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Abstract

The central theme of this pair of papers is self-similarity which is used as a bridge for connecting

splines and fractals. The first part of the investigation is deterministic and the context is that of L-splines;

these are defined in the following terms: s(t) is a cardinal L-spline iff L{s(t)} =
∑

k∈Z a[k]δ(t−k) where

L is a suitable pseudo-differential operator. Our starting point for the construction of “self-similar” splines

is the identification of the class of differential operators L that are both translation- and scale-invariant.

This results into a two-parameter family of generalized fractional derivatives, ∂γ
τ , where γ is the order of

the derivative and τ is an additional phase factor. We specify the corresponding L-splines, which yield an

extended class of fractional splines. The operator ∂γ
τ is used to define a scale-invariant energy measure—

the squared L2-norm of the γth derivative of the signal—which provides a regularization functional for

interpolating or fitting the noisy samples of a signal. We prove that the corresponding variational (or

smoothing) spline estimator is a cardinal fractional spline of order 2γ, which admits a stable representation

in a B-spline basis. We characterize the equivalent frequency response of the estimator and show that it

closely matches that of a classical Butterworth filter of order 2γ. We also establish a formal link between

the regularization parameter λ and the cutoff frequency of the smoothing spline filter: ω0 ≈ λ−2γ . Finally,

we present an efficient computational solution to the fractional smoothing spline problem: it uses the Fast

Fourier transform and takes advantage of the multiresolution properties of the underlying basis functions.

Index Terms

fractals, self-similarity, fractional derivatives, fractional splines, interpolation, smoothing splines,

Tikhonov regularization

I. INTRODUCTION

The concept of self-similarity is intimately linked to fractals [1]. It is a property that often results in a

complex, highly irregular appearance, even though fractal patterns are typically constructed using simple

generative rules. The classical man-made fractals, such as von Koch’s snow-flake or Sierpinski’s triangle,

are deterministic and literally self-similar in the sense that the whole is made up of smaller copies of

itself. Nature is providing many examples of non-deterministic fractals that are self-similar in a statistical

sense over a wide range of scales [1], [2]. Fractional Brownian motion (fBm) is a prime example of a

stochastic process that is statistically self-similar [3]. fBms are used to model phenomena in a variety of

disciplines, including communications and signal processing [4].

An important property of fBm and related processes is that they can be easily transformed into

stationary processes via the application of simple differential operators—such as finite differences [5], [6],
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derivatives [7], or even a wavelet transform [8]—or, alternatively, via Lamperti’s transformation [9]. This

has important practical repercussions, for it greatly simplifies their analysis. In recent years, wavelets

have emerged as the preferred tool for analyzing fractal-like processes [10]–[12]. The approach was

pioneered by Flandrin who proved that the wavelet transform would decompose a fBm-like process into

stationary components that are essentially decorrelated [8]. There is an earlier, closely related result by

Wornell that states that the wavelet transform is a good approximation of the Karhunen-Loève transform

for the class of stationary processes with near 1/ω behavior [13]. Interestingly, Mallat’s landmark paper

on wavelets also contains an early application of wavelets to the estimation of the fractal dimension

of a signal [14]. The link between fractals and wavelets is very strong and is further supported by the

following remarkable wavelet properties:

• A wavelet analysis is equivalent to a multi-scale differentiation [15]. This implies that the wavelet

coefficients of a fBm at a given scale define a discrete-time stationary process.

• The structure of the decomposition is self-similar by construction: the basis functions are dilated

versions of each other [14].

• The basis functions themselves are fractals [16].

For an in-depth coverage of the notion of self-similarity within the context of wavelets and refinement

equations, we refer to the monograph of Cabrelli et al. [17].

The above results implicitly suggest that there should also be a connection with splines because of the

essential role these play in wavelet theory. Indeed, any scaling function (or wavelet) can be written as

the convolution of a polynomial B-spline and a singular distribution, with the spline component being

responsible for all important mathematical properties: vanishing moments, multi-scale differentiation

property, order of approximation and regularity [18]. Another relevant fact is that Schoenberg’s classical

polynomial splines [19] are made up of self-similar building blocks [16]: the one-sided power functions

tn+ = max(0, t)n, which are elementary fractals1.

The notion of splines, however, need not be restricted to piecewise polynomial functions. More

generally, we view them as a mathematical framework for linking the continuous and the discrete [20],

[21]. This idea can be made explicit by defining generalized cardinal L-splines for which the continuous-

time operator L plays the role of a mathematical analog-to-discrete converter (cf. Section II). We believe

that this more abstract, operator-based formulation is the key to gaining a deeper understanding of these

entities. It also suggests a deductive paradigm by which splines can be constructed starting from first

1The function f(t) = tn
+ is homogeneous with respect to dilation in the sense that there exists λ ∈ R s. t. f(t/a) = λ · f(t).
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principles; i.e., the specification of a class of differential operators L with some relevant invariance

properties.

Our purpose in this pair of papers is to demonstrate this approach by focusing on the important

case where the spline-defining operator is scale-invariant. As in the case of fractals, there are two

complementary aspects to the problem—deterministic and stochastic—which are treated in Part I and Part

II, respectively. The second part, in particular, will focus on the minimum mean square error (MMSE)

estimation of fractal-like processes which calls for a specialized mathematical treatment; this will allow

us to establish a fundamental connection between the fractional splines, which will be identified in the

first part, and fBms.

The present paper, whose context is purely deterministic, is organized as follows. In Section II, we

set the stage by re-interpreting the elementary example of a piecewise constant function as a D-spline

where D is the derivative operator. We then define cardinal L-splines in the general shift-invariant setting

and briefly review their main deterministic properties. In the process, we also propose a new, extended

smoothing spline estimator that minimizes a quadratic, convolution-weighted error criterion (data term)

subject to a regularization constraint that favors solutions with small “spline energies”. The important

practical point is that the general solution of this problem is a L∗L-spline whose B-spline coefficients

can be determined by suitable filtering of the noisy discrete input signal. In Section III, we turn our

attention to spline-defining operators L that are self-similar. We prove that this class reduces to fractional

derivatives of order γ, which leads to the identification of a corresponding two-parameter family of

fractional splines, extending an earlier construction of ours [22]. We also characterize the non-local

effect of our extended fractional derivatives for Schwartz’s class of rapidly decreasing functions. In

Section IV, we specify the corresponding fractional smoothing spline estimators and characterize their

equivalent frequency response. We then present an efficient FFT-based computational solution, which

takes advantage of the multiresolution properties of the underlying basis functions. We conclude this first

part with a brief discussion of the “scale-invariance” properties of the various fractional spline estimators

that can be specified within the proposed variational framework.

II. GENERALIZED SPLINES

The purpose of this section is to present a generalized notion of splines that is associated with a

particular class of differential operators L. We start with a simple introductory example that explains the

key ideas behind this type of construction. We then proceed with a general characterization of cardinal
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L-splines along the lines of [23]. We recall their key properties and introduce an extended convolution-

weighted smoothing spline algorithm for fitting discrete signal samples corrupted by noise.

A. Introductory example: D-splines or piecewise-constant functions

Let D = d
dt denote the first order derivative operator. A piecewise constant spline can be formally

viewed as a function s(t) whose derivative is a weighted stream of Dirac distributions,

Ds(t) =
∑
k∈Z

akδ(t− tk)

where the tk’s encode the locations of the spline discontinuities (or knots). In this paper, we concentrate

on the cardinal setting where the knots are on the integers (i.e., tk = k) and write a[k] = ak to signify

that the differentiated cardinal spline Ds(t) has the structure of a sampled signal
∑

k∈Z a[k]δ(t − k).

Starting from there, we reconstruct the spline by applying the inverse operator D−1, which amounts to

an integration. Thus, by using the well-known fact that D−1{δ} = u(t) (the unit step), we obtain the

explicit formula:

s(t) = p0 +
∑
k∈Z

a[k]u(t− k) (1)

where p0 is a suitable integration constant. Eq. (1) clearly indicates that s(t) is piecewise constant with

discontinuities at the integers, or equivalently, a cardinal polynomial spline of degree 0. The important

point to note here is that the basis function generator u(t) is the causal Green function2 of D and that the

additional term p0 (a constant) is a signal that is in the null space of D. In practice, one usually prefers

an equivalent and much simpler representation in terms of shifted B-spline basis functions

s(t) =
∑
k∈Z

c[k]β0
+(t− k) (2)

where β0
+(t) is the B-spline of degree 0 (causal rect function) that can be expressed as

β0
+(t) = ∆+u(t) = u(t)− u(t− 1) (3)

where ∆+ is the causal finite difference operator. By plugging (3) into (2), we can relate the coefficients

of the representations (1) and (2) via the difference equation: a[k] = c[k]− c[k− 1]. Moreover, it is easy

to establish the following B-spline reproduction formulas:∑
k∈Z

β0
+(t− k) = 1

2By definition, ρ(t) is a Green function of the shift-invariant operator L if and only if L{ρ} = δ(t).
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(a) (b)

(c) (d)

s(t) D{s(t)}

u(t) = D−1{δ(t)} β0
+t = u(t)− u(t− 1)

1

s(t) D{s(t)}

u(t) = D−1{δ(t)} β0
+t = u(t)− u(t− 1)

1

s(t) D{s(t)}

u(t) = D−1{δ(t)} β0
+t = u(t)− u(t− 1)

1

s(t) D{s(t)}

u(t) = D−1{δ(t)} β0
+(t) = u(t)− u(t− 1)

1

Fig. 1. Piecewise constant splines. (a) and (b): Interpretration of s(t) as a D-spline. (c) Representation of the step function

(Green function of the operator D) as a weighted sum of B-splines of degree 0. (d) B-spline of degree 0 as the difference of

two step functions.

∑
l∈Z

u(l − k) β0
+(t− l) = u(t− k),

which links the two kinds of basis functions. This whole set of relations is illustrated in Fig. 1. For

computational purposes, representation (2) is obviously much more attractive than (1) because the B-

spline basis functions are localized as opposed to the ones in (1), which are infinitely supported and non-

decreasing. In addition, the piecewise-constant basis functions {β0
+(t− k)}k∈Z are orthogonal which has

many advantages; stability being not the least. The “magical” trick that allowed us to switch from the badly

conditioned basis functions in (1) to the much nicer ones in (2) is contained in the localization formula

β0
+(t) = ∆+u(t) where u(t) = D−1{δ}. In essence, we are using digital means—the finite difference

operator ∆+—to approximately undo the effect of the integrator that is applied to δ. In other words, the

B-spline β0
+(t) may be thought of as some kind of approximation of the Dirac impulse within the space

of cardinal piecewise constant splines, or equivalently, the space that is spanned by the integer shifts of

the Green function of D. While this way of describing the construction of piecewise-constant functions

may seem contrived and much more complicated than necessary, it is extremely fruitful conceptually

because it lends itself naturally to generalization. Basically, we will now replace the derivative operator
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D by some pseudo-differential operator L and apply the exact same recipe to define an extended family

of generalized splines.

B. Spline-admissible operators

Following [23], we introduce the notion of “spline-admissible” operator of order r.

Definition 1: L is a spline-admissible operator of order r > 1
2 if and only if

1) L is a linear, shift-invariant operator with a frequency response L̂(ω) such that∑
n∈Z

|ω + 2nπ|2s

1 + |L̂(ω + 2nπ)|2
≤ Cs < +∞ (4)

for all positive real s < r − 1/2.

2) L has a well-defined inverse L−1 (not necessarily unique) whose impulse response ρ(t) ∈ S ′ is

a function of slow growth included in Schwartz’s class of tempered distributions. Thus, L admits

ρ(t) as Green function: L{ρ} = δ(t).

3) There exists a corresponding spline-generating function β(t) = ∆L{ρ(t)} :=
∑

k∈Z d[k]ρ(t −

k) (generalized B-spline) that is sufficiently localized for supt∈[0,1)

∑
k∈Z |β(t − k)| < +∞. In

particular, this implies that β(t) ∈ Lp for all 1 ≤ p ≤ ∞ and that its integer samples are in `1.

4) The localization operator ∆L in 3) is a stable digital filter in the sense that d ∈ `1.

5) The functions {β(t− k)}k∈Z form an Lp-stable Riesz basis. Specifically, the following two condi-

tions must be satisfied for all 1 ≤ p ≤ ∞:

inf
‖c‖`p=1

∥∥∥∑
k∈Z

c[k]β(t− k)
∥∥∥

Lp

> 0 and sup
‖c‖`p=1

∥∥∥∑
k∈Z

c[k]β(t− k)
∥∥∥

Lp

<∞.

Conditions 1) to 4) are quite explicit and not too difficult to check in practice. Condition 1) signifies that

L has qualitatively the same behavior as a derivative of order r [23]. One usually has some latitude for

the choice of the localization operator ∆L: in essence, it is a digital filter that should be designed such

that its frequency response ∆L(ejω) =
∑

k∈Z d[k]e
−jωk closely matches the behavior of L̂(ω), especially

around the frequencies where L is singular. Indeed, we want the Fourier transform of our generalized

B-spline,

β̂(ω) :=
∫ +∞

−∞
β(t)e−jωtdt =

∆L(ejω)
L̂(ω)

, (5)

to be close to one over a reasonable frequency range (remember: our goal is to approximate δ) and have

the largest possible degree of differentiation (ideally, β ∈ C∞) to ensure that β has fast decay (ideally,

compact support). The absolute summability condition in 3) is required for technical purposes and is

automatically satisfied when β(t) is bounded and compactly supported, which will often be the case when
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∆L is properly chosen. Condition 5) is less direct and typically needs to be checked on a case-by-case

basis. In fact, because of the summability requirement in 3), it is sufficient to satisfy the standard Riesz

basis condition [24]. Specifically, one needs to prove that the L2-Riesz bounds infω∈[0,2π)

√
AL(ejω) and

supω∈[0,2π)

√
AL(ejω) are strictly positive and finite, where

AL(ejω) =
∑
n∈Z

|β̂(ω + 2πn)|2 (6)

C. Cardinal L-splines

Having specified the properties of a spline-admissible operator L, we now proceed with the specification

of the corresponding family of cardinal spline functions.

Definition 2: The continuous-time function s(t), t ∈ R, is a cardinal L-spline if and only if

Ls(t) =
∑
k∈Z

a[k]δ(t− k) (7)

with a[k] ∈ `∞.

Now, if L is spline-admissible with generator β(t), we can readily define the corresponding generalized

spline subspace of Lp with 1 ≤ p ≤ ∞

Vp(β) =

{
s(t) =

∑
k∈Z

c[k]β(t− k) : c[k] ∈ `p

}
(8)

and we have the guarantee that each spline in Vp(β) is uniquely characterized by its B-spline coefficients

c[k]. Moreover, the expansion coefficients in (7) are given by a[k] = (d ∗ c)[k] where d is the digital

filter representation of the localization operator; i.e., ∆L{δ(t)} =
∑

k∈Z d[k]δ(t− k).

To illustrate the method, we now consider a slightly more general version of our introductory example

with L = Dn+1. The causal Green function of Dn+1 is the one-sided power function tn
+

n! (the impulse

response of the (n + 1)-fold integrator) with t+ = max(0, t). The frequency response of the (n + 1)th

order differentiator is (jω)n+1 and one easily checks that its smoothness order (as specified in (4)) is

(n+1) as well. The classical discrete version of this operator is the (n+1)th order finite difference ∆n+1
+

whose frequency response is (1− e−jω)n+1. By applying this localization operator to the Green function

of Dn+1, we obtain Schoenberg’s classical formula for the B-spline of degree n: βn
+(t) = ∆n+1

+ tn
+

n! . The

last step is to make sure that this B-spline generates a stable Riesz basis, which is indeed the case [22],

[25]. From the above, we immediately deduce that the underlying Dn+1-splines are in fact equivalent to

the classical polynomial ones, which have the following key properties:

1) They are polynomials of degree n within each interval [k, k+1); this becomes more apparent if we

consider their representation in terms of shifted one-sided power functions: s(t) =
∑

k∈Z a[k]
(t−k)n

+

n! .
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2) They are (n−1) times continuously differentiable; this follows from the property that the (n−1)th

derivative of each of the basic Green atoms is a continuous piecewise-linear function: Dn−1
{

(t−k)n
+

n!

}
=

(t− k)+.

3) They have a stable representation in the cardinal B-spline basis {βn
+(t− k)}k∈Z.

D. Variational splines and best interpolants

The spline-defining operator L can also be used to measure the “spline energy” of a function f(t):

‖Lf‖2
L2

. This quantity is well defined as long as f ∈ WL
2 where WL

2 denotes the generalized Sobolev

space associated with the operator L [23]. In the sequel, we will use this spline energy as a regularization

term to constrain and specify some general data fitting problems.

It turns out that this spline energy naturally leads to the definition of a corresponding L∗L-spline that

is optimal in a well-defined variational sense. If L is spline-admissible of order r > 1
2 with generator

β, then we can prove the following important properties for the corresponding class of L∗L-splines (cf.

[23])

1) The operator L∗L is guaranteed to be spline admissible of order r′ ≥ 2r − 1/2 with symmetric

generator ϕ(t) = β(t) ∗ β(−t).

2) Any given discrete signal f [k] ∈ `p has a unique, well-defined L∗L-spline interpolant in Vp(ϕ) as

specified in (8).

3) For any function f ∈ WL
2 , the spline energy can be decomposed as

‖Lf‖2
L2

= ‖Lsint‖2
L2

+ ‖L{f − sint}‖2
L2

(9)

where sint(t) is the unique L∗L-spline that interpolates f(t); i.e., f(k) = sint(k),∀k ∈ Z.

A first, direct practical implication of these properties is the following key result which yields an

“optimal” procedure for interpolating a discrete signal, together with a simple digital filtering algorithm.

Theorem 1: Let f [k] ∈ `2 be a discrete input signal and L be a spline-admissible operator of order

r > 1
2 with generator β(t). Among all possible interpolating functions f(t) ∈ WL

2 , the optimal one that

minimizes ‖Lf‖L2 , subject to the interpolation constraint f(t)|t=k = f [k], is the L∗L-spline interpolant

sint(t) =
∑
k∈Z

(hint ∗ f)[k]ϕ(t− k)

where ϕ(t) = β(t) ∗ β(−t) and where hint ∈ `1 is the impulse response of a BIBO stable filter whose

frequency response is

Hint(ejω) =
1∑

k∈Z ϕ(k)e−jωk
=

1
AL(ejω)

(10)
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where AL(ejω) is defined by (6). The proof of these results can be found in [23]. Note that the denominator

of (10) is non-vanishing because of the Riesz basis condition. An important special case is L = D2, which

leads to the classical result that the cubic spline interpolant (with L∗L = D4) is the minimum curvature

solution for it minimizes the energy of the second derivative.

E. Generalized smoothing splines

When the input data {y[k] = f(k) + n[k]}k∈Z is corrupted by discrete noise (n), it may be counter-

productive to determine its exact spline fit. Instead, one should rather seek a solution that is close to

the data but has some inherent smoothness to counterbalance the effect of the noise. To this end, one

usually specifies a regularized version of the interpolation problem that involves a compromise between

a data term—the quadratic fitting error—and a regularization term ‖Lf‖2
L2

that limits the spline energy

of the solution which is then called a smoothing spline [26], [27] . The relative weight between the two

components of the criterion is adjusted by means of a regularization factor λ > 0. Here, we consider an

extension of the standard smoothing spline algorithm where the fitting error is weighted in the frequency

domain, which corresponds to the convolution with a discrete weighting filter v in the data domain. A

remarkable result is that the solution of this approximation problem, among all possible continuous-time

functions s(t), is a cardinal L∗L-spline and that it can be determined by digital filtering.

Before stating our result, we set our class of admissible weighting filters to those satisfying |V (ejω)| <

+∞ for almost every ω ∈ [0, 2π]. This ensures that (v ∗ y)[k] is square summable whenever y[k] ∈ `2

(as a consequence of Parseval’s relation).

Theorem 2: Let L be a spline-admissible operator of regularity r > 1
2 with spline generator β(t) such

that L{β(t)} = ∆L{δ(t)} =
∑

k∈Z d[k]δ(t − k) with d ∈ `1. Then, the continuous-time solution of the

variational problem with discrete input data y[k] ∈ `2, admissible weighting filter v[k], and regularization

parameter λ ≥ 0

min
s(t)∈L2

∑
k∈Z

[v[k] ∗ (y[k]− s(k))]2 + λ‖Ls‖2
L2
,

is the cardinal L∗L-spline that is specified by

s(t) =
∑
k∈Z

(h ∗ y)[k]ϕ(t− k) (11)

where ϕ(t) = β(t) ∗ β(−t) and where h ∈ `2 is the impulse response of the digital smoothing spline

filter whose frequency response is:

H(ejω) =
1

AL(ejω) + λ |∆L(ejω)|2
|V (ejω)|2

(12)
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Proof: A necessary condition for the criterion to be finite is obviously ‖Ls‖2
L2
< +∞. This, together

with the requirement s(t) ∈ L2, implies that the solution is necessarily in WL
2 ⊂ L2 [23]. Thus, we can

use (9) and write the criterion to minimize as

‖v[k] ∗ (y[k]− s(k))‖2
`2︸ ︷︷ ︸

ξ1

+λ ‖L{sint(t)}‖2
L2︸ ︷︷ ︸

ξ2

+λ‖L{s(t)− sint(t)}‖2
L2

where sint(t) is the L∗L-spline interpolator of the sequence s(k) ∈ `2. Note that the underbraced

expressions, ξ1 and ξ2, are entirely specified by the integer samples s(k). Moreover, using Parseval

identity and the fact that ϕ̂(ω) = |∆L(ejω)|2

|L̂(ω)|2
, we find that

ξ1 =
1
2π

∫ 2π

0

∣∣∣V (ejω)
(
Y (ejω)− S(ejω)

)∣∣∣2 dω

ξ2 =
1
2π

∫ ∞

−∞

∣∣∣S(ejω)Hint(ejω)L̂(ω)ϕ̂(ω)
∣∣∣2 dω =

1
2π

∫ ∞

−∞

∣∣∣ S(ejω)
AL(ejω)

∣∣∣2 |∆L(ejω)|4

|L̂(ω)|2
dω

where S(z) =
∑

k∈Z s(k)z
−k and AL(ejω) =

∑
n∈Z ϕ̂(ω + 2πn). The second term is further simplified

to:

ξ2 =
1
2π

∫ ∞

−∞

∣∣∣S(ejω)∆L(ejω)
AL(ejω)

∣∣∣2ϕ̂(ω) dω

=
1
2π

∫ 2π

0

∣∣∣S(ejω)∆L(ejω)
AL(ejω)

∣∣∣2∑
n∈Z

ϕ̂(ω + 2πn) dω

=
1
2π

∫ 2π

0

|∆L(ejω)S(ejω)|2

AL(ejω)
dω

Combining the above expressions, we rewrite the criterion to minimize as

ξ1 + λξ2 =
1
2π

∫ 2π

0

|V (ejω)|2

H(ejω)AL(ejω)

∣∣∣S(ejω)−H(ejω)AL(ejω)Y (ejω)
∣∣∣2 dω

+
1
2π

∫ 2π

0
|V (ejω)|2|Y (ejω)|2

(
1−AL(ejω)H(ejω)

)
dω,

using the expression of H(ejω) (12) for simplification purposes; the quantity |V (ejω)|2
H(ejω)AL(ejω) = |V (ejω)|2+

λ |∆L(ejω)|2
AL(ejω) is bounded from above, thanks to our assumptions. The key step here has been to combine

the arguments of the integral into a square (first term) plus a correction term that is independent upon

the unknown S(ejω).

The criterion ξ1 + λξ2 is clearly minimal iff S(ejω) − H(ejω)AL(ejω)Y (ejω) = 0; that is, when

s[k] = h[k]∗ (ϕ(k) ∗ y[k]), using the fact that AL(ejω) =
∑

k ϕ(k)e−jkω. On the other hand, λ‖L{s(t)−

sint(t)}‖2
L2

is minimal iff s = sint; i.e., iff s is an L∗L spline.

As a consequence, the complete functional ξ1 + λξ2 + λ‖L{s(t) − sint(t)}‖2
L2

is minimized for the

L∗L spline s(t) whose samples satisfy s[k] = h[k] ∗ (ϕ(k) ∗ y[k]). This is precisely the solution (11) as

one can check by setting t = k in (11).
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Note that the frequency response of the smoothing spline filter is bounded (`2-stability), irrespective

of the value of λ ≥ 0, because 1/H(ejω) ≥ infω AL(ejω) > 0 (Riesz basis condition).

If we further add the restriction that v[k] ∈ `1 and that its Fourier transform is bounded from below,

then we have the guarantee that h[k] ∈ `1 (BIBO stability), which comes a consequence of Wiener’s

Lemma (cf. [28, Chap. 13]).

The optimal solution, s(t), in Theorem 2 is a generalized version of the non-weighted smoothing

spline described in [23]. By adjusting the regularization parameter λ, we can control the amount of

smoothing. When λ = 0, there is no smoothing at all and the solution interpolates the data precisely and

coincides with sint(t) in Theorem 1, irrespective of the choice of weighting kernel v. For larger values

of λ, the smoothing kicks in and typically tends to attenuate high frequency components. In the limit,

when λ→ +∞, it will preserve the signal components that are in the null space of the operator L; for

instance, the best fitting polynomial of degree n− 1 when L = Dn (polynomial spline case).

The key practical question is how to select the most suitable operator L, the weighting kernel and the

optimal value of λ for the problem at hand. While this can be done empirically, it can also be approached

in a rigorous statistical fashion by introducing a stochastic model for the signal. Here, we will promote

the use of fractional derivative operators of the type introduced next. In the companion paper, we will

prove that this is the optimal approach for the estimation of fractal-like processes. We will also show how

to optimally select the free parameters of the fractional smoothing spline filter: γ (order of the derivative),

λ, and |V (ejω)|2.

III. SCALE-INVARIANT L-SPLINES

Since fractal-like signals are statistically self-similar, it is quite natural to investigate the class of

differential operators that have the same type of invariance properties. We will characterize these operators

and verify that they are spline-admissible. We will also show that they yield an extended family of

fractional splines—the so-called (α, τ)-splines—which are substantially richer than the ones initially

proposed in [22].

A. Characterization of scale-invariant operators

We will now characterize the special class of spline-admissible operators that are scale-invariant.

Definition 3: A real operator L is scale-invariant if and only if it commutes (up to some scaling

constant CT ) with the dilation operation DT : DT ◦ L = CT · L ◦DT where DT {s}(t) = s(t/T ) for any

signal s(t), and where CT = f(T ) is a function of the dilation factor T > 0.
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In the case of a convolution operator, we can rewrite the above scale-invariance condition in the frequency

domain; this gets translated into the following condition on the frequency response of the operator:

L̂(Tω) = f(T )L̂(ω). Note that the function f(T ) has to be real in order to ensure that L̂(−ω) = L̂(ω)∗

(Hermitian symmetry). In fact, the choice of f(T ) is even more restricted, as shown next.

Proposition 1: A real scale-invariant convolution operator L is necessarily γth order scale-invariant;

i.e., its frequency response is such that L̂(Tω) = T γL̂(ω) for any T > 0, where γ ∈ R.

Proof: We consider a scale-invariant convolution operator L. Because L̂(ω) is a distribution, it

acts as a linear functional on the test functions ϕk in Schwartz’s class S ; it also satisfies the standard

continuity condition: 〈L̂, ϕk〉 → 〈L̂, ϕ〉 when ϕk → ϕ as k → ∞ [29]. This implies the continuity at

T = 1 of the function f(T ) involved in Definition 3 as shown below:

• By making a change of variables, we have that 〈L̂(ωT ), ϕ(ω)〉 = 〈L̂(ω), T−1ϕ(ωT−1)〉. Using scale

invariance, this proves that

f(T )〈L̂(ω), ϕ(ω)〉 = 〈L̂(ω), T−1ϕ(ωT−1)〉;

• The limit of T−1ϕ(ωT−1) as T → 1 is obviously ϕ(ω). So, using the continuity property of the

distribution L̂(ω), the right hand side of the above equation tends to 〈L̂(ω), ϕ(ω)〉. This proves that

the left hand side is convergent as well when T → 1, and finally that limT→1 f(T ) = 1.

In addition, it is easy to verify that f(T ) has to satisfy the chain rule f(T1T2) = f(T1)f(T2) by

writing

f(T1T2)L̂(ω) = L̂(ωT1T2) = f(T1)L̂(ωT2) = f(T1)f(T2)L̂(ω).

We can now turn to standard analysis to show that the functions that satisfy the chain rule f(T1T2) =

f(T1)f(T2) and are continuous at T = 1 are necessarily of the form f(T ) = T γ . Note that γ has to be

real in order to ensure that f(T ) is real.

The γth order scale-invariance property implies that the Green function of L is self-similar: ρ(t/T ) =

T 1−γρ(t). This follows from the fact that the inverse operator L−1 is scale-invariant of order −γ; a fact

that is easily established in the Fourier domain. The importance of scale-invariant operators is that they are

the only ones that yield splines that are truly scale-invariant in the sense that the defining operator remains

the same irrespective of the scale (or knot spacing T ). To put it more explicitly, we will say that a function

s(t) is a scale-invariant L-spline of order γ if and only if L{s(t/T )} =
∑

k∈Z T
1−γa[k]δ(t− kT ) with

a ∈ `∞ for any scale T > 0. This is obviously only possible if L is spline-admissible and scale-invariant

of order γ. Interestingly, it turns out that the only splines that are scale-invariant are the fractional ones,
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which corresponds to the choice where L is a pure fractional derivative of order γ. This is a direct

consequence of the following proposition.

Proposition 2: A convolution operator L is γth order scale-invariant if and only if its Fourier transform

can be written (up to some real multiplicative factor) as

L̂(ω) = L̂γ,τ (ω) := (−jω)
γ

2
−τ (jω)

γ

2
+τ (13)

where τ is an adjustable phase parameter. Moreover, for γ > 1, these fractional derivative operators are

all spline-admissible of order γ.

Proof: By differentiating L̂(Tω) = T γL̂(ω) with respect to T and setting T = 1, we obtain the

differential equation

ω
dL̂(ω)

dω
= γL̂(ω),

whose general solution can be shown to be (cf. [30])

L̂(ω) =

 C1ω
γ
+ + C2(−ω)γ

+ + C3δ
(−γ−1)(ω), for γ = −1,−2,−3, . . .

C1ω
γ
+ + C2(−ω)γ

+, otherwise

where C1, C2 ∈ C are some arbitrary constants. In our case, we have the additional constraint (4) which

rules out the possibility of L̂ containing Diracs and implies γ > 1
2 . Moreover, because our operators are

real, L̂ has to satisfy the Hermitian symmetry L̂∗(−ω) = L̂(ω), so that we can write the solution for

ω ≥ 0 as L̂(ω) = C1ω
γ . This is equivalent to (13) provided that we set C1 = |C1| · ejπτ with the choice

of normalization |C1| = 1.

The Green functions of these operators are well-defined and can be localized to yield the so-called

(α-τ ) fractional B-splines with α = γ − 1 [31]. These generalized B-splines satisfy the Riesz basis

condition for r = γ > 1
2 . The proof is identical to the one given for the symmetric fractional B-splines in

[22], which correspond to the special case τ = 0. Moreover, the fractional B-splines are all Lp-stable for

γ > 1. A limiting case is the Haar function with (γ = 1, τ = −1/2) which is obviously spline-admissible

as well; this is not so for the other splines of order 1 when τ is not a half-integer.

The amplitude response of these operators is |L̂γ,τ (ω)| = |ω|γ , which clearly indicates that they are

of order γ and that they correspond to γth fractional derivatives, which will be denoted by ∂γ
τ .

B. Fractional derivatives and test functions

In general, these fractional derivatives are non-local operators unless γ = n (integer) and τ = −γ/2

(causal version), which corresponds to the usual definition of the derivative. This can lead to some
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theoretical difficulties and makes it necessary to get an estimate of the type of decay that should be

expected when applying them to rapidly decreasing functions.

Theorem 3: Let φ(t) ∈ S (Schwartz’ class of functions) be an indefinitely differentiable test function

with rapidly decreasing usual derivatives (i.e., faster than polynomial rate). Then, ∂γ
τ φ(t) with γ ≥ 0 is

indefinitely differentiable, and has at least polynomial decay in the sense that

|∂γ
τ φ(t)| ≤ Const

|1 + t|γ+1

Proof: The Fourier transform of a function of S has fast decay and multiplying it by a polynomial

(e.g., the frequency response of the fractional derivative) preserves this property. Using the usual duality

between decay and differentiation, we immediately deduce that the fractional derivative of a function of

S is indefinitely differentiable.

Concerning the polynomial decay of this fractional derivative, our reasoning requires three steps:

• First, the exact computation of the fractional derivative of v(t) = (1 + t2)−1 (note that v(t) 6∈ S ):

∂γ
τ

{ 1
1 + t2

}
= Re

{
ejπτΓ(γ + 1)
(1− jt)γ+1

}
.

This result is easily obtained from the Fourier expression of ∂γ
τ v, i.e., ejπτωγe−ω for ω ≥ 0, and

its Hermite conjugate for ω < 0.

• Second, the observation that, if φ(t) ∈ S , then the function

ψ(t) = ∂γ
τ

{
φ(t)− φ̂(0)

π(1 + t2)

}
Fourier
; ψ̂(ω) = (−jω)

γ

2
−τ (jω)

γ

2
+τ
(
φ̂(ω)− φ̂(0)e−|ω|

)
decreases at least as Const × (1 + |t|dγe+1)−1.

This is proved by analyzing the Fourier transform of ψ(t); more specifically, by showing that it

satisfies ψ̂(n)(ω) ∈ L1 for all positive integer n ≤ dγe+1. Indeed, ψ̂(ω) is indefinitely differentiable

everywhere, except at ω = 0; moreover, ψ̂(ω) and its usual derivatives of any order are rapidly

decreasing. On the other hand, in the neighborhood of ω = 0, ψ̂(ω) is O(|ω|γ+1), which implies

that ψ̂(n)(ω) is locally L1 around 0. Put together, this implies that ψ̂(n)(ω) ∈ L1. Finally, using the

identity

(−jt)nψ(t) =
1
2π

∫
ψ̂(n)(ω)ejωt dω

and the absolute integrability of ψ̂(n) we are able to deduce that |t|n|ψ(t)| ≤ Const for n =

0, 1, . . . (dγe+ 1), which proves the claim of this step.

• Last, the identity

∂γ
τ φ(t) = ψ(t) +

φ̂(0)
π

∂γ
τ

{ 1
1 + t2

}
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and the results of the previous steps lead to the following bound

|∂γ
τ φ(t)| ≤ Const

1 + |t|dγe+1
+

Const
1 + |t|γ+1

≤ Const
1 + |t|γ+1

.

In order to extend the fractional differentiation to distributions u, it suffices observe that for functions

φ and ψ of S , we have the dual property 〈∂γ
τ φ, ψ〉 = 〈φ, ∂γ

−τψ〉. It is then natural to define the scalar

product of a distribution u with a test function φ(t) by 〈∂γ
τ u, φ〉 = 〈u, ∂γ

−τφ〉. Theorem 3 tells us

that we must restrict the admissible distributions to those that admit test functions that are indefinitely

differentiable but may decrease as slowly as Const× (1 + |t|)−1.

C. Fractional B-splines

Going back to the introductory example in subsection II.A, we notice that the frequency response of

the corresponding first order localization operator ∆+ is ∆+(ejω) = 1− e−jω = jω +O(ω2). Hence, it

makes perfect sense to introduce the generalized fractional localization operator by its Fourier transform

∆γ
τ (ejω) = (1− e−jω)

γ

2
+τ (1− ejω)

γ

2
−τ ,

which provides a discrete approximation of the fractional derivative ∂γ
τ . By using a generalized version of

the binomial expansion and taking the inverse Fourier transform, it is possible to obtain the exact analytical

formulae of the corresponding filter coefficients dγ
τ [k] in terms of generalized factorials involving the

Euler’s gamma function [31]. The sequences can also be shown to decrease like 1/|k|γ+1 when |k| → ∞.

Once again, it is possible to apply fractional finite differences to distributions by using the duality relation

〈∆γ
τu, ϕ〉 = 〈u,∆γ

−τϕ〉.

By using the expression of ∆γ
τ and the definition of the generalized B-splines in subsection II.B, we

readily obtain the Fourier domain representation of the fractional B-splines of degree3 α = γ − 1 and

asymmetry parameter τ :

β̂α
τ (ω) =

∆α+1
τ (ejω)

(jω)
α+1

2
+τ (−jω)

α+1
2

−τ
=
(

1− e−jω

jω

)α+1
2

+τ (1− ejω

−jω

)α+1
2

−τ

(14)

For τ = (α+1)/2, we recover the causal fractional splines βα
+(t) of degree α which are made of building

blocks of the type tα
+

Γ(α+1) . These particular functions play a fundamental role in wavelet theory in the

3The terminology “of degree α” is used to signify that the elementary building blocks of these splines are power functions

of degree α. On the other hand, their order of approximation is γ = α + 1, which also coincides with the differential order of

the defining operator ∂γ
τ .
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sense that every scaling function can be represented as the convolution product between a fractional

B-spline and a singular distribution [18].

D. Multiresolution properties

Our definition of scale-invariant L-splines implies that the underlying functions have some fundamental

multi-resolution properties. Specifically, we have that s(t) ∈ V(βγ−1
τ ) ⇒ s(t/m) ∈ V(βγ−1

τ ),∀m ∈ N+,

which follows directly from the property that ∂γ
τ {s(t/m)} =

∑
k∈Zm

1−γa[k]δ(t − mk), because the

defining operator ∂γ
τ is scale-invariant of order γ. This implies that the underlying B-splines must satisfy

a general scaling relation

βα
τ (t/m) =

∑
k∈Z

gα
τ,m[k] βα

τ (t− k) (15)

where gα
τ,m[k] (scaling filter) is an appropriate sequence of weights corresponding to the expansion coef-

ficients of βα
τ (t/m) in V(βα

τ ). The Fourier domain equivalent of (15) is mβ̂α
τ (mω) = Gα

τ,m(ejω)β̂α
τ (ω).

By plugging in the explicit formula (14) for β̂α
τ (ω) and solving for the frequency response of the scaling

filter, we find that

Gα
τ,m(ejω) =

1
mα

(
1− e−jmω

1− e−jω

)α+1
2

+τ (1− ejmω

1− ejω

)α+1
2

−τ

, (16)

which is clearly 2π-periodic. The case m = 2 in (15) is of special interest because it yields the

corresponding two-scale relation which is central to wavelet theory [15], [18], [32]. We note, however,

that the present scaling relation is more general because it holds for any positive integer m, and not just

powers of 2.

IV. FRACTIONAL SMOOTHING SPLINES

Our purpose in this section is to present an in-depth investigation of smoothing spline estimators for the

case where the regularization operator is scale-invariant as specified in Section III. We will characterize

the corresponding fractional smoothing spline estimators and propose an efficient Fourier-based algorithm.

A. Basic solution

Given a discrete noisy input signal, {y[k]}k∈Z, the problem is thus to determine the optimal estimator

s(t) such that

min
s(t)

(∑
k∈Z

|v[k] ∗ (y[k]− s(k))|2 + λ‖∂γ
τ s‖2

L2

)
, (17)

where v[k] is a suitable positive definite weighting sequence.
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We have just seen that ∂γ
τ is a scale-invariant, spline-admissible operator of order γ corresponding to

the spline generator βγ−1
τ (t). We can therefore apply Theorem 2 which tells us that the optimal solution

is a fractional spline specified by (11) with ϕ(t) = βγ−1
τ (t) ∗ βγ−1

τ (−t). By using (14), we obtain the

Fourier transform of the optimal generator

ϕ̂(ω) =
∣∣∣β̂γ−1

τ (ω)
∣∣∣2 =

∣∣∣∣sin(ω/2)
ω/2

∣∣∣∣2γ

= β̂2γ−1
0 (ω), (18)

which does not depend on τ anymore. As indicated by the right hand side of (18), this corresponds to

a fractional B-spline of order 2γ and asymmetry parameter τ = 0. It is also equivalent to the symmetric

B-spline βα
∗ (t) of degree α = 2γ − 1, which is fully characterized in [22].

The localization operator for ϕ(t) = β2γ−1
0 (t) can be seen to be ∆2γ

0 whose Fourier transform is

∆2γ
0 (ejω) = |2 sin(ω/2)|2γ . Likewise, we can use Poisson’s summation formula to compute the Fourier

transform of the sampled version of the symmetric fractional B-spline:

Aγ(ejω) =
∑
k∈Z

β2γ−1
0 (k)e−jωk =

∑
n∈Z

β̂2γ−1
0 (ω + 2πn) (19)

Finally, by substituting (18) into the right hand side of (19), we get an explicit formula for the smoothing

spline filter (10) associated with the fractional differentiation operator ∂γ
τ :

H(ejω) =
1∑

n∈Z

∣∣∣2 sin(ω/2)
ω+2πn

∣∣∣2γ
+ λ |2 sin(ω/2)|2γ

|V (ejω)|2

(20)

B. Characterization of smoothing spline estimators

We now consider the special case where the weighting sequence v in (17) is the identity (i.e., V (ejω) =

1). To characterize the underlying estimator, we rewrite the smoothing spline solution as

s(t) =
∑
k∈Z

y[k]ϕγ,λ(t− k)

where y[k] is the (noisy) input sequence and where ϕγ,λ(t) =
∑

k∈Z h[k]β
2γ−1
0 (t − k) is an equivalent

spline basis function that represents the impulse response of the smoothing spline algorithm. Here, we have

made use of the commutativity of the convolution operation and have moved the digital reconstruction

h in (11) on the side of the basis functions, instead of applying it to the digital input signal. Using (20)
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and (18), we obtain the frequency response of the smoothing spline estimator as

ϕ̂γ,λ(ω) = H(ejω) · β̂2γ−1
0 (ω)

=

∣∣∣2 sin(ω/2)
ω

∣∣∣2γ

∑
n∈Z

∣∣∣2 sin(ω/2)
ω+2πn

∣∣∣2γ
+ λ |2 sin(ω/2)|2γ

=
1∑

n∈Z

∣∣∣ ω
ω+2πn

∣∣∣2γ
+ λ|ω|2γ

(21)

Next, we show that this operator essentially behaves like a classical Butterworth filter of order 2γ and

cutoff frequency ω0, which is defined as (cf. [33], [34])

B2γ

(
ω

ω0

)
:=

1

1 +
∣∣∣ ω
ω0

∣∣∣2γ . (22)

While γ is traditionally constrained to be an integer, this definition is applicable for γ ∈ R+ as well.

Theorem 4: The frequency response ϕ̂γ,λ(ω) of the smoothing spline estimator of order 2γ and

regularization parameter λ ≥ 0 satisfies the following inequalities:

1) For −π ≤ ω ≤ π:

B2γ

(
ω

ωmin

)
≤ ϕ̂γ,λ(ω) ≤ B2γ

(
ω

ωmax

)
≤ 1 (23)

with

ωmin =

(
λ+

2ζ(2γ)
(
1− 2−2γ

)
− 1

π2γ

)− 1
2γ

ωmax =
(
λ+

2ζ(2γ)
(2π)2γ

)− 1
2γ

where ζ(s) =
∑∞

n=1 n
−s is the Riemann zeta function.

2) For |ω| ≥ π

|ϕ̂γ,λ(ω)| ≤ B2γ

(
ω

ω0

)
= O(|ω|−2γ), (24)

with

ω0 =
(
λ+

1
π2γ

)− 1
2γ

≤ π. (25)

Proof: We rewrite (21) as

ϕ̂γ,λ(ω) =
1

1 + |ω|2γ

(
λ+

F
(

ω
2π

)
(2π)2γ

) (26)
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where F (x) is the auxiliary function defined by

F (x) =
∞∑

n=1

(
1

|x+ n|2γ
+

1
| − x+ n|2γ

)
. (27)

Clearly, F (x) is symmetric and positive. Moreover, we can show that it is monotonically increasing for

0 ≤ x ≤ 1
2 . Hence, we have the following bound

∀ω ∈ [−π, π], F (0) ≤ F
( ω

2π

)
≤ F

(
1
2

)
.

Next, we note that F (0) = 2ζ(2γ) and use the identity
∑

n∈Z
1

|2n−1|s = 2ζ(s)
(
1− 1

2s

)
(cf. [35, Section

23.26]) to show that F
(

1
2

)
= 2ζ(2γ)

(
22γ − 1

)
− 22γ , which yields the first part of the theorem.

For the second part, we note that the dominant term in (27) for x = ω
2π with |x| ≥ 1

2 corresponds to

the index n0 = round(x). Denoting ∆x0 = | ω
2π − n0|, we therefore have

∀|ω| ≥ π, F
( ω

2π

)
>

1
(∆x0)2γ

≥ 22γ

simply because ∆x0 ≤ 1
2 . Using the definition of ω0 in (25) and making use of the above inequality in

(26), we ultimately get

ϕ̂γ,λ(ω) ≤ 1

1 +
∣∣∣ ω
ω0

∣∣∣2γ

which holds for |ω| ≥ π.

Since ωmin ≤ ω0 ≤ ωmax, the interpretation of Theorem 4 is that the frequency response of the

smoothing spline filter with regularization parameter λ closely matches that of a Butterworth filter

of fractional order 2γ and cutoff frequency given by (25). Conversely, we may specify an equivalent

bandwitdth ω0 ≤ π and select the regularization parameter accordingly (cf. Eq. (25)):

λ = ω−2γ
0 − π−2γ

The variety of responses that can be obtained by varying γ and λ is illustrated in Fig. 2. In these examples,

the latter parameter was computed using the above equation with ω0 = π, 4π/5, 3π/5, 2π/5, and π/5.

The behavior of these filters is clearly lowpass with a response that gets sharper and closer to the ideal

one as γ increases.

We note that the Butterworth approximation, ϕ̂γ,λ(ω) ≈ B2γ

(
ω
ω0

)
, improves as λ increases, in which

case the cutoff frequencies ωmin, ω0 and ωmax get closer to 1/ 2γ
√
λ. The same type of effect can also

be observed as γ gets larger; indeed, ωmin rapidly converges to ω0 with the consequence that the lower

bound in (23) becomes undistinguishable from the upper bound in (24) .
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Fig. 2. Frequency responses of smoothing spline estimators as λ and γ varies. Each subplot corresponds to a fixed value of γ

and the filters of a given color are matched according to their equivalent bandwitdh: ω0 = π, 4π/5, 3π/5, 2π/5, and π/5.

For the particular case λ = 0, the estimator is equivalent to a spline interpolator of degree 2γ−1. The

corresponding cutoff frequency is ω0 = π (Nyquist frequency). As γ increases, the frequency response

converges to an ideal filter as illustrated in Fig. 3; this is consistent with earlier findings for the integer

case [36].

While the above results suggest a close connection between smoothing spline estimators and Butter-

worth filters, we also like to point out two fundamental differences. The first is the context: in the present

case, the input of the spline estimator is discrete; this is in contrast with traditional Butterworth filters

which are designed for processing analog signals. The second difference concerns the reproduction of

polynomials, which is a property that is specific to splines.

Proposition 3: A smoothing spline estimator of order 2γ has the ability to reproduce the polynomials

of degree n = d2γ−1e, irrespective of the value of the regularization parameter λ. Specifically, we have
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Fig. 3. Frequency response, ϕ̂γ,0(ω), of fractional spline interpolators for increasing values of γ. In the limit, ϕ̂γ,0(ω) tends

to the ideal filter rect (ω/(2π)).

that

tm =
∑
k∈Z

kmϕγ,λ(t− k), for m = 0, · · · , n

Proof: By using Poisson’s summation formula, one gets an equivalent relation in the Fourier domain;

the so-called Strang-Fix conditions of order n− 1

ϕ̂
(m)
γ,λ (2πk) = δ[m]δ[k] for k ∈ Z and m = 0, · · · , n,

where δ[k] is the Kronecker impulse and where ϕ(m)
γ,λ denotes the mth derivative of the Fourier transform

of ϕγ,λ. The condition ϕ̂
(m)
γ,λ (0) = δ[m] follows for the 2γth order flatness of ϕ̂γ,λ(ω) around the

origin; indeed, a simple Taylor series development of (26) yields the asymptotic relation ϕ̂γ,λ(ω) =

1 −
(
λ+ 2ζ(2γ)

(2π)2γ

)
|ω|2γ as ω → 0. Otherwise, ϕ̂(m)

γ,λ has the required vanishing properties because the

smoothing spline filter contains a fractional B-spline factor that imposes zeros of multiplicity 2γ at

ω = 2πk, k ∈ Z\{0} (cf. [22, Section 4.1]).

This means that the smoothing spline estimator is a quasi-interpolant of degree d2γ − 1e, which is

the maximum possible within the given spline space [22], [37], [38]. While we would expect a perfect

reconstruction of any polynomial in the null space of the regularizing operator ∂γ
τ —i.e., with a degree

less or equal to dγ− 1e—, it comes as a nice surprise to see that the property extends to twice the order.

C. Fast fractional smoothing splines

In our earlier work, we have presented an efficient recursive algorithm for computing linear and cubic

smoothing splines; i.e., γ = 1, 2 [39]. For the more general fractional case where γ is not necessarily
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Fig. 4. Equivalent multirate filtering algorithms for the implementation of smoothing splines.

integer, we propose an alternative approach that uses a combination of Fourier and multi-rate filtering

techniques.

In practice, one is often more interested in the samples of the smoothing spline s(t) than in the B-

spline coefficients per se. The integer samples of the solution can be computed efficiently by applying a

post-filter that corresponds to the sampled version of the B-spline generator β2γ−1
0 (t). A similar technique

is applicable for evaluating a finer version of the solution with an oversampling factor of m (integer).

The corresponding block diagram is given in Fig. 4a where the first filter H(z) provides the B-spline

coefficients c[k] and where B2γ−1
m (z) corresponds to the oversampling of the basis functions by a factor of

m. We can also move the smoothing spline filter H(z) to the right hand side of the up-sampling operator

and combine the two filters into a single one whose equivalent z-transform is Hm(z) = H(zm)·B2γ−1
m (z),

as illustrated in Fig. 4b. Further, by using the scaling relation (15), we show that

B2γ−1
m (ejω) =

∑
k∈Z

β2γ−1
0 (k/m)e−jωk =

(
1

m2γ−1

∣∣∣∣sin(mω/2)
sin(ω/2)

∣∣∣∣2γ
)
Aγ(ejω)

where the central factor corresponds to the scaling filter G2γ−1
0,m (ejω) as specified by (16). Finally, by

combining these various formulas, we obtain the frequency response of the equivalent digital smoothing

spline filter in Fig. 4b:

Hm(ejω) =
1

m2γ−1

∣∣∣∣sin(mω/2)
sin(ω/2)

∣∣∣∣2γ Aγ(ejω)

Aγ(ejmω) + λ |2 sin(mω/2)|2γ

|V (ejmω)|2
. (28)

where Aγ(ejω) is defined by (19). The last ingredient that we need is an efficient way to evaluate
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Aγ(ejω) = B2γ−1
1 (ejω) for any given value of ω. This can be done by way of the following accelerated

partial sum formula

Aγ(ejω) ≈

[
M∑

n=−M

∣∣∣∣2 sin(ω/2)
ω + 2πn

∣∣∣∣2γ
]

+∣∣∣∣sin(ω/2)
πM

∣∣∣∣2γ

×

[
2M

2γ − 1
− 1 +

γ(2
3π

2 + ω2)
2π2M

− γ(2γ + 1)ω2

4π2M2

]
,

(29)

which has a remainder that is O(M−2γ−3), as compared to O(M−2γ+1) for a partial sum without the

correction term. Practically, this means that we can evaluate Aγ(ejω) to machine precision using (29)

with a reasonably small number of terms; say M = 10.

We have now all the elements to describe our fast fractional smoothing spline algorithm whose

complexity is essentially that of the FFT:

1) Computation of the N -point FFT of the input signal {y[k]}k=0,··· ,N−1: this yields the Fourier

coefficients {Y [n]}n=0,··· ,N−1.

2) Fourier domain implementation of the up-sampling by m: this is achieved by extending Y [n] to a

sequence of length mN using N -periodic boundary conditions.

3) Filtering by multiplication in the Fourier domain: the sampled frequency response of the digital

smoothing spline filter is evaluated using (28) and (29) with ω = n2π
mN , for n = 0, · · · ,mN − 1.

4) Evaluation of {s(k/m)}k=0,··· ,mN−1 by mN -point inverse FFT.

This algorithm has been coded in Matlab and is available from the authors upon request.

V. CONCLUSION

Starting from first principles—in particular, the notion of self-similarity—, we pursued the task of

specifying an extended class of scale-invariant L-splines together with some efficient signal processing

algorithms for signal interpolation and approximation.

Our starting point was the identification of the family of differential operators that are both shift-

and scale-invariant (i.e., L is such that it (pseudo-)commutes with shifts and dilations); these are the

generalized fractional derivatives, ∂γ
τ , which are indexed by an order parameter γ > 1

2 and an asymmetry

factor τ . The corresponding fractional splines are conveniently represented as a linear combination of

fractional B-splines which are localized versions of the Green functions of the defining operator ∂γ
τ .

Using the operator ∂γ
τ , we also introduced a spline energy ‖∂γ

τ s‖2
L2

that could be used as a regular-

ization functional for the stable reconstruction of continuous-time functions from discrete measurements.

Interestingly, the optimal solutions are all fractional splines of order 2γ (or, degree α = 2γ − 1) and are
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essentially scale-invariant. Specifically, if we relocate the samples of a signal on a grid dilated by a factor

of T and determine the interpolation function s(t) that minimizes ‖∂γ
τ s‖2

L2
, we obtain a fractional spline

solution that is precisely the dilated version of the solution for T = 1. We can also achieve the same in

the smoothing spline case via an appropriate re-scaling of λ. This means that the spline fitting process

commutes with the re-scaling of the time axis, which is a reasonable requirement if one is looking for a

universal algorithm that does not depend on a particular choice of units or reference system. Of course,

this is a feature that is specific to fractional splines and that takes its roots in the scale-invariance of the

defining operator L. Another interesting consequence of the scale-invariance of the operator, as well as of

the underlying Green function, is that the fractional B-splines all satisfy a two-scale relation [16]—this

means that they can be used as elementary building blocks for the construction of (fractional) wavelet

bases of L2 [18].

An important aspect of our investigation has been the characterization of fractional smoothing spline

estimators that are optimal in a deterministic, variational sense. We have shown how these could be

implemented efficiently by means of FFTs. We have specified the underlying filters and have uncovered

an interesting connection with the classical Butterworth filters. While we did investigate the influence

of the order 2γ and the regularization parameter λ on the filter characteristics, we did not yet provide

general guidelines as to how these should be adjusted in practice for best performance. We will now

show that we can obtain a satisfactory answer to this question by adopting a stochastic formulation of the

spline estimation problem. This will take us to the next step which is the unraveling of the connection

between splines and fractals [40].
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[29] L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966.

[30] I.M. Gelfand and G. Shilov, Generalized functions. Vol. 1., Academic press, New York, USA, 1964.

[31] T. Blu and M. Unser, “A complete family of scaling functions: The (α, τ)-fractional splines,” in Proceedings of the

Twenty-Eighth International Conference on Acoustics, Speech, and Signal Processing (ICASSP’03), Hong Kong SAR,

People’s Republic of China, April 6-10, 2003, vol. VI, pp. 421–424.

[32] Ingrid Daubechies, Ten lectures on wavelets, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.

[33] S. Butterworth, “On the theory of filter amplifiers,” Wireless Engineer, vol. 7, pp. 536–541, 1930.

[34] V.D. Landon, “Cascade amplifiers with maximal flatness,” RCA Review, vol. 5, pp. 347–362, 1941.

[35] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, National Bureau of Standards, 1972.

[36] A. Aldroubi, M. Unser, and M. Eden, “Cardinal spline filters: Stability and convergence to the ideal sinc interpolator,”

Signal Processing, vol. 28, no. 2, pp. 127–138, 1992.

[37] C. de Boor and G. Fix, “Spline approximation by quasi-interpolants,” J. Approximation Theory, vol. 8, pp. 19–45, 1973.

[38] W.A. Light and E.W. Cheney, “Quasi-interpolation with translates of a function having non-compact support,” Constructive

Approximation, vol. 8, pp. 35–48, 1992.

[39] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing: Part II—Efficient design and applications,” IEEE Trans.

Signal Process., vol. 41, no. 2, pp. 834–848, February 1993.

[40] T. Blu and M. Unser, “Self-similarity: Part II—Optimal estimation of fractal-like processes,” submitted.

June 28, 2006 DRAFT


