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Abstract

A distinction is usually made between wavelet bases and wavelet frames. The former are associated with a one-

to-one representation of signals, which is somewhat constrained but most efficient computationally. The latter are

over-complete but they offer advantages in terms of flexibility (shape of the basis functions) and shift-invariance. In

this work, we propose a framework for improved wavelet analysis based on an appropriate pairing of a wavelet basis

with a mildly redundant version of itself (frame). The processing is accomplished in four steps: (1) redundant wavelet

analysis, (2) wavelet-domain processing, (3) projection of the results onto the wavelet basis, and (4) reconstruction of

the signal from its non-redundant wavelet expansion. The wavelet analysis is pyramid-like and is obtained by simple

modification of Mallat’s filterbank algorithm (e.g., suppression of the down-sampling in the wavelet channels only).

The key component of the method is the subband regression filter (Step 3) which computes a wavelet expansion

that is maximally consistent in the least squares sense with the redundant wavelet analysis. We demonstrate that

this approach significantly improves the performance of soft-threshold wavelet denoising with a moderate increase in

computational cost. We also show that the analysis filters in the proposed framework can be adjusted for improved

feature detection; in particular, we present new quincunx Mexican-hat-like wavelet transforms that are fully reversible

and essentially behave like the (γ/2)th Laplacian of a Gaussian.

Index Terms

Wavelets, frames, pyramid, denoising, feature detection, fractals, Mexican-hat filter, isotropy

EDICS Category: MRP-WAVL, MRP-FBNK

I. INTRODUCTION

During the past 15 years, wavelets have had a profound impact on signal and image processing. They have

led to the development of a variety of new algorithms for signal compression (JPEG2000) [1], [2], denoising

(soft-thresholding and its multiple variants) [3]–[6], enhancement and restoration (e.g., deconvolution) [7], [8], as

well as signal analysis (e.g., fractals, singularities, texture) [9], [10]. From the practitioner point of view, there are

essentially two categories of wavelet transforms: non-redundant and redundant ones.

The authors are with the Biomedical Imaging Group (BIG), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,

Switzerland.
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The first type (one-to-one mapping) is necessarily associated with a wavelet basis that can be defined either

in the continuous domain—i.e., for the space L2(Rd) of d-dimensional finite energy signals [11]—, or in the

discrete domain by considering the space of square summable sequences `2(Zd) [12]. Wavelet bases are elegant

mathematically, as well as most efficient computationally, thanks to Mallat’s fast filterbank algorithm. They can

be designed to be orthogonal, which is advantageous for optimal bit allocation (thanks to Parseval’s identity), and

also for statistical purposes because white noise remains white in the transformed domain. A key property that

justifies their success is that they yield sparse representations of signals that are piecewise smooth. These features

are beneficial for data compression, and for designing simple, efficient wavelet-domain algorithms such as soft-

threshold denoising. The only downside of wavelet bases is their lack of shift-invariance because the underlying

sampling is critical.

The second type of redundant transformation is associated with wavelet frames. The simplest versions are

redundant variants of a decomposition into wavelet bases; they go under the name of cycle spinning (where one

iterates the transform on a sequence of translated input signals) [13], the ”à trous” wavelets which correspond to

the undecimated version of Mallat’s algorithm [14]–[16], or discrete wavelet frames [17]. There are also other less

redundant transforms such as Kingsbury’s complex dual tree decomposition which combines two wavelet bases that

are in quadrature [18], [19], and Simoncelli’s steerable pyramid [20]. Presently, the consensus among researchers

is that redundant wavelets are better suited for signal and image analysis, and that they also yield better results

for tasks such as denoising. While it is straightforward to obtained a redundant decomposition from a basis (using

cycle spinning or the undecimated version of Mallat’s algorithm), this approach tends to be very heavy in term of

memory usage and computation because the resolution of the wavelet subband remains the same irrespective of

the scale of the analysis. This can be a serious limitation, especially in two or higher dimensions. If one analyzes

the situation in term of sampling density, there is an obvious waste in conciseness as one moves to coarser scales

because the bandwidth of wavelet coefficients gets narrower as a result of the convolution with the dilated analysis

wavelet.

Our purpose in this paper is to present an effective way of getting rid of the less informative part of this redundancy

without compromising perfect reconstruction. Specifically, we are interested in maintaining some controlled level

of redundancy within the wavelet subbands to improve shift-invariance, while retaining the sub-sampling (pyramid

structure) as we move to coarser resolution to avoid explosion in data size. Yang and Jing have recently proposed

a practical solution for getting closer to that goal by simply replacing the original sampling matrix by a more

progressive one (e.g. quincunx instead of dyadic) which can be viewed as an incomplete version of cycle spinning

[21]. The present approach is based on a different principle which does not require any factorization of the dilation

matrix. It is also more flexible from a wavelet designer point of view. Our proposal is a two-step strategy that tries

to make the best use of both wavelet worlds: (1) frames for a (mildly) redundant analysis and for data processing,

and (2) a wavelet basis for the representation and efficient reconstruction of the output signal. The conversion

between the two representations is performed by a regression module that orthogonally projects the redundant

wavelet coefficients onto the corresponding wavelet subspace at a given resolution.
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The paper is organized as follows. In Sect. 2, we first develop the concept in 1-D, which leads to a modification

of the standard two-channel filterbank algorithm where the high-pass analysis branch (wavelet coefficients) is

undecimated. We then generalize the system to multiple bands in Sect. 3 for the processing of higher-dimensional

signals. We also describe an extension of the method that allows using modified analysis wavelets while preserving

the perfect reconstruction property. Finally, in Sect. 4, we validate the method by showing that it leads to some

performance improvement for image denoising. We also illustrate the reshaping capabilities of the technique by

presenting a new family of Mexican-hat-like wavelet transforms with improved isotropy properties.

II. ONE-DIMENSIONAL CASE

Following a brief review of the constituents of a non-redundant wavelet decomposition (basis), we show how

the standard filterbank decomposition algorithm can be modified for a redundant analysis in the high-pass channel

only.

A. Wavelet basis

The cornerstone of Mallat’s multiresolution theory of the wavelet transform is the existence of a scaling function

ϕ(x) ∈ L2(R). This function is often specified indirectly through the scaling relation

ϕ(x/2) =
√

2
∑
k∈Z

h[k]ϕ(x− k). (1)

where h is a given (refinement) filter. The associated approximation spaces are

Vi = spank∈Z

{√
2iϕ

(
2ix− k

)}
. (2)

These spaces are embedded and form a valid multiresolution analysis of L2(R) under suitable technical conditions

(i.e., existence of lower and upper Riesz bounds, and fulfillment of the partition of unity). This guarantees the

existence of some corresponding wavelet basis of L2(R)—not necessarily unique.

In the so-called semi-orthogonal design, the wavelet is constructed such that it generates a Riesz basis of the

orthogonal complement W0 = V0	⊥ V−1. In particular, this implies that 〈ψ(· − k), ϕ(·)〉 = 0 and that the wavelet

can be written as a linear combination of functions from the finer approximation space

ψ(x/2) =
√

2
∑
k∈Z

g[k]ϕ(x− k), (3)

where g is the wavelet filter. The corresponding wavelet spaces are

Wi = spank∈Z

{√
2i ψ

(
2ix− k

)}
. (4)

The scaling function ϕ and wavelet ψ completely determine the synthesis part of the algorithm (wavelet expan-

sion). They corresponds to a unique pair of dual (or biorthogonal) functions ϕ̃ and ψ̃ with associated scaling and

wavelet filters h̃ and g̃, respectively. The wavelet expansion of a function f ∈ L2(R) down to resolution J is then

given by

f(x) =
∑
k∈Z

cJ [k]︷ ︸︸ ︷
〈f, ϕ̃J,k〉ϕJ,k +

∞∑
i=J

∑
k∈Z

di[k]︷ ︸︸ ︷
〈f, ψ̃i,k〉ψi,k
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H̃(z−1) ���2
↓ ci−1

G̃(z−1) ���2
↓ di−1

-

-

-ci
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���2
↑ G(z)-

-

- ci

Fig. 1. Analysis-synthesis filterbank for the 1-D non-redundant wavelet decomposition.

with the short-hand notation ψi,k = 2i/2ψ
(
2ix− k

)
. In practice, the scaling and wavelet coefficients—ci[k], and

di[k], respectively—are computed iteratively by repeated application of Mallat’s algorithm. The corresponding

perfect reconstruction filterbank is shown in Figure 1. Note that the sampling is critical: decimation by a factor of

two in both lowpass and wavelet channels.

B. Pyramid-like wavelet decomposition

The idea here is not to decimate the wavelet subband in order to obtain a finer signal analysis (redundancy factor

of two). The motivation is to improve shift-invariance which is advantageous for signal processing purposes (better

detection and/or suppression of artifacts).

Figure 2 shows the modified filterbank. The non-decimated wavelet coefficients are denoted as d′i−1 with d′i−1[k] =

〈f,
√

2i ψ̃
(
2ix− 2k

)
〉. At the synthesis side, the module “R” contains the algorithm that should estimate the

coefficients d̃i−1 that are used for a non-redundant reconstruction.

Clearly, the reconstruction algorithm in this new configuration is no longer unique. For instance, we could simply

pick d̃i−1[k] = d′i−1[2k] which brings us back to the non-redundant case. This is fine in the absence of processing

noise or quantization artifacts, but does not present any advantage otherwise.

In a practical system, the wavelet coefficients d′i−1 are often processed (module “P”) to yield some modified or

“filtered” coefficients d′′i−1. We would therefore like to estimate the wavelet coefficients d̃i−1 to be injected into the

non-redundant reconstruction algorithm such that the resulting signal is most consistent with those measurements.

To that end, we propose a “subband regression” that minimizes the quadratic error :

arg min
d̃i−1

∣∣∣∣∣
∣∣∣∣∣∑
n∈Z

[∑
m∈Z

d̃i−1[m]g[n− 2m]+

∑
m∈Z

ci−1[m]h[n− 2m]

]
g̃[n− k]− d′′i−1[k]

∣∣∣∣∣
∣∣∣∣∣
2

l2

,

which measures the difference between the (redundant) wavelet analysis of the reconstructed signal and the current

(processed) wavelet coefficients d′′i−1.
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To determine the solution, we first rewrite the criterion as∣∣∣∣∣
∣∣∣∣∣∑
m∈Z

d̃i−1[m]ge[k − 2m]−

(
d′′i−1[k]−

∑
n∈Z

ci−1[n]he[k − 2n]
)∣∣∣∣∣
∣∣∣∣∣
2

l2

,

where we have introduced the composite filters:

ge = g ∗ g̃/, (5)

he = h ∗ g̃/, (6)

with the notation g̃/ refering to the time-reversed filter g̃[−k] whose z-transform is G̃(z−1). Next, we identify the

auxiliary residual signal

e[k] = d′′i−1[k]−
∑
n∈Z

ci−1[n]he[k − 2n] (7)

that can be readily computed from the known subband coefficients. The optimization problem then reads

arg min
d̃i−1

∣∣∣∣∣
∣∣∣∣∣∑
m∈Z

d̃i−1[m]ge[k − 2m]− e[k]

∣∣∣∣∣
∣∣∣∣∣
2

l2

, (8)

which boils down to finding the least-squares approximation of e[k] in spanm∈Z {ge[k − 2m]}. A standard argument

(cf. [22]) then yields

d̃i−1[m] = (gLS ∗ e)[2m], (9)

where gLS is the l2-dual of ge:

GLS(z) =
Ge(z−1)

1
2 (Ge(z)Ge(z−1) +Ge(−z)Ge(−z−1))

(10)

Note that this result can also be obtained as a special case of the multichannel solution which is derived in the

next section. The solution is equivalent to digital filtering of the auxiliary signal e followed by down-sampling by

a factor two. The complete subband regression algorithm is summarized in Fig. 3. This system will recover the

original (non-redundant) wavelet coefficients of the image exactly if the (redundant) analysis coefficients are fed

into the algorithm unaltered; e.g., d′′i−1 = d′i−1 ⇒ d̃i−1 = di−1. Otherwise, it will lead to the reconstruction of the

image that is maximally consistent with the desired wavelet coefficient values.

III. MULTIPLE DIMENSIONS AND CHANNELS

We will now extend the above regression scheme to the case of multi-channel wavelets. In doing so, we will

adopt a vector formulation that is also valid for multidimensional signals.
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H̃(z−1) ���2
↓ ci−1

G̃(z−1) - d′i−1

-

-ci P

d′′i−1

���2
↑ H(z)

���2
↑ G(z)

-

- ci

R
?

- ���2
↓ `
d̃i−1

Fig. 2. Analysis-synthesis filterbank for the 1-D pyramid wavelet decomposition. Processing in the wavelet domain is done in the module “P”.

The module “R” contains the subband regression algorithm.

d′i−1
or
d′′i−1

ci−1

���2
↑ He(z)

?GLS(z) ���2
↓ d̃i−1

-`
+

−

Fig. 3. Overview of the 1-D subband regression algorithm (module “R” of Fig. 2), followed by subsampling.

A. Subband regression: general case

In the general d-dimensional case, the redundancy factor depends upon the subsampling ratio—i.e., R = |det(M)|

where M is the d× d subsampling matrix—and the number N of non-subsampled channels of the filterbank with

the constraint that N ≤ R− 1. It is given by

N

1− 1
R

=
RN

R− 1
. (11)

We achieve a redundancy factor of R by selecting N = R− 1 which is the case that will be treated here.

Let us denote the lowpass filter by h[k], k ∈ Zd, and the N highpass filters on the analysis and synthesis side

by

g̃[k] =


g̃(1)[k]

...

g̃(N)[k]

 , g[k] =


g(1)[k]

...

g(N)[k]

 (12)

respectively. Together with h̃[k], these specify a R-channel multi-dimensional perfect reconstruction filterbank

analogous to the one displayed in Fig. 1.

We now consider the corresponding modified perfect reconstruction system whose schematic representation is

shown in Fig. 4. The pooled effect of the wavelet filters is represented by the two N × N multidimensional

transfer matrices G̃(z−1) (analysis) and G(z) (synthesis), while the undecimated, processed, and decimated wavelet

coefficients are collected in the vector signals d′i−1[k], d′′i−1[k] and d̃i−1[k], respectively. Our task is to specify the

estimation module “R” such that the critically-sampled coefficient sequence d̃i−1[k] provides the minimum-error

appproximation of the undecimated, and possibly altered, coefficients d′′i−1[k].
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H̃(z−1) ���M
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R
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d̃i−1

Fig. 4. Analysis-synthesis filterbank for the R-channel pyramid wavelet decomposition. Processing in the wavelet domain is done in the module

“P”. The module “R” contains the subband regression algorithm.

d′i−1
or

d′′i−1

ci−1

���M
↑ He(z)

?GLS(z) ���M
↓ d̃i−1

-`
+

−

Fig. 5. Overview of the R-channel subband regression algorithm (module “R” of Fig. 4), followed by subsampling.

Our consistency measure for this general multidimensional setup is∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ ∑

n∈Zd

 ∑
m∈Zd

gT[n−Mm]d̃i−1[m]+

∑
m∈Zd

ci−1[m]h[n−Mm]

 g̃[n− k]− d′′i−1[k]
∣∣∣∣∣∣2

RN

∣∣∣∣∣∣
∣∣∣∣∣∣
2

l2

,

where the inner squared vector-norm sums the error contributions across the wavelet channels, and the outer `2(Zd)-

norm performs the summation over the multidimensional signal domain (index k). To simplify this expression, we

introduce the (N ×N)-matrix and N -vector filters ge and he, respectively, whose entries are given by

g(n1,n2)
e = g(n1) ∗ g̃(n2)/, (13)

h(n)
e = h ∗ g̃(n)/, (14)

with n, n1, n2 = 1, . . . , N and g̃(n)/[k] , g̃(n)[−k]. We then restate the error criterion as∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ ∑

m∈Zd

gT
e [k−Mm]d̃i−1[m]− e[k]

∣∣∣∣∣∣2
RN

∣∣∣∣∣∣
∣∣∣∣∣∣
2

l2

, (15)

with

e[k] = d′′i−1[k]−
∑
n∈Zd

he[k−Mn]ci−1[n]. (16)

As shown in the appendix, the minimization of this criterion leads to the set of normal equations∑
m′∈Zd

(g/
e ∗ gT

e )[M(m−m′)] d̃i−1[m′] = (g/
e ∗ e)[Mm],
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for any m ∈ Zd. Note that the left-hand side can be interpreted as the convolution between d̃i−1[m] and the

M-subsampled version of the “auto-correlation” matrix filter (g/
e ∗ gT

e )[k]. This system of equations can be solved

by inverse filtering,

d̃i−1[m] = (gLS ∗ e)[Mm], (17)

which is the direct matrix counterpart of (9); it involves a convolution with a N ×N matrix filter gLS followed by

a downsampling by M. The individual channel components are therefore given by

d̃
(n)
i−1[m] =

N∑
n′=1

(g(n,n′)
LS ∗ e(n

′))[Mm], (18)

where the convolutions are now scalar. The matrix filter gLS is specified by its N ×N transfer function

GLS(z) = R

(
R∑

c=1

Ge(E
(c)
M z−1)GT

e (E(c)
M z)

)−1

Ge(z−1), (19)

where z = (z1, . . . , zd) is the d-dimensional complex z-transform-domain variable with the notational convention

z−1 = (z−1
1 , . . . , z−1

d ); the E(c)
M ’s are d× d diagonal coset matrices which are given by E(c)

M = diag(ej2πM−T l(c)
)

where l(c) is the c-th coset generated by M [23]. For example, in the case of the dyadic subsampling matrix, we

have

l(0) =

 0

0

 , l(1) =

 1

0

 , l(2) =

 0

1

 , l(3) =

 1

1

 .
In effect, the term in parenthesis corresponds to the M-downsampling-upsampling of the “auto-correlation” matrix

filter (g/
e ∗ gT

e )[k] so that this operator matches the finer rate of the input data, while the matrix-inverse symbol

“(·)−1” implements the inverse filtering operation that is required to solve the normal equations.

The complete subband regression algorithm can thus be implemented using a block diagram that is the vec-

tor/matrix counterpart of the previous one, as shown Figs. 4 and 5. Note that this formulation lends itself well to an

implementation in the Fourier domain: the (matrix) frequency response of gLS can be computed directly from (19),

while the filtering is implemented by simple matrix multiplication with the N -vector Fourier transform of e[k]. If

one includes the processing of the lowpass branch, the subband regression can also be viewed as an R = N + 1

channel filterbank. Globally, this means that the cost of signal reconstruction is of the same order as that of the

analysis part of the algorithm. Thus, one should expect an overall increase in computation over the non-redundant

scheme that is roughly equivalent to the redundancy factor R.

B. General two-channel case

The advantage of the two channel case (R = |det(M)| = 2) is that there is only one wavelet, as opposed

to 2d − 1 for the more conventional separable schemes which result from the application of a 1-D algorithm

along the various dimensions of the data [24]. Specific non-separable wavelet designs have been proposed for

the quincunx subsampling matrix (2-D) and the FCC subsampling matrix (3-D) [25]. The most frequently-used
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quincunx subsampling matrix is :

M =

 1 1

1 −1

 , (20)

with the property M2 = 2I.

For R = 2, we necessarily have N = 1 in our pyramid scheme, so that the filters ge and he are scalar. The two

corresponding coset matrices are E(1)
M = I and E(2)

M = −I where I is the d× d identity matrix. The least-squares

filter (19) then simplifies to

GLS(z) =
Ge(z−1)

1
2 (Ge(z)Ge(z−1) +Ge(−z)Ge(−z−1))

, (21)

which is essentially the same formula as in the 1-D case.

An example of such a wavelet image analysis is illustrated in Fig. 6, for the quincunx wavelet transform that is

associated with an orthogonal polyharmonic spline of order 4. The non-redundant transform can be depicted in two

ways. Either the wavelet subbands of the odd decomposition levels can be squeezed together to fit into an image

of the same size as the original one, as shown in Fig. 6 (a); or those subbands can be displayed using a pixel

arrangement that preserves relative spatial relationships (rotation by 45 degrees for odd decomposition levels), as

shown in Fig. 6 (b). The pyramid counterpart with a redundancy of two (no subsampling in the wavelet channels) is

shown in Fig. 6 (c). This corresponds to the analysis part of the algorithm. When the subband regression procedure

(module “R”) is applied to the unaltered wavelet pyramid, it yields back the original nonredundant wavelet transform

(consistent reconstruction). However, if the wavelet coefficients in the pyramid are modified through processing (e.g.,

pointwise nonlinearity), then the output of the regression module is different from the original non-redundant wavelet

transform. The final image reconstruction is obtained by (non-redundant) inverse wavelet transformation and it is

such that it is maximally consistent with the redundant wavelet processing.

C. Optional wavelet reshaping

The basic idea behind wavelet reshaping is that we can take further advantage of the frame redundancy and the

generic structure of the analysis-synthesis algorithm in Fig. 4 to modify the analysis functions such that they are

better suited for the application at hand. For instance, it may be desirable to optimize the wavelets to improve their

space-domain localization or to make them more isotropic. Alternatively, one may also be interested in adapting

their shape for better feature extraction.

We now briefly describe the concept for the general two-channel case (cf. subsection III.B) which is simpler to

formulate because there is a single wavelet involved. In that setting, the original analysis wavelet space at resolution

i is

W̃i = spank∈Zd

{
|det(M)|i/dψ̃(Mix− k)

}
(22)

where ψ̃ is the biorthogonal analysis wavelet associated with the given wavelet basis. The analysis wavelet is usually
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(a)

(b) (c) (d)

Fig. 6. Wavelet decomposition of the test image “cameraman” for the orthogonal polyharmonic B-spline wavelet of order γ = 4 and quincunx

subsampling matrix. (a) Original test image. (b) Non-redundant tra nsform. The wavelet subbands of the odd decomposition levels are squeezed

together. (c) Non-redundant transform. Representation of the wavelet subbands of odd decomposition levels are rotated by 45 degrees to maintain

the geometrical organization of the quincunx lattice. (d) Pyramid transform as proposed in this paper. The redundancy factor with respect to (b)

and (c) is R = 2.

expressed in terms of the analysis scaling function:

ψ̃(M−1x) = |det(M)|1/d
∑
k∈Zd

g[k]ϕ̃(x− k), (23)

where ϕ̃ is biorthogonal to ϕ and where g[k] corresponds to the wavelet analysis filter in the perfect reconstruct

filterbank (cf. lower branch in Fig 1) .

Similarly, the modified wavelet system described by the block diagram in Fig. 4 yields a redundant signal

description that is associated with the “augmented” analysis space

W̃+
i = spank∈Z2

{
|det(M)|i/d

ψ̃(Mix−M−1k)
}
, (24)

because of the suppression of the down-sampling module in the highpass wavelet channel. Clearly, we have that

W̃+
i ⊃ W̃i, but one looses the orthogonality with the scaling space Vi because of the inclusion of the additional

“in-between” wavelets. On the other hand, it still holds that W̃+
i ⊂ Ṽi+1 where the latter is the approximation

space (analysis) at the next finer resolution.

When working with a wavelet basis of L2(Rd), the choice of the filter g[k] in (23) is quite constrained and often

fixed a priori. If we now consider the enlarged space W̃+
i , we have many more degrees of freedom which makes

it also possible to choose some other equivalent wavelet of the form

ψ̃′(M−1x) = |det(M)|1/d
∑
k∈Zd

g′[k]ϕ̃(x− k), (25)
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H̃(z−1) ���M
↓ ci−1

G̃(z−1) S(z−1)- d′i−1

-

-ci P

d′′i−1
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↑ H(z)

���M
↑ G(z)

-

- ci

R
?

- ���M
↓ `
d̃i−1︸ ︷︷ ︸

G̃′(z−1)

Fig. 7. Analysis-synthesis filterbank for a wavelet decomposition in the 2-channel quincunx case. The shaping filter Q′(z) allows to take

advantage of the redundancy to better match a desired template; for instance, a Mexican-hat wavelet, as discussed in subsection IV.B.

The only constraint is that G′(ejωωω) = S(ejωωω)G(ejωωω) where S(ejωωω) is the frequency response of some reversible

digital filter—i.e., a0 ≤ |S(ejωωω)| ≤ A0 where a0 and A0 are some positive constants—so that ψ′ is an equivalent

generator of W̃+
i . The wavelet decomposition and subband regression algorithms can then be readily adapted by

simply replacing G(z) by G′(z) in all relevant filter equations (cf. Fig. 7). The reconstruction will remain perfect

because we are still spanning the same analysis and synthesis spaces.

While this modification of the wavelet filter seems rather innocuous, we will see that it can have a dramatic effect

on the shape of the wavelet and on its feature extraction capabilities. In particular, we will illustrate the concept

with the design of wavelets that essentially replicate a Mexican-hat-like analysis. This wavelet reshaping method

is also transposable to the multi-channel case where the degrees of freedom are even more numerous.

IV. APPLICATION EXAMPLES

The motivating idea for performing processing in a redundant wavelet domain is to ensure better shift-invariance.

In practice, this tends to result in a finer detection of relevant image features, a better preservation of details, and

a reduction of reconstruction artifacts. We will now investigate this effect for two basic image processing tasks for

which wavelets have been found to be particularly successful: image denoising and multi-scale feature extraction.

Ideally, we would like to improve the performance of a given non-redundant wavelet-domain algorithm by only

making use of a minimum of redundancy such as to keep the computational cost and memory requirement at a

reasonable level.

A. Denoising

To compare the performance of the various transforms, we added white Gaussian noise to a series of test images

and applied a standard denoising algorithm which consists in applying a soft-thresholding in the wavelet domain

[3]. In order to have a fair comparison, we used a fixed soft-threshold across all subband that was optimized

in each case for maximum signal-to-noise ratio (Oracle solution). We kept the denoising procedure simple on

purpose to minimize the number of parameters and to focus on the comparison of transforms with various levels

of redundancy: the standard non-redundant orthogonal wavelet transform, its pyramid extension obtained using the

proposed subband regression, and a fully redundant scheme without any subsampling in the wavelet channels. We
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tested a combination of separable orthogonal dyadic transforms (Haar and cubic-spline Battle-Lemarié [11]) together

with their non-separable quincunx counterparts (orthogonal polyharmonic splines of order γ = 2, 4) [26]. We applied

a comparable number of decomposition levels in both instances: J = 4 for the standard dyadic configuration and

J = 8 for the quincunx case where the scale increases as a power of
√

2. The results are summarized in Table I

using the peak signal-to-noise ratio (in dB) as the measure of denoising quality.

According to expectations, the higher-order most-redundant decomposition (cubic splines, fully redundant) gives

the best results. The pyramid decomposition is competitive in most cases; in particular, it is always significantly

better than the non-redundant decomposition (orthogonal wavelet basis). In the case of a quincunx transform where

the redundancy is the least, it yields results that are approximately half-way in between the non-redundant (R = 1)

and fully-redundant cases (R = 9) on the dB scale. The improvement is more striking in the dyadic case where the

performance is very close to the fully redundant transform, despite the substantial reduction in computational and

storage cost (R = 4 as compared to R = 13). The most remarkable results are those obtained in the Haar case where

the denoising performance of the pyramid transform is as good—if not better—as the fully redundant system. Some

representative examples of restoration are shown in Fig. 8. The results obtained using the non-redundant transform

(cf Fig. 8(b)) exhibit same characteristic artifacts—these are the footprints of the underlying basis functions which

are not shift-invariant. These artifacts are much attenuated in the more redundant schemes, which also yield better

results in terms of the PSNR—the visual quality in both cases is quite comparable.

A finding that comes as a surprise is that the quincunx scheme (including the fully-redundant version) is not all

that good; it is outperformed by both Haar and cubic spline pyramids in all but one experiment (”Einstein” with

σ = 15). The observed findings are quite robust and reproducible; they hold across all noise conditions and for all

test images to which we have applied the algorithm.

Note that the basic soft-thresholding algorithm that we have applied here is somewhat primitive when compared

to state-of-the-art in wavelet denoising [6], [27]. Yet, it should still serve as a valid benchmark for the comparison

of wavelet decompositions since the running conditions are the same in all cases and the value of the threshold is

optimized for best performance (oracle solution). The main point that we want to make is that working with a fully

redundant wavelet system is probably overkill, and that one should be able to obtain similar performance with a

less redundant pyramid-like system.

While one could object that the oracle solution is not accessible in a practical situation where the noise-free

signal is unknown, it turn out that the thresholding level can still be accurately optimized from the noisy data

when the signal is corrupted by white Gaussian noise of known variance σ2. The statistical tool that makes this

possible is Stein’s unbiased risk estimate (SURE) whose use for wavelet denoising was pioneered by Donoho in the

case of an orthogonal transform [28]. Recently, it was shown how to extend the SURE technique to more general

denoising schemes, including the ones considered here [29]. Concretely, this means that we could have obtained

virtually identical denoising results using a purely data-driven approach which in the present case would require a

few Monte-Carlo testing iterations (i.e., running the whole denoising algorithm several times on simulated data).

Based on these experiments, one may therefore conclude that the proposed pyramid algorithm stands as an
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TABLE I

PSNR IMPROVEMENTS FOR DENOISING USING SOFT-THRESHOLDING WITH THE ORACLE SOLUTION.

DECOMPOSITION LEVELS: J = 4 (DYADIC) AND J = 8 (QUINCUNX).

dyadic Haar wavelets quincunx polyharmonic wavelets (γ = 2)

σ non-redundant pyramid fully redundant non-redundant pyramid fully redundant

cameraman 15.00 6.51 8.08 8.05 6.94 7.45 7.83

barbara 15.00 6.71 8.10 8.09 7.19 7.65 7.93

lena 15.00 6.79 8.60 8.52 7.47 8.11 8.45

einstein 15.00 9.21 10.51 10.62 9.67 10.15 10.53

peppers 15.00 8.84 11.40 11.23 10.04 10.80 11.25

cameraman 25.00 2.98 4.45 4.40 3.41 3.85 4.18

barbara 25.00 2.53 3.62 3.60 2.79 3.24 3.41

lena 25.00 2.81 4.32 4.20 3.32 3.84 4.14

einstein 25.00 4.06 5.43 5.41 4.34 4.81 5.17

peppers 25.00 4.26 6.63 6.40 5.38 6.07 6.47

redundancy 1 4 13 1 2 9

dyadic cubic-spline wavelets quincunx polyharmonic wavelets (γ = 4)

cameraman 15.00 7.52 8.10 8.40 7.08 7.39 7.91

barbara 15.00 7.93 8.48 8.68 7.47 7.81 8.15

lena 15.00 8.11 8.73 8.96 7.78 8.11 8.56

einstein 15.00 10.04 10.57 10.87 9.92 10.17 10.65

peppers 15.00 10.74 11.29 11.65 10.32 10.61 11.22

cameraman 25.00 3.81 4.41 4.64 3.37 3.68 4.12

barbara 25.00 3.93 4.57 4.74 3.17 3.56 3.84

lena 25.00 3.87 4.46 4.67 3.45 3.76 4.18

einstein 25.00 4.78 5.41 5.66 4.46 4.82 5.27

peppers 25.00 5.87 6.53 6.83 5.50 5.84 6.42

redundancy 1 4 13 1 2 9

attractive alternative to the fully redundant scheme (“à trous” or undecimated wavelet transform) because of its

greater computational efficiency; in the present tests, it was about three to four times more efficient. While the

speed-up increases linearly with the number of levels, it becomes even more significant when moving to higher

dimensions (e.g., 2-D + time, or 3-D) which is often the rule in biomedical imaging applications. In fact, a fully-

redundant denoising is often simply not feasible in higher dimensions because of the intrinsic limit on memory and

computational resources—just think of the task of denoising a 512 × 512 × 512 fluorescence micrograph which

is a typical size for modern confocal microscopes, not to mention time-lapse imaging which would add another

dimension [30].

B. Laplacian-like wavelet analysis with improved isotropy

Several authors have applied wavelets to the detection of spots or blob-like objects in images [31], [32]. Specific

examples of biomedical applications include the detection of microcalcifications in mammograms [33], [34] and
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(a) (b)

(c) (d)

Fig. 8. Wavelet denoising by optimized soft-thresholding with various degrees of redundancy. (a) Input: 256×256 “cameraman” image corrupted

by additive white Gaussian noise (σ = 25). (b) Denoising using the non-redundant Haar transform (R = 1) with J = 4 levels of decomposition;

PSNR improvement 2.98dB. (c) Denoising using the proposed Haar pyramid (R = 4); PSNR improvement 4.45dB. (d) Denoising using the

fully-redundant Haar transform (R = 13); PSNR improvement 4.40dB.
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the localization/tracking of GFP-labelled proteins in fluorescence micrographs [35], [36].

In essence, a wavelet transform performs a correlation analysis so that we can expect its output to be maximum

when the input signal most resembles the analysis template ψ̃
(
x−x0

a

)
at scale a and location x0. Interestingly,

we can show that the optimal detector for the type of biomedical signals mentioned above is a Laplacian-like

wavelet. To that end, we consider the measurement model: f(x) = ϕa(x− x0) + n(x) where ϕa(x) = ϕ(x/a) is

a known deterministic signal at scale a, x0 is the unknown location of the target, and n(x) is additive Gaussian

noise. It is well known from detection theory that the optimal detector (prewhitened matched filter) corresponds to

a correlation with the template L∗Lϕa(x) where L is the whitening operator of the noise and where L∗ denotes

its adjoint. We can further show that this detector has the structure of a wavelet transform if and only if the

whitening operator L commutes with dilations, which narrows down the possibilities to some fractional iterate of

the Laplacian L∗L = (−∆)γ/2 F←→ ||ωωω||γ [37]. The stochastic processes that are whitened by (−∆)γ/2 are the

fractional Brownian fields—also commonly referred to as 1/ω noises in the engineering literature [38], [39]. These

processes are isotropic but they have the particularity of not being stationary (their power spectrum is not defined

in the conventional sense). Yet, they are frequently used to model natural images which tend to exhibit 1/ωγ-like

spectral decay. Even more relevant to the present task is the fact such inverse-power-law spectral behavior (which

is characteristic of fractals) has been observed in a variety of biomedical modalities including mammography [40]

and fluorescence microscopy [41]. This points to an “optimal” wavelet detector of the form

ψ̃γ(x) = (−∆)γ/2ϕ(x) (26)

where is ϕ(x) is an isotropic smoothing function (ideally, a Gaussian for best space-frequency localization). In

practice, the shape of the smoothing function should be matched to the type of object to detect (e.g., Gaussian spot

or microcalcification) and the fractional order γ adjusted such that is essentially whitens the background signal in

the image. Note that one recovers the classical Mexican hat filter for γ = 2.

To our knowledge, the only wavelet bases that exhibit a true Laplacian-like behavior are the polyharmonic spline

wavelets which we have fully characterized for the quincunx subsampling matrix in our earlier work [26]. Note that

quincunx subsampling is especially attractive for the present detection scenario because it provides a progressive

scale transition—i.e., a reduction by a factor of
√

2 as opposed to 2 for a more traditional dyadic analysis. While

the polyharmonic spline wavelets are compatible with (26) where γ > 1 is even allowed to be fractional, their

downside is that the corresponding smoothing function is not trully isotropic nor Gaussian. In fact, as γ increases,

the smoothing kernel for the orthogonal case converges to a sinc function which is clearly non-isotropic.

We will now show how to reshape these wavelets to make them perform as desired. The relevant functions for

our purpose are the “improved” polyharmonic B-splines of order γ whose Fourier-domian definition is (cf. [26])

β̂γ(ωωω) =
V (ejωωω)γ/2

||ωωω||γ
, (27)

with

V (ejωωω) =
(

8
3
(sin2(ω1/2) + sin2(ω2/2))
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(a) (b)

(c) (d)

Fig. 9. Polyharmonic spline wavelets for the quincunx subsampling matrix for order γ = 6. (a) Orthogonal polyharmonic spline wavelet.

(b) Semi-orthogonal B-spline wavelet. (c) Reshaped Mexican-hat analysis wavelet. (d) Gaussian-like smoothing kernel for the wavelet in (c).

+
2
3
(sin2

(
ω1 + ω2

2

)
+ sin2

(
ω1 − ω2

2

)
)
)
.

Note that V (ejωωω) is the transfer function of a discrete “most isotropic” version of the 2-D Laplace operator. Its

Laplace-like behavior near the origin (e.g. V (ejωωω) = ||ωωω||2 + O(||ωωω||4)) is crucial to neutralize the singularity

of the denominator; it is the key to obtaining a B-spline function that is well localized in space (in particular,

βγ(x) ∈ L2(R2)) and essentially isotropic [26].

The polyharmonic B-spline is a valid scaling function for any real γ > 1; its refinement and autocorrelation

filters are denoted by Hγ(ejωωω) and Aγ(ejωωω) =
∑

n∈Zd |β̂γ(ωωω + 2πn)|2, respectively. It is therefore possible to

build multidimensional wavelet bases by suitable linear combination, as in (23) with ϕ = βγ . Specifically, the

corresponding generic Fourier-domain formula for quincunx polyharmonic spline wavelets is (cf. [26])

ψ̂γ(MTωωω) = 2−
1
2 ejω1Hγ(−ejωωω)Aγ(−ejωωω)P (ejMT ωωω)︸ ︷︷ ︸

∝ Q(ejωωω)

β̂γ(ωωω), (28)

where βγ is the scaling function and where P is a filter (bounded from above and away from zero) that contains

the degrees of freedom for a semi-orthogonal basis design. In the orthogonal case, P (ejωωω) is uniquely tied to the

other quantities (refinement and autocorrelation filters Hγ and Aγ).

In the case of a redundant analysis, we are less constrained and we can replace Q(ejωωω) by any filter of our
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(a) (b)

(c)

Fig. 10. (a) Original fluorescence micrograph. (b) Its pyramid decomposition using the mexican-hat like wavelet of order γ = 2. (c) Its

pyramid decomposition using the orthogonal wavelet of order γ = 2.
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choice, as justified in subsection III:C. In the present case, we select the more convenient wavelet filter

Q′(ejωωω) = V (ejωωω)γ/2, (29)

where V (ejωωω)γ/2 is the localization filter in the numerator of (27). Note that this corresponds to the reshaping

factor

S(ejωωω) =
V (ejωωω)γ/2

ejω1Hγ(−ejωωω)Aγ(−ejωωω)P (ejMT ωωω)
, (30)

which has the required boundness property. The key observation here is that V (ejωωω)γ/2 and Hγ(−ejωωω) have the

exact same O(‖ω‖γ) behavior at the origin so that they essentially cancel each other, while all other terms are

bounded from above and away from zero. The Fourier transform of the new analysis wavelet ψ′ then simplifies to

ψ̂′γ(MTωωω) = 2−
1
2Q′(ejωωω)β̂γ(ωωω)

= 2−
1
2V (ejωωω)γ/2β̂γ(ωωω)

= 2−
1
2 ||ωωω||γ β̂2γ(ωωω),

which, in the space domain, is equivalent to

ψ′γ(M−1x) ∝ (−∆)γ/2β2γ(x). (31)

This last equation is now fully compatible with (26). Specifically, the new wavelet corresponds to the (γ/2)th

Laplacian of a polyharmonic B-spline of order 2γ, where γ is the order parameter that is adjustable by the user

in a continuous fashion. The smoothing function is now Gaussian-like and very nearly isotropic. In fact, we even

have the guarantee that it converge to a 2-D isotropic Gaussian with standard deviation
√

γ
6 as γ increases [26].

Three examples of polyharmonic spline wavelets are shown in Fig. 9. The first two generate wavelet bases of

L2(R2): wavelet (a) is orthogonal, while wavelet (b) is Gabor-like (modulated Gaussian); they are obviously both

less isotropic than the reshaped Laplacian-like wavelet which is shown in Fig. 9(c). The corresponding smoothing

filter is shown in Fig. 9(d) and is very much Gaussian-like. In principle, one may improve the isotropy of the third

wavelet even further by matching higher-order Laplacian terms in the numerator of the Fourier-domain definition

of the polyharmonic B-spline (data not shown, but available from the authors).

A concrete example of a Mexican-hat wavelet analysis of a fluorescence micrograph is displayed in Fig. 10 (b).

Note how the detection of the fluorescent spots is improved when using the reshaped wavelets instead of the

orthogonal ones [cf. Fig. 10 (c)].

V. CONCLUSION

We have introduced a general mechanism for improving the invariance properties and the feature extraction

capabilities of any multidimensional wavelet basis. We believe that such a fix is essential if one wants to make this

type of representation more attractive for analysis and processing purposes. Wavelet bases are elegant mathematically,

but they are inherently constrained due to the requirement for a non-redundant representation. In other words, there is

not much hope for coming up with an “ideal” wavelet basis that would simultaneously fulfill the following desirable
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properties for image processing: orthogonality (one-to-one representation), symmetry, good spatial localization,

shift-invariance, scale-invariance, rotation-invariance, smoothness, etc [42]. In fact, designing wavelet bases is

essentially an art in finding the best compromise among the above conflicting goals. Yet, the invariance properties

of the transform can be improved straightforwardly by adding basis functions, which then yields a wavelet frame.

However, this needs to accomplished parsimoniously, and this is where the technique proposed in this paper comes

in very handy. Indeed, one can easily control the redundancy and maintain it within a reasonable range (2 to

4); this is much more difficult to achieve with alternative scheme such as cycle spinning which are much more

demanding computationally and storage-wise. The pyramid-like reduction that is provided by the present approach

is advantageous from that perspective and also quite compatible with our present knowledge of the organization of

primary visual cortex.

A final aspect that we have explored briefly is the possibility of changing the wavelet filters to improve the quality

of the analysis. The possibilities there are almost limitless because there is essentially no constraint on the choice

of the reshaping filter Q′(ejω). We have illustrated the concept with the design of Mexican-hat-like wavelets whose

distinguishing property is to be very nearly isotropic. Also, the fact that these wavelets behave like multi-scale γth

order fractional derivative operators makes them prime candidates for the analysis of fractal processes. For instance,

one could easily estimate the local (isotropic) Hurst exponent (or, equivalently, an average Hölder exponent) of

a process based on the decay of the wavelet energy across scale (fitting of a straight line in a log-log plot). A

further advantage of the present type of analysis is that is offers a progressive scale transition (a reduction by
√

2

as opposed to the more traditional factor of 2).
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APPENDIX I

DERIVATION THE SUBBAND REGRESSION EQUATIONS

Let c[k] and d[k] be two N -vector signals of dimension d. We define the corresponding vector `2-inner product

〈c,d〉RN×`2 =
∑
k∈Zd

cT [k]d[k]

=
N∑

n=1

∑
k∈Zd

c(n)[k] d(n)[k]

where c(n)[k] denotes the nth component of c[k]. A basic signal processing operation for such signals is the matrix

convolution, which is defined as

(H ∗ c)[k] =
∑

k′∈Zd

H[k− k′]d[k′].
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The corresponding adjoint relation is

〈d,H ∗ c〉RN×`2 = 〈H/T ∗ d, c〉RN×`2

where H/T[k] with H/[k] , H[−k] is the transposed, space-reversed version of the matrix impulse response H.

This allows us to write the error criterion (15) as∣∣∣∣∣∣
∣∣∣∣∣∣
∑

m′∈Zd

gT
e [· −Mm′]d̃i−1[m′]− e[·]

∣∣∣∣∣∣
∣∣∣∣∣∣
2

RN×`2

.

The least-squares approximation corresponds to the orthogonal projection of e onto the subspace spanned by the

vector signals {g(n)
e [k−Mm]}m∈Zd with n = 1, . . . , N , where g(n)

e denotes the nth row vector of ge. The solution

is found by imposing the orthogonality of the approximation error:

〈
∑

m′∈Zd

gT
e [· −Mm′]d̃i−1[m′]− e[·], g(n)

e [· −Mm]〉RN×`2 = 0

for m ∈ Zd. By expanding and combining these equations for n = 1, . . . , N , we get∑
k∈Zd

∑
m′∈Zd

g/
e [Mm− k]gT

e [k−Mm′] d̃i−1[m′]

=
∑
k∈Zd

g/
e [Mm− k] e[k]

where we have introduced the space-reversed version of the basis function matrix g/
e [k] = ge[−k]. We then make

the change of variable k′ = k−Mm′:∑
m′∈Zd

∑
k′∈Zd

g/
e [M(m−m′)− k′]gT

e [k′] d̃i−1[m′]

=
∑
k∈Zd

g/
e [Mm− k] e[k]

Finally, we identify the inner sums as convolution operations, which yields the canonical form of the normal

equations ∑
m′∈Zd

(g/
e ∗ gT

e )[M(m−m′)] d̃i−1[m′] = (g/
e ∗ e)[Mm],

for any m ∈ Zd.

REFERENCES

[1] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Transactions on Image Processing,

vol. 1, no. 2, pp. 205–220, Apr. 1992.

[2] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still image coding system: An overview,” IEEE Transactions on Consumer

Electronics, vol. 16, no. 4, pp. 1103–1127, 2000.

[3] D. L. Donoho and I. M. Johnstone, “Ideal Spatial Adaptation via Wavelet Shrinkage,” Biometrika, vol. 81, pp. 425–455, 1994.

[4] S. G. Chang, B. Yu, and M. Vetterli, “Spatially Adaptive Wavelet Thresholding with Context Modeling for Image Denoising,” IEEE

Transactions on Image Processing, vol. 9, no. 9, pp. 1522–1531, September 2000.

[5] L. Sendur and I. W. Selesnick, “Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency,” IEEE

Transactions on Signal Processing, vol. 50, no. 11, pp. 2744–2756, 2002.

July 16, 2008 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, TO APPEAR 21

[6] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image Denoising using Scale Mixtures of Gaussians in the Wavelet Domain,”

IEEE Transactions on Image Processing, vol. 12, no. 11, pp. 1338–1351, November 2003.

[7] M. A. T. Figueiredo and R. D. Nowak, “An EM algorithm for wavelet-based image restoration,” IEEE Transactions on Image Processing,

vol. 12, no. 8, pp. 906–916, 2003.

[8] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,”

Comm. Pure Appl. Math, vol. 57, pp. 1413–1457, 2004.

[9] S. Mallat and W. Hwang, “Singularity detection and processing with wavelets,” IEEE Trans. Information Theory, vol. 38, no. 2, pp.

617–643, 1992.

[10] G. W. Wornell, “Wavelet-based representations for the 1/f family of fractal processes,” Proceedings of the IEEE, vol. 81, no. 10, pp.

1428–1450, 1993.

[11] S. G. Mallat, “A theory of multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell.,

vol. 11, no. 7, pp. 674–693, 1989.

[12] O. Rioul, “A discrete-time multiresolution theory,” IEEE Transactions on Signal Processing, vol. 41, no. 8, pp. 2591–2606, 1993.

[13] R. R. Coifman and D. L. Donoho, Wavelets and Statistics. Berlin, Germany: Springer-Verlag, 1995, ch. “Translation-invariant de-noising”,

pp. 125–150.

[14] P. Dutilleux, Wavelets: Time-Frequency Methods and Phase Space. Springer-Verlag, 1989, ch. “An implementation of the algorithme à
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