map produced by the tomographic reconstruction algorithm. The second deals ex-
clusively with the effect of the algorithm on the noise component N. Both types of
estimates are combined into a global spectral signal-to-noise ratio (SSNR) which
characterizes the overall behavior of the system for the particular data set at hand.

2.2.1 Data Consistency

Let X (i)
K,L, denote the 2D discrete Fourier transform of the input image x(i)

k,l . By con-
vention, we use (K,L) as the spatial frequency indices. After determination of the
relative orientations of the individual views, the tomographic reconstruction algo-
rithm produces a 3D map of the underlying specimen. This 3D map (or model) is
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then used to generate a corresponding set of reprojected images
{

x̃(i)
k,l; i = 1, ..., I

}

with Fourier transforms
{

X̃ (i)
K,L; i = 1, ..., I

}

; these provide an estimate of the sig-

nal that is initially present in our data. By considering a region R∆ω(ω) in Fourier
space that corresponds to an annulus with central radial frequency ω and width
∆ω, we then calculate the Input Spectral Signal-to-Noise Ratio as

ISSNR(X;ω,∆ω) =

I

∑
i=1

∑
K,L∈R∆ω(ω)

∣

∣

∣
X̃ (i)

K,L

∣

∣

∣

2

I

∑
i=1

∑
K,L∈R∆ω(ω)

∣

∣

∣
X (i)

K,L− X̃ (i)
K,L

∣

∣

∣

2
. (1)

The numerator in (1) is an estimate of the signal power centered at frequency
ω, while the denominator is a measure of the corresponding input noise energy
(unexplained portion of the data). Thus, the ratio of both quantities yields an
estimate of the SNR at the input of the system, that is, the SNR prior to 3D recon-
struction.

2.2.2 Noise Reduction Factor

When I images are combined to yield a 3D reconstruction, there is some form of
averaging involved which causes the noise to be reduced. To characterize this ef-
fect, we introduce the noise reduction factor of the algorithm, α(ω,∆ω), which is
typically not constant. The major difficulty here is that α(ω,∆ω) depends on many
application-specific parameters; for example, the type of tomographic algorithm
used, the imaging parameters (angles), the type of symmetry (e.g., icosahedral),
and the number of views. It is therefore very difficult in general to determine
α(ω,∆ω) analytically. Our solution is to estimate α(ω,∆ω) empirically by in-
jecting white Gaussian noise into the reconstruction algorithm with all parameters
being the same as for X. Practically, this is equivalent to using the estimate

α(ω,∆ω) =

I

∑
i=1

∑
K,L∈R∆ω(ω)

∣

∣

∣
Ñ(i)

K,L

∣

∣

∣

2

I

∑
i=1

∑
K,L∈R∆ω(ω)

∣

∣

∣
N(i)

K,L

∣

∣

∣

2
, (2)

where N now represents noise-only images, and where Ñ denotes the correspond-
ing reprojection calculated from the noise-only 3D reconstruction map. It is im-
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portant to use white noise at this step since the goal is to measure the attenua-
tion introduced by the reconstruction algorithm. Therefore, all frequencies must
be present in the same amount at the input of the system. Note that we have
α(ω,∆ω) ≈ ISSNR(N;ω,∆ω), except that there is no subtraction in the denomi-
nator because the underlying signal is zero by definition.

Unser et al. (1987) showed that the 2D SSNR in the absence of signal, which
is the 2D analog of what in this paper is called α(ω,∆ω), follows a central F-
Snedecor distribution with r1 = nR and r2 = (I−1)nR degrees of freedom. There,
nR is the number of elements participating in the annulus R∆ω(ω). The variance of

such a distribution is
(

r2
r2−2

)2 2(r1+r2−2)
r1(r2−4) (Rade and Westergeren, 1999). Note that

this variance tends to 2/r1 when the number of images tends to infinity, and to 0
when the number of points in the annulus tends to infinity. The statistical assump-
tions made for the derivation of this distribution are no longer valid in the 3D case
and finding an analytical statistical distribution remains an open problem. How-
ever, these two cases are conceptually similar and one should still expect a smaller
variance of α(ω,∆ω) as the number of images or the annulus size increases.

2.2.3 SSNR Estimate

Finally, we combine equations (1) and (2) to obtain a measure of the true spectral
signal-to-noise ratio on the reconstructed signal

SSNR(X;ω,∆ω) = max

{

0,
ISSNR(X;ω,∆ω)

α(ω,∆ω)
−1

}

. (3)

The main reason for subtracting 1 from the ratio is to produce an unbiased
estimate. In particular, we want the SSNR to be zero when the data consists
of noise only (i.e., X = N). Note that (3) is the 3D extension of the 2D SSNR
criterion for correlation averaging (Unser et al., 1987). In this former simpler
case, α(ω,∆ω) can be determined analytically; it is simply 1

I−1 for any (ω,∆ω).
As in this previous work, an operational resolution limit can be specified as the

spatial frequency at which the SSNR falls below an acceptable baseline. Alterna-
tively, we may also assess the quality of our 3D reconstruction by comparing the
ISSNR curves for the two modalities: X (data=signal+noise) and N (noise only).

2.3 Volumetric Spectral Signal-to-Noise Ratio

The 3D distribution of the SNR in the frequency space is strongly dependent on
the angular distribution and might not be radially symmetric. An even angular
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distribution is a sufficient condition to guarantee a full coverage of the 3D Fourier
space, although this condition is not necessary (Orlov, 1976). On the other ex-
treme, experimental conditions might force an angular distribution with a strongly
inhomogeneous frequency coverage. For instance, in random conical tilt (Rader-
macher, 1988), there is a region in Fourier space (missing cone) where no infor-
mation is available. However, although in this region the SNR is zero, it is taken
into account to compute the radial average implied by R∆ω(ω).

Other parameters control the asymmetry of the SNR, like the number of pro-
jections from each direction. If a certain projection direction is more populated
than others, then the resolution in this direction should be larger since more infor-
mation is available.

The previous SSNR formulas can be applied to perform individual SSNR esti-
mations specific to each projection image by simply setting R∆ω(ω) = ω, instead
of an annulus as was done in the previous section. In this way for each input
projection x(i), we can associate an individual SSNR(i) defined as

SSNR(i)
K,L = max







0,
ISSNR(i)

K,L

α(i)
K,L

−1







, (4)

where

ISSNR(i)
K,L =

∣

∣

∣
X̃ (i)

K,L

∣

∣

∣

2

∣

∣

∣
X (i)

K,L− X̃ (i)
K,L

∣

∣

∣

2 ,

α(i)
K,L =

∣

∣

∣
Ñ(i)

K,L

∣

∣

∣

2

∣

∣

∣
N(i)

K,L

∣

∣

∣

2 .

Note that SSNR(i) is a real-valued image defined in Fourier space. The central-
slice theorem (Natterer and Wübbeling, 2001) states that the 2D Fourier transform
of a ray projection of a volume is one of the slices of the 3D Fourier transform of

that volume. We make use of this theorem to fit the set of images
{

SSNR(i); i = 1, ...,N
}

by a real-valued volume in Fourier space, VSSNR(ω). This volume provides an
estimate of the SNR frequency distribution.

For the volumetric interpolation in Fourier space, we approximate the volume
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VSSNR by a finite series expansion of the form

VSSNR(ω) ≈
J

∑
j=1

c jb(ω−ω j), (5)

where ω is the frequency at which this volume is approximated, ω j are fixed
points distributed in a homogeneous grid, b is a basis function, and the c j’s are the
coefficients of the expansion. Following Matej and Lewitt (1995) and Matej and
Lewitt (1996), we use generalized Kaiser-Bessel window functions as the basis
function b distributed over a Body-Centered Cubic grid (BCC). Criteria for the
selection of the blob parameters are given in the Appendix.

We find VSSNR(ω) as the solution of the equation system

VSSNR(ω(i)
K,L) = SSNR(i)

K,L, (6)

where ω(i)
K,L is the frequency in the 3D Fourier space of the sample (K,L) of the

image SSNR(i). This frequency is given by the central-slice theorem.
Due to the huge dimensions of this equation system, we solve it in an iterative

fashion using the Block Algebraic Reconstruction Technique (Herman, 1998a),
where each block is defined by the equations corresponding to the same image
SSNR(i).

Penczek (2002) also proposed the use of this volumetric SSNR although its
computation was restricted to the class of tomographic algorithms that recon-
struct by explicit interpolation in Fourier space. In that work it was shown that
anisotropic low-pass filters could be specifically tailored to the spectral distribu-
tion of the information. It was also proposed to use the 3D inertia matrix in order
to determine the directions of maximal and minimal amount of information. These
techniques are still applicable to our VSSNR(ω) volume.

3 Results

Several experiments were carried out in order to check the validity of our res-
olution measure. Computer simulations in a well-controlled environment were
performed to show the applicability of the SSNR in relevant situations. Then,
the SSNR was tested on experimental electron-microscopy data. In particular, we
used the cryo-negative staining data of GroEL obtained by De Carlo et al. (2002).
This particle was selected because its atomic model is available; therefore, the
quality of the reconstruction can also be established objectively.
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3.1 Computer-Simulated Experiments

Computer-simulated experiments were carried out according to the following scheme:
starting from a known volume called phantom, projection images are simulated.
These images are input to a tomographic algorithm producing a 3D reconstruction.
The quality of this reconstruction is assessed by comparison with the phantom.

The Halobacterium halobium bacteriorhodopsin trimer was taken as phantom
from the Macromolecular Structure Database (Protein Quaternary Structure query,
PQS, Boutselakis et al. (2003)) (PQS entry: 1BRD, Henderson et al. (1986)).
ART+blobs (Marabini et al., 1998) was used as reconstruction algorithm. The
3-fold symmetry of the bacteriorhodopsin was not explicitly used during the re-
construction.

The computation of the FSC is performed by direct comparison of the phantom
with the reconstruction. Since the ideal volume is available, this comparison is no
longer a reproducibility measure but a true resolution estimation. From now on,
we will refer to this measure as Reference FSC (FSCref). Furthermore, there is
no need to split the experimental image set in two halves. The FSC between two
independent reconstructions is referred to in this paper as FSC.

The sampling rate in Fourier space for all the simulated experiments was
0.005Å−1. The width ∆ω of the annulus R∆ω(ω) was taken as 0.020Å−1.

Resolution Estimation

In this experiment, we test the ability of SSNR to establish the resolution of a
reconstruction. A nearly even angular distribution with 1,000 images (see Fig. 1)
was simulated. White Gaussian noise was added to the ideal projection images
to achieve an average SNR of approximately 1/3. The corresponding SSNR, FSC
and FSCref are represented in Fig. 2. Note that the magnitude of the FSC is
substantially below that of the FSCref. The resolution at SNR=1 as computed
by SSNR is 1/25Å−1. This frequency implies a threshold of 0.75 in the FSCref
and 0.38 in the FSC. Common thresholds for the FSC are 0.5 which is known
to be conservative, and 0.3 which is currently the most used. The resolution at
a FSC threshold of 0.5 is 1/31Å−1 and at a threshold of 0.3 is 1/22Å−1. These
resolutions are achieved by the SSNR curve at thresholds 1.82(>1) and 0.63(<1).
These SSNR thresholds are in agreement with the fact that the FSC threshold 0.5
is conservative, although 0.3 seems to be a little bit optimistic.

We performed the same reconstruction using Weighted Back-Projection (WBP,
Radermacher (1992)). The estimated resolution using SSNR at SNR=1 was 1/25Å−1.
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At this frequency, the values of FSCref and FSC were 0.81 and 0.42, respectively.
The resolution estimate for the cutoff value FSC=0.5 was 1/28.6Å−1. The thresh-
old limit FSCref=0.75 yields the value 1/22Å−1. In both cases, the resolutions
estimated by the SSNR and the FSC seem to be an underestimation of the resolu-
tion computed by the FSCref.

Variability of SSNR

Our resolution measure uses an estimate of the attenuation factor at each fre-
quency. This attenuation is established by injecting white Gaussian noise into the
reconstruction algorithm while keeping the remaining parameters (angular distri-
bution, reconstruction free parameters, ...) the same. It is interesting to know
whether this attenuation is reliably estimated. In this experiment, we compute the
attenuation factor α(ω,∆ω) for the previous experiment after injecting different
noise realizations. Fig. 3 shows the plot of α(ω,∆ω) versus frequency for ten
different noise realizations.

Simulations with Geometrical Errors

Although image noise is one of the error sources in single particle EM, it is not
the most limiting factor since its effect can be easily removed by the incorporation
of more images into the reconstruction process. Geometrical errors coming from
uncertainties in the projection direction and position of the image center severely
affect the achievable resolution (Penczek et al., 1994). In this experiment, projec-
tion images are computed according to the even angular distribution shown in Fig.
1. However, we supply the reconstruction algorithm with noisy angular informa-
tion. In particular, we add Gaussian noise with zero mean and a standard deviation
of 5◦ to the Euler angles defining the projection directions. The perturbed angu-
lar distribution is shown in Fig. 4. The particle origin is also randomly shifted
horizontally and vertically. The shift in both directions follows a normal distri-
bution with zero mean and a standard deviation of 6.54Å. White Gaussian noise
was added to the ideal projection images to achieve an average SNR of approxi-
mately 1/3. The corresponding SSNR, FSC and FSCref are shown in Fig. 5. The
resolution at SNR=1 as computed by SSNR is 1/42Å−1. The reference resolution
at FSCref=0.75 is 1/38Å−1. Finally, the resolution at FSC=0.5 is 1/38Å−1 and at
FSC=0.3 is 1/34Å−1.
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Simulations with CTF

EM images are subjected to microscope aberrations that also affect the maximum
resolution achievable (Frank, 2002). In this experiment, we consider the effect
of the Contrast Transfer Function (CTF) of the microscope. We have simulated
a CTF with the following parameters: accelerating voltage=200 kV, defocus=-
2.8µm., spherical aberration=2 mm, convergence cone=0.21 mrad (Velázquez-
Muriel et al., 2003) (see Fig. 6). The angular distribution is even (see Fig. 1)
and a SNR of 1/3 was simulated. The corresponding SSNR, FSC and FSCref are
shown in Fig. 7. The resolution at SNR=1 as computed by SSNR is 1/31Å−1. The
reference resolution at FSCref=0.75 is 1/30Å−1. Finally, the resolution at FSC=0.5
is 1/30Å−1 and at FSC=0.3 is 1/29Å−1. The first zero of the CTF is at 1/27Å−1.

Volumetric SSNR

To check the usefulness of the volumetric SSNR, three experiments were carried
out. They all simulate the CTF previously described and the SNR is 1/3. Three
different angular distributions were used: even (Fig. 1), uneven (Fig. 8), and
uneven distribution with a missing cone (Fig. 9). Each distribution has 1,000
different projection directions. The blobs and grid used for the volumetric inter-
polation were those referred to as “standard blob” in Matej and Lewitt (1996). Its
interpolating properties are described by Matej and Lewitt (1996) and Garduño
and Herman (2001). The Appendix provides some guidelines for its use. Isosur-
faces of the resulting volumetric SSNRs are shown in Fig 10. Two isosurfaces
are shown on each graph, one corresponding to SNR=1 and another to SNR=4.
Notice the relationship between the SSNR isosurface shape and the angular dis-
tribution: the even distribution has a nearly isotropic SSNR (i.e., the resolution
achieved in each direction is approximately the same), the uneven distribution
shows larger SSNR in the plane perpendicular to the projection direction more
populated (the resolution in the directions lying in the horizontal plane are larger
than in other directions), and the uneven distribution with a missing cone shows a
region of missing information aligned with the missing cone (very little resolution
is achieved in those directions within the missing cone).

Tomographic experiment

An interesting question is whether this methodology can be applied to the recon-
struction of a few projections. The question is important because it refers to elec-
tron tomography of non-repeatable structures like cells. To test this end, we sim-
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ulated a cross-section slice of an organelle with small proteins inside in arbitrary
positions and orientations (see Fig 11). 120 images were taken in a single-axis
tilt series with tilt angles evenly distributed between -60◦and 60◦. Two iterations
(over the whole data set) of ART+blobs were employed for this reconstruction
with a relaxation factor of 0.2 and 0.1 respectively. The corresponding VSSNR
is shown in Fig. 12. The missing wedge can be seen in the top view. A striking
feature is that the resolution is strongly anisotropic. It has much higher resolution
in the direction of the tilt axis than elsewhere. This is because the reconstructed
volume shows a high level of details at the tilt axis (notice the sharp transition at
the organelle wall). In fact, the sinc-like envelope observed in the side view stems
from the organelle wall. The resolution in a direction perpendicular to the tilt axis
is about 209Å, while the resolution along the tilt axis can be as high as 7Å(the
sampling rate was set to 3.27Å). Of course, this high resolution is only achieved
in the tilt axis. This points out a disadvantage of the VSSNR methodology when
applied to electron tomography: it does not show the local resolution. In fact,
this is a drawback of any Fourier based measure because of the tradeoff between
spatial and frequency resolution (Mallat, 1999).

3.2 Results on Experimental Data

In order to test the applicability of the proposed resolution measure to experimen-
tal electron-microscopy data, the cryo-negative micrographs of GroEL taken by
De Carlo et al. (2002) were used. 2,610 projection images were involved. The
GroEL has two rotational symmetry axis: one of order 7 around the vertical axis
and another one of order 2 around a lateral axis. This implies that every projection
image is identical to other 13 (7× 2− 1) views. Symmetry was explicitly taken
into account during the reconstruction process; thus, 36,540 (2,610×14) images
were used. The reconstruction was performed with ART+blobs (Marabini et al.,
1998) and was based on an angular assignment (Penczek, 2002) with a sampling
step of 3◦. The x-ray model of GroEL available in PDB (Berman et al. (2000),
PDB entry: 1GRL, Braig et al. (1994, 1995)) was used as phantom for the com-
putation of the FSCref. Figure 13 shows the corresponding SSNR, the FSC and
FSCref. The resolution at SNR=1 as computed by SSNR is 1/26Å−1, while the
resolution at FSCref=0.75 is 1/36Å−1. The resolution at a threshold of FSC=0.5
is 1/22Å−1 and at FSC=0.3 is 1/17Å−1. (The sampling rate in Fourier space is
0.004Å−1 and the width ∆ω of the annulus R∆ω(ω) was taken as 0.016Å−1.)
Finally, the volumetric SSNR was computed using the same blobs as for the
computer-simulated experiments. The VSSNR is shown in Fig. 14. The nonuni-
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form distribution of the volumetric SSNR can be explained by the uneven distri-
bution of the tilt angle, see Fig. 15.

4 Discussion

One of the most distinctive features of the proposed method of resolution assess-
ment is that it explicitly takes into account the noise-reduction effect of the re-
construction algorithm. A very natural temptation would be to analytically derive
such noise statistics from a mathematical description of the algorithm. Unfortu-
nately, the chances of success of a deductive approach are extremely slim because
there are far too many parameters involved. In addition, it is often very difficult
for the end user to have a precise description of the algorithm that he/she is using.
What we propose instead, is to perform a noise-only experiment to measure the
performance of the algorithm in a given configuration. This is perhaps the sim-
plest and most universal solution to the problem. It is applicable to any situation
without requiring any knowledge of the inner working of the algorithm which is
considered as a black box and which is assumed to be linear. Its only drawback is
that it requires some more computer runs.

The basis for this method is to check for the consistency between the recon-
structed map and the input data (note that for doing this the volume gray values
must be such that the reprojected images have gray values in the same range as
the experimental images). In this sense, the proposed criterion goes beyond the
standard reproducibility tests which are commonly used in the field. It provides
an objective assessment of the quality of the reconstruction algorithm itself by
looking at the consistency between the result and the input data. Most iterative
reconstruction methods are based on a similar consistency principle. Because the
underlying problem is linear, they typically iterate by refining residues until con-
vergence to a solution that minimizes the difference between the reprojected map
and the input data.

The SSNR has a simple intuitive interpretation. It leads to a very natural
threshold-based definition of the resolution limit. SSNR also provides us with a
fine characterization of the quality of the reconstruction as a function of the radial
frequency. The bottom line is that we will only trust those signal frequency com-
ponents whose energy is above what would have been obtained if the algorithm
was applied to noise only.

The SSNR allows one to use the full set of images to perform the reconstruc-
tion; there is no need to divide the data into two subsets with the subsequent lost
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of resolution.
Even though the computation is performed in 2D, the SSNR is easily inter-

preted in 3D as shown by the volumetric SSNR. In this extension to 3D, the
anisotropy (dependency with the direction) of the angular distribution is explicitly
taken into account so that projection directions with more views have a higher
noise attenuation factor. In this way, the information provided by VSSNR volume
is very helpful to understand the relationship between the angular distribution and
the resolution achieved in each direction. (Some directions might have been better
represented or completely ignored in the projection set.) This results in an uneven
SSNR distribution that is easily detected by our measure. This anisotropy can be
later used to build tailored lowpass filters as proposed by Penczek (2002).

The application of the VSSNR methodology to electron tomography data shows
that it is possible to define a directional resolution measure for this kind of data.
We found the VSSNR (and hence the resolution) to be maximal in the direction
of the tilt axis, which is consistent with what our expectations. In principle, one
would also expect the resolution along this axis to be the highest in the central
region where the projection rays are the densest. Unfortunately, this cannot be as-
sessed from the present spectral analysis since the Fourier transform has no spatial
localization at all. Finding a way to estimate the resolution locally would be ex-
tremely valuable for electron tomography. This is an important open problem
which will undoubtedly require some kind of compromise because of the funda-
mental limits imposed by the uncertainty principle.

In terms of computational effort, the computation of VSSNR amounts for two
extra reconstructions. First, a reconstruction with pure noise under the very same
conditions as the data must be performed. Then, the reconstruction from the ex-
perimental data and the noisy reconstruction are input into Eq. 4 that needs to
perform one projection of each volume for each experimental image at hand. Fi-
nally, the interpolation indicated in Eq. 6 needs be performed.

The experiments showed that the resolution estimates obtained by SSNR are
usually quite comparable to those obtained by FSCref with a threshold of 0.75 and
a FSC threshold between 0.5 and 0.3 (the corresponding estimates are typically
within a distance of 1 Fourier sample.) However, when the FSC is used as a con-
sistency measure, very high FSC values can be expected as the number of projec-
tions taken into account grows (Grigorieff, 2000). The interpretation of these high
values in terms of resolution is more difficult since standard thresholding rules do
not hold and their application can be certainly misleading as shown in the exper-
iment of Section 3.1. Furthermore, a priori knowledge such as molecule surface,
mass, or symmetry, can be explicitly taken into account in current tomographic
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algorithms (Sorzano et al., 2002). This a priori information highly increases the
consistency between two independent reconstructions. These two facts make it
difficult to select a FSC threshold that defines the volume resolution. However,
SSNR still maintains a clear meaning and the threshold can still be stated in terms
of the desired SNR.

The discrepancy between the resolution for GroEL estimated by SSNR (1/26Å−1)
or FSC (1/22Å−1) and the FSCref (1/36Å−1) may be caused by the disagreement
between the particle conformation when it is crystallized and when it is studied as
a single particle. In any case, the previously reported resolution (1/14Å−1) seems
to be an overestimation; although the work’s main purpose wasn’t the achievement
of the highest resolution of GroEL in solution (De Carlo et al., 2002).

5 Conclusions

We extended the use of the 3D spectral signal-to-noise ratio in single-particle
electron microscopy. This measure was already introduced in 3D by Unser et al.
(1996) and was further developed by Penczek (2002). We have generalized the
class of tomographic algorithms to which it can be applied by following a black-
box approach. This generalization easily allows the estimation of the frequency
distribution of the signal-to-noise ratio, a piece of information that is very useful
to structural biologists.
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Appendix: Selection of a Blob for a Series Expansion

Space Series Expansion

We shall study here what is the maximum signal frequency that can be safely
reconstructed by a series expansion on a BCC grid using a particular blob.

A BCC grid can be represented (Herman, 1998b) as the set of points

GBCC =







rBCC = BBCC
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where g is the distance between two consecutive samples on the same axis. Let
f (r),r ∈ R3 be a three-dimensional function and let f̂ (rBCC) represent its sam-
ples on the lattice GBCC. Then the Fourier transform F̂ of f̂ is formed by replicas
of the Fourier transform of f at the points of the reciprocal lattice of GBCC. The
reciprocal lattice of a BCC grid is a Face Centered Cubic grid (FCC) given by

GFCC =
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Note that BFCC = B−T
BCC. The smallest distance between two replicas in the

reciprocal grid is
√

6/g.
The samples f̂ are convolved with the blob function to build an approximation

of the function to be reconstructed. Blobs are radial functions that are compactly
supported and, therefore, infinitely extended in the Fourier domain. The Kaiser-
Bessel window function (Kaiser, 1966), which is an approximation (van De Ville
et al., 2002) of the zero-th order spheroidal wave function (Slepian and Pollak,
1961), has the property of maximally compacting the energy in Fourier space.
For this reason, they can be thought of as “practically band-limited”. Let us call
ωbmax the “effective” bandwidth of the blob function and ωmax the bandwidth of
the signal f . Since the distance between two consecutive samples in the reciprocal
space is

√
6/g then, in order to have an “effective” alias-free sampling, it must

hold that ωbmax <
√

6/g−ωmax.
In the particular case of using “standard blobs” (Matej and Lewitt, 1996), g =√

2Ts where Ts is the sampling rate of the images expressed in Å per pixel. For this
blob we select ωbmax = 1/Ts since above this frequency, the signal is attenuated

more than 70dB; therefore, ωmax <
√

3−1
Ts

. This means that we cannot recover
signals with details smaller than 1.37 Ts without aliasing.
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Fourier series expansion

Following a similar reasoning, if we sample the Fourier space using blobs on a
BCC grid, then Tmax <

√
6

G − Tbmax must hold. In the previous formula Tmax
is the maximum size of the particle being studied, G is the distance between two
consecutive blobs in the same axis (this time in Fourier space), and Tbmax is the
maximum size of the inverse Fourier transform of a blob located in the Fourier
origin.

If we particularize for “standard blobs” then G =
√

2TsF where TsF is the sam-
pling rate in Fourier space. (For simplicity we assume that the sampling rate is the
same in all directions.) On the other hand, TsF = 1/Ta where Ta is the space avail-
able for the volume, i.e., Ta = XdimTs where Ts is the sampling rate in the image
space in Å per pixel and Xdim is the length in voxel units of the volume available
to represent the particle at hand. Under these conditions Tmax < Ta(

√
3− 1), or

what is the same, the particle diameter should not exceed the 74% of the available
length in any of the directions.

References

Baumeister, W., Steven, A., 2000. Macromolecular electron microscopy in the era
of structural genomics. Trends in Biochem. Sci. 25, 624–631.

Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H.,
Shindyalov, I., Bourne, P., 2000. The protein data bank. Nucleic Acids Research
28, 235–242.

Boutselakis, H., Dimitropoulos, D., Fillon, J., Golovin, A., Henrick, K., Hussain,
A., Ionides, J., John, M., Keller, P. A., Krissinel, E., McNeil, P., Naim, A., New-
man, R., Oldfield, T., Pineda, J., Rachedi, A., Copeland, J., Sitnov, A., Sobhany,
S., Suarez-Uruena, A., Swaminathan, J., Tagari, M., Tate, J., Tromm, S., Ve-
lankar, S., Vranken, W., 2003. E-MSD: The european bioinformatics institute
macromolecular structure database. Nucleic Acids Research 31, 458–462.

Braig, K., Adams, P. D., Brunger, A. T., 1995. Conformational variability in the
refined structure of the chaperonin GroEL at 2.8 Å resolution. Nature Struc-
tural Biology 2, 1083–1094.

Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich,

17



A. L., Sigler, P. B., 1994. The crystal structure of the bacterial chaperonin
GroEL at 2.8Å. Nature 371, 578–86.

Conway, J. F., Trus, B. L., Booy, F. P., Newcomb, W. W., Brown, J. C., Steven,
A. C., 1993. The effects of radiation damage on the structure of frozen hydrated
hsv-1 capsids. J. Structural Biology 111, 222–233.

De Carlo, S., El-Bez, C., Alvarez-Rúa, C., Borge, J., Dubochet, J., 2002. Cryo-
Negative staining reduces electron-beam sensitivity of vitrified biological par-
ticles. J. Structural Biology 138, 216–226.

Ellis, M., Hebert, H., 2001. Structure analysis of soluble proteins using electron
crystallography. Micron 32, 541–550.

Frank, J., 2002. Single-Particle imaging of macromolecules by cryo-electron mi-
croscopy. Annual Review of Biophysics & Biomolecular Structure 31, 303–
319.

Garduño, E., Herman, G. T., 2001. Optimization of basis functions for both recon-
struction and visualization. In: Sébastien Fourey, G. T. H., Kong, T. Y. (Eds.),
Electronic Notes in Theoretical Computer Science. Vol. 46. Elsevier Science
Publishers.

Grigorieff, N., 2000. Resolution measurement in structures derived from single
particles. Acta Crystallographica section D 56, 1270–1277.

Harauz, G., van Heel, M., 1986. Exact filters for general geometry three dimen-
sional reconstruction. Optik 73, 146–156.

Henderson, R., 1995. The potential and limitations of neutrons, electrons and
x-rays for atomic resolution microscopy of unstained biological molecules. J.
Molecular Biology 247, 726–738.

Henderson, R., Baldwin, J. M., Downing, K., Lepault, J., Zemlin, F., 1986.
Structure of purple membrane from Halobacterium halobium: Recording, mea-
surement and evaluation of electron micrographs at 3.5 Å resolution. Ultrami-
croscopy 19, 147–178.

Herman, G. T., 1998a. Algebraic reconstruction techniques in medical imaging.
In: Leondes, C. T. (Ed.), Medical Imaging, Systems Techniques and Applica-
tions. Vol. 6: Computational Techniques. Gordon and Breach Science Publish-
ers, Amsterdam, pp. 1–42.

18



Herman, G. T., 1998b. Geometry of Digital Spaces. Birkhauser, Boston.

Kaiser, J. F., 1966. Digital filters. In: Kuo, F. F., Kaiser, J. F. (Eds.), System
analysis by digital computers. John Wiley, pp. 218–285.

Kessel, M., Radermacher, M., Frank, J., 1985. The structure of the stalk layer of
a brine pond microorganism: correlation averaging applied to a double layered
structure. J. Microscopy 139, 63–74.

Mallat, S., 1999. A wavelet tour of signal processing. Academic Press.

Marabini, R., Herman, G. T., Carazo, J. M., 1998. 3D reconstruction in electron
microscopy using ART with smooth spherically symmetric volume elements
(blobs). Ultramicroscopy 72, 53–65.

Marabini, R., Masegosa, I. M., San Martín, M. C., Marco, S., Fernández, J. J.,
de la Fraga, L. G., Vaquerizo, C., Carazo, J. M., 1996. Xmipp: An image pro-
cessing package for electron microscopy. J. Structural Biology 116, 237–240.

Matej, S., Lewitt, R. M., 1995. Efficient 3D grids for image reconstruction us-
ing spherically-symmetric volume elements. IEEE Trans. Nuclear Science 42,
1361–1370.

Matej, S., Lewitt, R. M., 1996. Practical considerations for 3-D image recon-
struction using spherically symmetric volume elements. IEEE Trans. Medical
Imaging 15, 68–78.

Natterer, F., Wübbeling, F., 2001. Mathematical methods in image reconstruction.
SIAM, Philadelphia.

Orlov, S., 1976. Theory of three-dimensional reconstruction. Conditions for a
complete set of projections. Sov. Phys. Crystallogr. 20, 312–314.

Penczek, P., 2002. Three-dimensional spectral signal-to-noise ratio for a class of
reconstruction algorithms. J. Structural Biology 138, 34–46.

Penczek, P. A., Grasucci, R. A., Frank, J., 1994. The ribosome at improved res-
olution: New techniques for merging and orientation refinement in 3D cryo-
electron microscopy of biological particles. Ultramicroscopy 53, 251–270.

Penzcek, P., 1998. Appendix: measures of resolution using Fourier shell correla-
tion. J. Molecular Biology 280, 115–116.

19



Rade, L., Westergeren, B., 1999. Mathematics handbook for science and engi-
neering, 4th Edition. Springer-Verlag, Berlin.

Radermacher, M., 1988. Three-Dimensional reconstruction of single particles
from random and nonrandom tilt series. J. Electron Microscopy Technique 9,
359–394.

Radermacher, M., 1992. Weighted back-projection methods. In: Frank, J. (Ed.),
Electron Tomography. Plenum, pp. 91–115.

Rosenthal, P. B., Henderson, R., 2003. Optimal determination of particle
orientation, absolute hand, and contrast loss in single particle electron-
cryomicroscopy. J. Molecular Biology 333, 721–745.

Ruprecht, J., Nield, J., 2001. Determining the structure of biological macro-
molecules by transmission electron microscopy, single particle analysis and 3D
reconstruction. Progress in Biophysics & Molecular Biology 75, 121–164.

Sali, A., Glaeser, R., Earnest, T., Baumeister, W., 2003. From words to literature
in structural proteomics. Nature 422, 216–225.

Saxton, W. O., Baumeister, W., 1982. The correlation averaging of a regularly
arranged bacterial envelope protein. J. Microsc. 127, 127–138.

Slepian, D., Pollak, H. O., 1961. Prolate spheroidal wave functions, Fourier anal-
ysis and uncertainty, I. Bell Systems Tech. J. 40, 43–64.

Sorzano, C. O. S., Marabini, R., Herman, G. T., Carazo, J. M., 2002. Volumetric
constraints in 3D tomography applied to electron microscopy. In: Proc. of the
1st International Symposium on Biomedical Imaging. Washington, USA, pp.
641–644.

Unser, M., Trus, B., Steven, A., 1987. A new resolution criterion based on spectral
signal-to-noise ratio. Ultramicroscopy 23, 39–52.

Unser, M., Vrhel, M. J., Conway, J. F., Gross, M., Thévenaz, P., Steven, A. C.,
Trus, B. L., 1996. Resolution assessment of 3D reconstructions by spectral
signal-to-noise ratio. In: Proc. of the 11th European Congress on Microscopy
(EUREM’96). Dublin, Eire, pp. 260–261.

20



van De Ville, D., Philips, W., Lemahieu, I., 2002. On the n-dimensional extension
of the discrete prolate spheroidal window. IEEE Signal Processing Letters 9,
89–91.

van Heel, M., 1987. Similarity measures between images. Ultramicroscopy 21,
95–100.

van Heel, M., Hollenberg, J., 1980. The stretching of distorted images of two-
dimensional crystals. In: Baumeister, W. (Ed.), Electron Microscopy at Molec-
ular Dimensions. Springer, Berlin, pp. 256–260.

Velázquez-Muriel, J. A., Sorzano, C. O. S., Fernández, J. J., Carazo, J. M., 2003.
A method for estimating the CTF in electron microscopy based on ARMA mod-
els and parameter adjusting. Ultramicroscopy 96, 17–35.

21



Figure 1: Nearly even angular distribution. A small triangle is placed at the tip of
the unit vectors representing each projection direction. The in-plane rotation angle
is represented by the relative rotation of each triangle. The separation between
projections for this distribution is approximately 6◦.
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Figure 2: SSNR (top), FSC and FSCref (bottom) of the reconstruction of the bac-
teriorhodopsin from simulated data with an even angular distribution. The SSNR
is also shown in logarithmic scale (dB) according to the formula SSNR(dB) =
10log10(SSNR).
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Figure 3: Different realizations of the attenuation factor for the angular distribu-
tion of Fig. 1.
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Figure 4: Even angular distribution perturbed by angular noise. A random number
(normally distributed with zero mean and standard deviation 5◦) is added to each
of the three Euler angles describing the projection directions in Fig. 1.
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Figure 5: SSNR (top), FSC and FSCref (bottom) of the reconstruction of the
bacteriorhodopsin from simulated data with a perturbed angular distribution.
The SSNR is also shown in logarithmic scale (dB) according to the formula
SSNR(dB) = 10log10(SSNR).
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Figure 6: Radial profile of the Contrast Transfer Function used for computer sim-
ulations.
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Figure 7: SSNR (top), FSC and FSCref (bottom) of the reconstruction of the bac-
teriorhodopsin from simulated data with an even angular distribution when the
microscope aberrations are simulated. The SSNR is also shown in logarithmic
scale (dB) according to the formula SSNR(dB) = 10log10(SSNR).
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Figure 8: Uneven angular distribution. Projections are randomly distributed on
the projection space although top views are more frequent than lateral ones.

Figure 9: Uneven distribution with a missing cone. Projections are distributed
randomly on the projection space. Top views are more frequent and no projection
is taken with a tilt angle greater than 45◦.
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Figure 10: Top and side view of the volumetric SSNR for the reconstruction of
bacteriorhodopsin from simulated data using an even (top), an uneven (middle),
and an uneven distribution with a missing cone (bottom). The mesh corresponds
to the isosurface of SSNR=1. The solid isosurface corresponds to a SSNR=4.
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Figure 11: Top: Isosurface of a phantom simulating a cross-section of an organelle
with a set of proteins at random orientations. Bottom: Tomographic reconstruc-
tion of the phantom at two different orientations. On the right image it can be
seen that the organelle wall is very well defined along the tilt axis (vertical axis
of this image) while there is a huge uncertainty along the perpendicular direction
(horizontal axis of this image).

31



Figure 12: Top and side view of the volumetric SSNR for the tomographic recon-
structions. The isosurface correspond to a SSNR=1.
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Figure 13: SSNR (top), FSC and FSCref (bottom) of the reconstruction of GroEL
using experimental cryo-microscopy data when compared with the x-ray model
of GroEL. The SSNR is also shown in logarithmic scale (dB) according to the
formula SSNR(dB) = 10log10(SSNR).
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Figure 14: Top and side view of the volumetric SSNR for the reconstruction of
GroEL using experimental cryo-microscopy data. The mesh corresponds to the
isosurface of SSNR=1. The solid isosurface correspods to a SSNR=4.

Figure 15: Histogram of the tilt angle of the 2,160 GroEL experimental images.
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