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Abstract— Our main goal in this paper is to set the founda-
tions of a general continuous-domain framework for designing
steerable, reversible signal transformations (a.k.a. frames) in
multiple dimensions (d ≥ 2). To that end, we introduce a
self-reversible, N th-order extension of the Riesz transform. We
prove that this generalized transform has the following remark-
able properties: shift-invariance, scale-invariance, inner-product
preservation, and steerability. The pleasing consequence is that
the transform maps any primary wavelet frame (or basis) of
L2(Rd) into another “steerable” wavelet frame, while preserving
the frame bounds. The concept provides a functional counterpart
to Simoncelli’s steerable pyramid whose construction was primar-
ily based on filterbank design. The proposed mechanism allows
for the specification of wavelets with any order of steerability in
any number of dimensions; it also yields a perfect reconstruction
filterbank algorithm. We illustrate the method with the design of
a novel family of multi-dimensional Riesz-Laplace wavelets that
essentially behave like the N th-order partial derivatives of an
isotropic Gaussian kernel.

I. INTRODUCTION

Scale and directionality are key considerations for visual
processing and perception. Researchers in image processing
and applied mathematics have worked hard on formalizing
these notions and on developing some corresponding feature
extraction algorithms and/or signal representation schemes.

The proper handling of the notion of scale in image process-
ing owes much to the work of Mallat who set the foundation
of the multiresolution theory of the wavelet transform which
involves continuously-defined functions in L2(Rd) [1]. The
remarkable aspect of this theory is that it yields a reversible
one-to-one decomposition of a signal across scale; unfor-
tunately, the underlying wavelet bases (which are typically
separable) have uneven angular responses; they are strongly
biased towards the vertical and horizontal directions.

The steerable filters of Freeman and Adelson constitute
another elegant framework that is more specifically tuned to
orientation [2]. The primary focus there is on the image
analysis aspect of the problem and the search for an efficient
computational scheme for the filtering of an image with a
reference template that can be oriented arbitrarily. Several
solutions have been suggested for the design of optimized
filtering templates [3]–[5]. Researchers have also proposed a
unifiying Lie-group formulation of steerability that allows for
the extension of the concept to others classes of transforma-
tions (e.g. translation and dilation) [6]–[8].

It is possible—and highly desirable conceptually—to rec-
oncile the two types of approaches by allowing for wavelet
decompositions with a certain level of redundancy [9]. In
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particular, Simoncelli and co-workers were able to design a
complete family of directional multi-scale transforms which is
indexed by the number of orientation bands k [9]–[11]. Their
steerable pyramid is over-complete by a factor 4k/3 + 1 and
has the important property of being self-inverting. Steerable
wavelets have also been proposed in the redundant frame-
work of the continuous wavelet transform, including some
constructions on the sphere [12]. While steerability is attractive
conceptually, it is obviously not a strict requirement; other
popular solutions to the problem of directional multiresolu-
tion image representations include the 2-D Gabor transform
[13], curvelets [14], the dual-tree complex wavelet transform
[15], [16], directional wavelet frames [17], contourlets [18],
bandelets [19], and directionlets [20].

The steerable pyramid has been used quite extensively
in image processing. Typical examples of applications in-
clude local orientation analysis, adaptive angular filtering, de-
formable templates [4], contour detection, shape from shading
[2], [9], texture analysis and retrieval [21]–[23], directional
pattern detection [24], feature extraction for motion tracking
[25] and, of course, image denoising [26], [27]. Mathemati-
cally, the steerable pyramid is a tight frame of `2(Z2), due to
the self-reversibility of the underlying discrete filterbank. The
link with wavelet theory would be complete if there was a
continuous-domain formulation of the transform, which has
not been worked out explicitly so far. The other point is
that Simoncelli’s construction is quite specific and difficult
to generalize to higher dimensions.

The purpose of this paper is to revisit the construction of
steerable wavelets and pyramids using a continuous-domain
operator-based formalism. The cornerstone of our approach
is the Riesz transform which constitutes the natural multi-
dimensional generalization of the Hilbert transform. The Riesz
transform has a long tradition in mathematics [28] and has
been studied extensively in the context of Calderón-Sygmund’s
theory of singular integral operators [29]. Its introduction to
signal processing is more recent. Felsberg used the transform
to define the “monogenic signal” as a 2-D generalization of
the analytical signal representation [30], [31]. This pioneering
work inspired Metikas and Olhede to specify a monogenic
version of the continuous wavelet transform which is a fully
redundant signal representation [32]. At about the same time
as Felsberg, Larkin independently introduced a complexified
version of the 2-D Riesz transform in optics—calling it
the spiral quadrature phase transform—and applied it to the
demodulation of interferograms and the analysis of fringe
patterns [33], [34]. In recent work, we took advantage of the
unitary property of this latter transform to specify a proper,
reversible wavelet-domain monogenic signal analysis with a
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minimal amount of redundancy [35].
Our present focus on the Riesz transform is motivated by its

invariance with respect to the primary coordinate transforma-
tions: translation, dilation and rotation (cf. Subsection II.D).
The first two invariance properties are ideally matched to the
framework of wavelets, while the latter provides a connection
with steerable filters and gradient-like signal analyses [35],
[36]. The formal extension of this link calls for a higher-order
version of the transform, which we introduce in Subsection
II.E. Thanks to this operator, we are able to take any multires-
olution decomposition of L2(Rd) and to map it into a series
directional counterparts. The direct benefits of the proposed
methodology are:

A general framework for constructing families of steer-
able wavelet frames and pyramids of L2(Rd) with arbitrary
orders1 in any number of dimensions d ≥ 2.

A clear decoupling between the multiresolution and the
steerability aspects of the representation. In the present
work, we adopt a less constraining definition of a steerable
transform which does not require the basis functions to
be rotated versions of one another—the basic requirement
is that the component subspaces be rotation-invariant [7].
This offers design flexibility and also carries over naturally
to dimensions greater than two.

A continuous-domain formulation that formalizes and
extends the technique proposed by Simoncelli et al.; in
essence, it represents the multiresolution theory of L2(Rd)
counterpart of their original filterbank design. The perfect
reconstruction property and closedness in L2(Rd) is auto-
matically guaranteed.

A full control over the regularity (Sobolev smoothness)
and approximation theoretic properties (vanishing mo-
ments, order of approximation, etc.) of the basis functions.

The perspective of a purely analytical design of novel
families of bona-fide steerable wavelets—in particular,
higher-order Riesz-Laplace wavelets which admit explicit
closed-form formulas in any number of dimensions.

The paper is organized as follows. In Section II, we review
the mathematical properties of the Riesz transform; we then
proceed with the specification of a higher-order transform that
has the fundamental property of conserving energy. Another
crucial property is that the components of our higher-order
Riesz transform define a subspace that is rotation-invariant,
which is the key to steerability. In Section III, we prove
that the Riesz transform and its higher-order extension have
the property of mapping a wavelet frame of L2(Rd) onto
another one, while preserving the frame bounds. We thereby
establish a natural correspondence between a (quasi-isotropic)
wavelet frame and its directional Riesz counterparts. In Sec-
tion IV, we explicitly make the connection between the 2-D
version of our generalized Riesz transform and Simoncelli’s
construction. In doing so, we also introduce an extended
angular parametrization of a rotating filterbank that ensures
self-reversibility. In Section V, we illustrate our concept with
the specification of an extended family of high-order steerable

1In this work, we do equate the notions of order of steerability and the
order of the Riesz transform.

Riesz-Laplace wavelets. The distinguishing features of these
wavelets is that they correspond to the N th-order derivatives
of a multi-dimensional B-spline kernel. The Gaussian shape
of the underlying smoothing kernel, which is common to all
wavelets, makes the transform attractive for multi-dimensional
feature extraction. We conclude the paper by summarizing the
key features of our approach and by discussing the similarities
and differences with existing directional transforms.

II. THE RIESZ TRANSFORM AND ITS HIGHER-ORDER
EXTENSIONS

The purpose of this section is to lay the mathematical
foundations for our approach in a fashion that is self-contained
and geared towards a signal processing audience. We start
by reviewing the primary features of the Riesz transform
with a special emphasis on its invariance properties. We then
introduce a novel higher-order extension of the transform that
is specifically designed to preserve inner-products (subsection
E). The important aspect that we want to bring forth is the
link between these generalized Riesz operators and steerable
filterbanks, as introduced by Freeman and Adelson.

A. Notations

We consider a generic d-dimensional signal f indexed by
the continuous-domain space variable x = (x1, . . . , xd) ∈ Rd.
The multidimensional Fourier transform of f ∈ L1(Rd) is
specified as

f̂(ω) =
∫

Rd

f(x)e−j〈ω,x〉dx1 · · ·dxd,

with ω = (ω1, . . . , ωd) ∈ Rd. This definition is extended
appropriately for Lebesgue’s space of finite energy functions
L2(Rd), as well as for Schwartz’s class of tempered distri-
butions S ′(Rd). We recall that the squared L2-norm of f is
given by

‖f‖2L2(Rd) =
∫

Rd

|f(x)|2dx1 · · ·dxd

=
1

(2π)d

∫
Rd

|f̂(ω)|2dω1 · · ·dωd

where the right-hand side follows from Parseval’s identity.
The adjoint of a linear operator L : L2(Rd) → L2(Rd) is
denoted by L∗; it is such that 〈f,Lg〉L2 = 〈L∗f, g〉L2 ,∀f, g ∈
L2(Rd).

The fractional Laplacian (−∆)s/2 with s ∈ R+ is the
isotropic differential operator of order s whose Fourier-domain
definition in the sense of distributions is

(−∆)
s
2 f(x) F←→ ‖ω‖sf̂(ω). (1)

For s/2 = n ∈ N, it is a purely local operator that is
proportional to the classical n-fold Laplacian. Otherwise, its
effect is non-local and described by the following distribu-
tional impulse response [37]

Cs,d

‖x‖s+d

F←→ ‖ω‖s, (2)
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where Cs,d =
2sΓ( d+s

2 )
πd/2Γ(−s/2)

is an appropriate normalization
constant and Γ(r) = (r− 1)! is Euler’s gamma function. The
definition (1) of the fractional Laplacian can be extended to
negative orders as well, which leads to a fractional integral-
like behavior. The so-defined family of fractional operators
satisfies the composition rule (−∆)α1(−∆)α2 = (−∆)α1+α2

which follows directly from their Fourier-domain definition,
with the convention that (−∆)0 = Identity. Note, however,
that the fractional integral (−∆)−s/2f with s > 0 is well-
defined only for functions (or distributions) f whose moments
up to order dse are zero, due to the singularity of the frequency
response at the origin.

We will use the multi-index notation to state some of
our results concisely: specifically, n = (n1, . . . , nd) is a
d-dimensional multi-index vector with non-negative integers
entries; |n| =

∑d
i=1 ni; zn = zn1

1 · · · z
nd

d for any z =
(z1, . . . , zd) ∈ Cd; and n! = n1!n2! · · ·nd!. With these
conventions, the multinomial theorem reads

(z1 + · · ·+ zd)N =
∑

|n|=N

N !
n!

zn,

where the summation is over all multi-indices n satisfying the
condition |n| = N .

B. The 1-D Hilbert transform

The Hilbert transform plays a central role in the analytical
signal formalism which is a powerful tool for AM/FM analysis
[38]. It is a 1-D linear, shift-invariant operator whose defining
property is to maps all cosine functions into their corre-
sponding sine functions, without affecting their amplitude. The
Hilbert operator, denoted by H, therefore acts as an allpass
filter; it is characterized by the transfer function ĥ(ω) =
−jsign(ω) = −jω/|ω|. Its impulse response (in the sense
of distributions) is h(x) = 1/(πx), which is slowly decaying,
expressing the fact that H is a non-local operator. A potential
mathematical difficulty is that h(x) /∈ L1(R) which means
that the corresponding filter is not BIBO-stable (bounded in-
put/bounded output), even though it is well-behaved in the L2-
sense (e.g., bounded and perfectly reversible). A remarkable
property in this latter respect is that H−1 = −H = H∗,
indicating that H is a unitary operator; this follows directly
from the Fourier-domain definition.

C. The Riesz transform

The Riesz transform is the natural multidimensional exten-
sion of the Hilbert transform [29]. It is the scalar-to-vector
signal transformation R whose frequency-domain definition
is

R̂f(ω) = −j ω

‖ω‖
f̂(ω) (3)

where f̂(ω) is the Fourier transform of the d-dimensional
input signal f(x). This corresponds to a multidimensional d-
channel filterbank whose space-domain description is

Rf(x) =

 R1f(x)
...

Rdf(x)

 =

 (h1 ∗ f)(x)
...

(hd ∗ f)(x)

 (4)

where the filters (hn)d
n=1 are characterized by their frequency

responses ĥn(ω) = −jωn/‖ω‖. To obtain explicit space-
domain expressions, it is helpful to view these filters as partial
derivatives of the function g(x) = F−1{‖ω‖−1}(x) (the
impulse response of the isotropic integral operator (−∆)−

1
2 ).

Specifically, by making use of the Fourier-transform relation
(2) (which is also valid for negative s provided that s + d /∈
−2N [37]), we get

g(x) =
C−1,d

‖x‖d−1
=

1
2Γ
(

d−1
2

)
π

d+1
2

· 1
‖x‖d−1

,

which we then differentiate to obtain

hn(x) = − ∂

∂xn
g(x) =

(d−1)C−1,d︷ ︸︸ ︷
Γ
(

d+1
2

)
π

d+1
2

· xn

‖x‖d+1
.

The case d = 1 is excluded from the above argument; in that
particular instance, we have g(x) = log |x|

π whose derivative
yields h(x) = −dg(x)

dx = 1/(πx). The explicit form of these
various operators for d = 1, 2, 3, 4 is recapitulated in Table 1
for further reference.

Note that the impulse responses of the Riesz transform are
all anti-symmetric: Rn{δ}(x) = hn(x) = −hn(−x) and
essentially decaying like 1/‖x‖d where d is the number of
dimensions. While the Riesz transform remains a non-local
operator, it is interesting to observe that the delocalization
becomes less pronounced in higher dimensions. It is also
known from functional analysis that the Riesz transform is
a bounded operator for the primary Lebesgue spaces; i.e.,

∀f ∈ Lp(Rd), ‖Rf‖Ld
p
≤ Ad,p · ‖f‖Lp . 1 < p <∞ (5)

where the Ad,p are some suitable constants [29]. The singular
aspect of the transform is that the extreme cases p = 1,+∞
are excluded; this also reflects the fact that the Riesz transform
is not stable in the ordinary BIBO sense. Fortunately for us,
the situation is particularly favorable for p = 2, as will be
seen next (cf. Property 3).

D. Properties of the multidimensional Riesz transform

We now present and discuss the key properties of the
operator R.

Property 1 (Invariances): The Riesz transform is
translation- and scale-invariant:

∀x0 ∈ Rd, R{f(· − x0)}(x) = R{f(·)}(x− x0)
∀a ∈ R+, R{f(·/a)}(x) = R{f(·)}(x/a)

The translation invariance directly follows from the definition,
while the scale invariance is easily verified in the Fourier
domain.

Remarkably, the Riesz transform is also rotation-invariant.
To formalize this property, we consider the group of rotation
matrices in Rd. Specifically, let Ru denote a d × d rotation
matrix whose first row is the unit vector u = (u1, . . . , ud);
i.e., [Ru]1,n = [u]n = un (Ru is such that it rotates the first
coordinate vector e1 into u).
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TABLE I
RIESZ TRANSFORM COMPONENTS AND RELATED DIFFERENTIAL OPERATORS FOR d = 1, 2, 3, 4

Operator (−∆)−
1
2 Rn = − ∂

∂xn
(−∆)−

1
2 (−∆)

1
2

Frequency response
1

‖ω‖
−jωn

‖ω‖
‖ω‖

Impulse responses

d = 1
log |x|
π

1

πx

−1

π|x|2

d = 2
1

2π‖x‖
xn

2π‖x‖3
−1

2π‖x‖3

d = 3
1

2π2‖x‖2
xn

π2‖x‖4
−1

π2‖x‖4

d = 4
1

4π2‖x‖3
3xn

4π2‖x‖5
−3

4π2‖x‖5

Property 2 (Steerability): The Riesz transform filterbank
defined by (4) is steerable in the sense that

h1(Rux) = 〈u,Rδ(x)〉 =
d∑

n=1

unhn(x),

while the component filters are 90◦ rotated versions2 of each
other; i.e., hn(x) = h1(Renx) where [en]k = δk.

This is shown by using the rotation property of the Fourier
transform

h1(Rux) F←→ ĥ1(Ruω) = −j [Ruω]1
‖Ruω‖

=
d∑

n=1

−j unωn

‖ω‖

=
d∑

n=1

unĥn(ω).

The above result implies that the Riesz transform commutes
with rotations, as expressed by the following property of its
impulse response

R{δ}(Rux) = RuR{δ}(x)

where δ(x) =
∏d

n=1 δ(xn) is the multidimensional Dirac
distribution.

Property 2 suggests linking the Riesz transform to the
following directional version of the Hilbert transform

Huf(x) =
d∑

n=1

unRnf(x) = 〈u,Rf(x)〉 (6)

whose impulse response hu(x) = h1(Rux) simply corre-
sponds to the rotated version of h1(x). Note that the associa-
tion between the Riesz and the directional Hilbert transforms
is essentially the same as the link between the gradient and
the directional derivative (more on this later).

2In general, a single vector (or direction) is not sufficient to specify a
rotation matrix in d dimensions. In the present case, however, the functions
hi(x) are isotropic within the hyperplane perpendicular to the corresponding
coordinate vector ei so that our “geometrical” statements implicitly refer to
a whole equivalence class of rotation matrices.

It is instructive to determine the Riesz transform of a pure
cosine wave with frequency (or wave number) ω0. A simple
Fourier calculation yields

R{cos(ωT
0 x)}(x) =

ω0

‖ω0‖
sin(ωT

0 x).

We can then apply (6) and recover the corresponding sine wave
by steering the directional Hilbert transform in the appropriate
direction u0 = ω0

‖ω0‖ :

Hu0{cos(ωT
0 x)}(x) = sin(ωT

0 x).

This desirable behavior follows from the fact that the central
cut of the frequency response of Hu along the direction u
perfectly replicates the behavior the 1-D Hilbert transform:
Hu(ωu) = −jsign(ω). The only limitation of the technique
is that the ideal Hilbert-transform-like behavior falls off like
〈u,u0〉 (the cosine of the angle), which calls for a precise
adjustment of the analysis direction u0.

Property 3 (Inner-product preservation): The Riesz trans-
form satisfies the following Parseval-like identity

∀f, φ ∈ L2(Rd), 〈Rf,Rφ〉Ld
2

=
d∑

n=1

〈Rnf,Rnφ〉L2

= 〈f, φ〉L2 .
This is established by using Parseval’s relation for the Fourier
transform

d∑
n=1

〈Rnf,Rnφ〉L2

=
1

(2π)d

d∑
n=1

∫
Rd

−j ωn

‖ω‖
f̂(ω) j

ωn

‖ω‖
φ̂∗(ω) dω1 · · ·dωd

=
1

(2π)d

∫
Rd

∑d
n=1 ω

2
n

‖ω‖2
f̂(ω) φ̂∗(ω) dω1 · · ·dωd

=
1

(2π)d
〈f̂ , φ̂〉L2 = 〈f, φ〉L2
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A similar manipulation leads to the identification of the
adjoint operator, which is specified by

R∗r(x) = R∗
1r1(x) + · · ·+R∗

drd(x) F←→ j
ωT

‖ω‖
r̂(ω),

(7)
where r(x) = (r1(x), . . . , rd(x)) is a generic finite-energy
d-vector signal and R∗

n = −Rn. It also corresponds to the
left inverse of the transform R−1 = R∗, owing to the fact
that

(
j ωT

‖ω‖

)
×
(
−j ω

‖ω‖

)
= 1. A direct consequence is the

energy conservation property

‖Rf‖2Ld
2

=
d∑

n=1

‖Rnf‖2L2
= ‖f‖2L2

, (8)

which emphasizes the unitary character of the transform.
We conclude this section by listing a few additional func-

tional properties of the components of the Riesz transform for
specific classes of signals or basis functions.

Property 4 (Orthogonality): Let ψ(x) ∈ L2(Rd) be a
real-valued function whose Fourier transform ψ̂ satisfies
the coordinate-wise symmetry relations: |ψ̂(ω1, . . . , ωd)|2 =
|ψ̂(±ω1, . . . ,±ωd)|2. Then,

〈Rnψ,ψ〉L2 = 0, for n = 1, . . . , d
〈Rnψ,Rmψ〉L2 = 0, when m 6= n.

Proof: The direct application of Parseval’s relation yields

〈Rnψ,Rmψ〉L2

=
1

(2π)d

∫
Rd

−j ωn

‖ω‖
ψ̂(ω) j

ωm

‖ω‖
ψ̂∗(ω) dω1 · · ·dωd

=
1

(2π)d

∫
Rd

ωnωm
|ψ̂(ω)|2

‖ω‖2
dω1 · · ·dωd

=
1

(2π)d

∫
R
ωn

∫
Rd−1

ωm
|ψ̂(ω)|2

‖ω‖2
dω1 · · ·dωd︸ ︷︷ ︸

φ(ωn)

dωn = 0

The partial integration with respect to all frequency variables
except ωn yields the auxiliary function φ(ωn) which is sym-
metric, as a consequence of our hypotheses. The product func-
tion ωnφ(ωn) is therefore anti-symmetric, which necessarily
leads to a vanishing outer integral.

While the assumptions for Property 4 do not hold for arbi-
trary signals, they are met by most basis functions commonly
used for image processing. Indeed, the required symmetry
relations are satisfied by all functions that are either separable
(because of the Hermitian symmetry of the 1-D Fourier trans-
form), isotropic, or coordinate-wise symmetric/anti-symmetric
in the space domain (up to some arbitrary translation).

The smoothness of a function is often specified by its
inclusion in the Sobolev space W s

2 (the class of functions
that are “s-times” differentiable in the L2-sense) [39]. A nice
feature of the Riesz transform is that it fully preserves Sobolev
regularity.

Property 5 (Sobolev smoothness): f ∈ W s
2 (Rd) ⇔

Rnf ∈W s
2 (Rd) for n = 1, . . . , d.

Proof: The explicit definition of Sobolev’s space of order s is:

W s
2 (Rd) =

{
f(x),x ∈ Rd : ‖f‖2L2

+ ‖(−∆)s/2f‖2L2
< +∞

}

where (−∆)s/2 is the isotropic derivative operator of order s
[cf. (1)]. The Sobolev smoothness equivalence then directly
follows from the energy preservation property (8) and the
translation invariance of R, which implies that ‖f‖2L2

=∑d
n=1 ‖Rnf‖2L2

> ‖Rnf‖2L2
, and ‖(−∆)s/2f‖2L2

=∑d
n=1 ‖Rn(−∆)s/2f‖2L2

> ‖(−∆)s/2Rnf‖2L2
.

In this work, we will use the Riesz transform to map a set
of primary wavelets into another augmented one. Property 1
and 3 are essential for that purpose because they ensure that
the mapping preserves the scale- and shift-invariant structure
as well as the L2-stability of the representation. Note that the
latter goes hand-in-hand with the reversibility of the transform
and its ability to perfectly represent all finite-energy signals.
Thanks to Property 5, we also have the guarantee that the
Riesz wavelets are functionally well-behaved in that they retain
the same regularity (degree of differentiability) as the primary
templates from which they are derived. Property 4 is relevant
as well because it enforces a certain level of coordinate-wise
orthogonality which is potentially favorable for local feature
extraction and signal analysis. Finally, we will be able to take
advantage of Property 2 to design wavelet transforms whose
basis functions are steerable.

E. Higher-order Riesz transform

It is also possible to define higher-order Riesz transforms
by considering individual signal components of the form
Ri1Ri2 · · ·RiN

f with i1, i2, · · · iN ∈ {1, · · · , d}. While there
are dN possible ways of forming such N th order terms, there
are actually much less distinct Riesz components due to the
commutativity and factorization properties of the underlying
convolution operators. Our definition of higher-order transform
removes this intrinsic redundancy and is based on the follow-
ing operator identity.

Theorem 1: The N th-order Riesz transform achieves the
following decomposition of the identity

∑
|n|=N

N !
n!

(Rn1
1 · · ·R

nd

d )∗ (Rn1
1 · · ·R

nd

d ) = Id

using the multi-index vector n = (n1, · · · , nd).
Here,Rk

n denotes the k-fold iterate ofRn, while the weighting
factors in the expansion are the multinomial coefficients of
order |n| = N

|n|!
n!

=
(

N

n1, . . . , nd

)
=

N !
n1!n2! · · ·nd!

.

Proof: By applying the Theorem’s left-hand side decomposi-
tion to an input signal f , we obtain a series of components of
the form

gn1,...,nd
(x) = (Rn1

1 · · ·R
nd

d )∗ (Rn1
1 · · ·R

nd

d ) f(x).

This corresponds to a convolution whose Fourier-domain
equivalent is
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ĝn1,...,nd
(ω) =

(
jω

‖ω‖

)n(−jω
‖ω‖

)n

f̂(ω)

=
(
|ω1|2

‖ω‖2

)n1

· · ·
(
|ωd|2

‖ω‖2

)nd

f̂(ω)

=
|ω1|2n1 · · · |ωd|2nd

‖ω‖2N
f̂(ω). (9)

Now, we obviously have the identity

f̂(ω) =
‖ω‖2N

‖ω‖2N
f̂(ω) =

(
|ω1|2 + · · ·+ |ωd|2

)N
‖ω‖2N

f̂(ω).

Next, we apply the multinomial theorem to expand the central
factor

f̂(ω) =
∑

|n|=N

N !
n!
|ω1|2n1 · · · |ωd|2nd

‖ω‖2N
f̂(ω)

=
∑

|n|=N

N !
n!

ĝn1,··· ,nd
(ω)

where we have identified the relevant higher-order reconstruc-
tion components using (9).

From the above, it is clear that an N th order Riesz transform
decomposes a signal into p(N, d) distinct components, where
p(N, d) =

(
N+d−1

d−1

)
is the cardinality of the indexing set {n ∈

Nd s.t. |n| = N}. We also want to ensure that the transform
preserves energy which calls for an appropriate normalization.
We therefore specify the N th order Riesz transform of the
signal f as the p(N, d)-vector signal transformation whose
components are given by

fn = Rnf =
√

N !
n1! · · ·nd!

Rn1
1 · · ·R

nd

d f. (10)

In some instances, we will use the more concise vector
notation R(N)f , keeping in mind that each component is
associated with its own normalized, N th-order Riesz operator
R(n1,...,nd), as defined above.

Note that the number of higher-order components roughly
increases like the (d − 1)th power of the dimension. For
instance, p(N, 1) = 1, p(N, 2) = N +1, and p(N, 3) = (N +
2)(N + 1)/2. The good news is that the increase is moderate
in dimension 2 (the context of image processing) and still
manageable in dimension 3 (volumetric imaging). The case
d = 1 is uninteresting since the higher-order transform cycles
back and forth between the identity and the conventional
Hilbert transform.

Not too surprisingly, the higher-order Riesz transform inher-
its all the fundamental properties of the operator R, as these
are preserved through the iteration mechanism.

Property 6: The higher-order Riesz transforms R(N) are
translation and scale-invariant.

What is more remarkable is the higher-order inner-product
preservation property—it comes as a corollary of the decom-
position of the identity given by Theorem 1.

Property 7: The N th-order Riesz transform satisfies the
following Parseval-like identity

∀f, φ ∈ L2(Rd), 〈R(N)f,R(N)φ〉
L

p(N,d)
2

=∑
|n|=N

〈Rnf,Rnφ〉L2 = 〈f, φ〉L2 .

In particular, by setting f = φ in the above property,
we observe that the higher-order Riesz transform perfectly
preserves the L2-norm of the signal. The generalized version
of this result is the boundedness of the higher-order Riesz
transform for the classical Lebesgue spaces (with the notable
exception of p = 1,+∞).

Property 8: The higher-order Riesz transform satisfies the
following norm inequalities:

∀f ∈ Lp(Rd), ‖R(N)f‖
L

p(N,d)
p

≤ Ad,p,N ·‖f‖Lp
1 < p <∞

where the Ad,p,N are appropriate constants.
Since the higher-order Riesz transform can be decomposed
into a succession of first-order transforms, the result is a con-
sequence of the Lp boundedness of all elementary component
transformations (cf. (5)).

The final important feature is rotation invariance; it is inti-
mately linked to the concept of steerability which is discussed
in the next section.

F. Higher-order steerability

The most interesting aspect of the higher-order Riesz trans-
form is its steerability which also comes hand-in-hand with
improved angular selectivity. To best explain this behavior, we
relate R(N) to the N -fold version of the directional Hilbert
transform Hu along the direction specified by the unit vector
u. To that end, we write the Fourier-domain equivalent of (6)

Ĥuf(ω) =
d∑

i=1

ui
−jωi

‖ω‖
f̂(ω). (11)

We then iterate the operator N times and expand the right-
hand side using the multinomial theorem

ĤN
u f(ω) =

(
−j 〈u,ω〉
‖ω‖

)N

f̂(ω) (12)

=

(
d∑

i=1

ui
−jωi

‖ω‖

)N

f̂(ω)

=
∑

|n|=N

N !
n!

un

(
−jω
‖ω‖

)n

f̂(ω).

Finally, we go back to the space domain, which yields

HN
u f(x) =

∑
|n|=N

N !
n!
un1

1 R
n1
1 · · ·u

nd

d R
nd

d f(x)

=
∑

|n|=N

√
N !
n!

unRnf(x)

=
∑

|n|=N

cn1,...,nd
(u) f (n1,...,nd)(x) (13)
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1

R(N,0,··· ,0)

cN,0,··· ,0(u)

R(n1,··· ,nd)

cn1,··· ,nd(u)

R(0,··· ,0,N)

HN
u f(x)f(x)

...
...

...... c0,··· ,0,N (u)

f (N,0,··· ,0)

f (n1,··· ,nd)

f (0,··· ,0,N)

Fig. 1. Steerable filterbank implementation of the N th order directional
Hilbert transform in multiple dimensions. The output signal is formed by
taking an appropriate linear combination of the components of the N th order
Riesz transform of the signal. The scheme is adaptive in the sense the direction
of analysis u may vary spatially.

where the “steering” coefficients are given by

cn1,...,nd
(u) =

√
N !

n1! · · ·nd!
(un1

1 · · ·u
nd

d ). (14)

The signal processing transcription of (13) leads to the block
diagram in Fig. 1. The corresponding system falls within
the general framework of steerable filterbanks of Freeman
and Adelson [2], although these authors did not pursue their
concept for dimensions larger than 3. The main point is that we
can apply a p(N, d)-channel filterbank with impulse responses
{hn = Rnδ}(|n|=N) to the signal f and then compute
HN

u f(x) along any direction u by forming an appropriate
linear combination with the weights given by (14). While some
authors define the order of steerability as the dimension of the
invariant subspace k = p(N, d),

The argument also extends for generalized Riesz operators
of the form aT R(N) where a is a given p(N, d)-vector
of weights. This implies that the function space VN,d =
span{hn(x)}(|n|=N) is rotation-invariant and that there is a
simple weighting mechanism for steering generalized Riesz
operators in arbitrary directions. Following this line of thought,
it is also possible to define generalized higher-order Riesz
operators of the form AR(N) where A is a p(N, d)×p(N, d)
non-singular complex matrix. This generalized operator will
share all the fundamental properties of R(N) (shift-invariance,
scale-invariance and steerability) and will preserve inner-
products provided that A = U is a unitary matrix. Indeed,
such a representations leads to the following decomposition
of the identity which comes as a corollary of Theorem 1:(

UR(N)
)∗ (

UR(N)
)

=
(
R(N)

)∗
UHU︸ ︷︷ ︸

I

R(N)

=
(
R(N)

)∗
R(N) = Id (15)

This simple mechanism offers additional degrees of freedom
for shaping higher-order impulse responses and designing
steerable, reversible filterbanks in arbitrary dimensions.

It is also instructive to investigate the directional behavior
of the operator HN

u which corresponds to the u-directional
version of the operator RN

1 . The important point is that its

frequency response ĤN
u (ω) =

(
−j 〈u,ω〉

‖ω‖

)N

= (−j cos θ)N

does not depend upon the radial frequency ω = ‖ω‖, but
only upon the angle θ between ω and the direction vector
u. It is maximum along the direction θ = 0; along that
ray, ĤN

u (uω) = (−jsgn(ω))N which coincides (up to a
sign change) with the 1-D identity when N is even (sym-
metric operator) and the 1-D Hilbert transform otherwise
(anti-symmetric operator). As θ increases from 0 to π/2, the
response falls off like cos(θ)N —a clear indication that angular
selectivity improves with N .

G. Connection with the gradient and partial-derivatives

There is a direct connection between the Riesz transform
and the gradient, which is easily seen in the frequency domain.
Specifically, we have that

∇f(x) = (−1)(−∆)
1
2 Rf(x) (16)

where (−∆)
1
2 is the square-root-Laplace operator whose fre-

quency is ‖ω‖ [cf. Table 1]. The converse relation is

Rf(x) = (−1)(−∆)−
1
2∇f(x), (17)

which should be interpreted as a smoothed version of the gra-
dient (up to a sign change); the integral operator (−∆)−

1
2 acts

on all derivative components and has an isotropic smoothing
effect.

The directional counterparts of this last equation is:

Huf(x) = (−1)(−∆)−
1
2 Duf(x) (18)

where Hu is defined by (6) and where Duf = 〈∇f,u〉 is the
derivative of f along the direction u.

By iteration, we obtain the link with the partial derivatives
of order N = n1 + · · ·+ nd:

Rn1
1 · · ·R

nd

d f(x) = (−1)N (−∆)−
N
2

∂Nf(x)
∂n1x1 · · · ∂ndxd

(19)

and the higher-order directional derivatives:

HN
u f(x) = (−1)N (−∆)−

N
2 DN

u f(x) (20)

The crucial element here is the fractional integral operator of
order N : (−∆)−

N
2

F←→ 1/‖ω‖N . It is an isotropic lowpass
filter whose smoothing strength increases with N . The global
interpretation of these relations is that there is a one-to-one
connection between Riesz components and spatial derivatives
with the former being smoothed versions of the latter. The
Riesz transform therefore captures the same directional in-
formation as derivatives but it has the advantage of being
much better conditioned since there is no amplification of high
frequencies. We will now see how we can exploit its invariance
and reversibility properties to construct new steerable wavelet-
type decompositions.

III. GENERAL CONSTRUCTION OF STEERABLE WAVELET
FRAMES

The pleasing consequence of Property 3 is that the Riesz
transform will automatically map any frame of L2(Rd) into
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another one. This fundamental observation was made indepen-
dently by Held et al. [36] in full generality, and by us in the
more constrained 2-D setting, considering a complex version
of the Riesz transform that defines a unitary mapping from
L2(R2) into itself [35]. Here, we will present a proper N th-
order extension of these ideas. Before establishing the results,
we start by recalling a few basic facts about frames [40]–[42].

Definition 1: A family of functions {φk}k∈Zd is called a
frame of L2(Rd) iff. there exists two strictly positive constants
A and B <∞ such that

∀f ∈ L2(Rd), A ‖f‖2L2
≤
∑

k∈Zd

|〈φk, f〉L2 |
2 ≤ B ‖f‖2L2

.

(21)
The frame is called tight iff. the frame bounds can be chosen
such that A = B. If A = B = 1, we have a Parseval frame that
satisfies the remarkable decomposition/reconstruction formula

∀f ∈ L2(Rd), f =
∑

k∈Zd

〈φk, f〉L2 φk.

While the form of this expansion is the same as that associated
with an orthonormal basis, the fundamental aspect of the frame
generalization is that the family (φk) may be redundant. More
generally, we have that

∀f ∈ L2(Rd), f =
∑

k∈Zd

〈φk, f〉L2 φ̃k

where (φ̃k) is a so-called dual frame. While the dual frame is
not unique in the redundant case, there is one—the so-called
canonical one—that is used preferentially since it maps into
the minimum-norm inverse [42].

We are now ready to state the fundamental frame preser-
vation property of the N th order Riesz transform, which
generalizes the first-order result of Held et al.

Proposition 1: The N th order Riesz transform maps
the frame {φk}k∈Zd of L2(Rd) into another frame
{Rnφk}(|n|=N,k∈Zd) that has the same frame bounds and a
redundancy increased by p(N, d) =

(
N+d−1

d−1

)
.

Proof: First we observe that ‖Rnf‖L2 = ‖Rn∗f‖L2 ≤
‖f‖L2 where Rn∗ = (−1)NRn is the adjoint of the n-
component Riesz operator Rn defined by (10). We can
therefore apply the frame inequality (21) to each (adjoint)
component of the N th-order Riesz transform:

A ‖Rn∗f‖2L2
≤
∑

k∈Zd

|〈φk,Rn∗f〉L2 |
2 ≤ B ‖Rn∗f‖2L2

Next, we sum up these inequalities over the multi-index
components |n| = N , which yields

A ‖f‖2L2
≤
∑

k∈Zd

∑
|n|=N

|〈φk,Rn∗f〉L2 |
2 ≤ B ‖f‖2L2

where we have made use of the energy preservation feature
of the Riesz transform which is implied by Property 7. The
proposition then simply follows from the adjoint-defining
relation 〈φk,Rn∗f〉L2 = 〈Rnφk, f〉L2 .

What is of even greater significance to us is that the N th-
order Riesz transform will transform any wavelet frame into
another one, thanks to its translation- and scale-invariance

properties. Specifically, let us consider the following wavelet
decomposition of a finite energy signal:

∀f ∈ L2(Rd), f(x) =
∑
i∈Z

∑
k∈Zd

〈f, ψi,k〉L2 ψ̃i,k(x), (22)

where the wavelets at scale i are dilated versions of the ones
at the reference scale i = 0: ψi,k(x) = 2−id/2ψ0,k(x/2i).
General wavelet schemes also have an inherent translation-
invariant structure in that the ψ0,k’s are constructed from the
integer shifts (index k) of up to 2d distinct generators (mother
wavelets).

For convenience, we now use a multi-index representation
of the corresponding N th-order Riesz wavelets, which are
defined as follows

ψn
i,k(x) = Rnψi,k =

√
N !

n1! · · ·nd!
Rn1

1 · · ·R
nd

d ψi,k, (23)

with n = (n1, . . . , nd) and |n| =
∑d

i=1 ni = N .
Proposition 2: Let {ψi,k} be a primal wavelet frame of

L2(Rd) associated with the reconstruction formula (22).
Then, {ψn

i,k}(|n|=N,k∈Zd) and {ψ̃n
i,k}(|n|=N,k∈Zd) form a

dual set of wavelet frames satisfying the general decompo-
sition/reconstruction formula

∀f ∈ L2(Rd), f(x) =
∑
i∈Z

∑
k∈Zd

∑
|n|=N

〈f, ψn
i,k〉L2 ψ̃

n
i,k(x).

Proof: Theorem 1 is equivalent to the following decompo-
sitions of the identity operator:∑

|n|=N

Rn∗Rn =
∑

|n|=N

RnRn∗ = Id, (24)

which allows us to interchange the role Rn and Rn∗

when analyzing (resp. synthesizing) a signal. First, we apply
the wavelet decomposition (22) to the transformed signals
Rn∗f ∈ L2(Rd) for all n such that |n| = N :

Rn∗f(x) =
∑
i∈Z

∑
k∈Zd

〈Rn∗f, ψi,k〉L2 ψ̃i,k(x)

=
∑
i∈Z

∑
k∈Zd

〈f,Rnψi,k〉L2 ψ̃i,k(x) (by duality).

We then make use of (24) to resynthesize f :

f(x) =
∑

|n|=N

RnRn∗f(x),

which yields the desired reconstruction formula by linear-
ity. The final ingredient for this construction is Property 6,
which ensures that the wavelet structure is conserved; i.e.,
Rnψi,k(x) = 2−id/2Rnψ0,k(x/2i), as well as the basic shift-
invariant structure that involves a finite number of generators
which are the higher-order Riesz transforms of the primary
mother wavelets.

If, in addition, the mother wavelets in (22) are (quasi-
)isotropic, then we end up with a decomposition that is
steerable (cf. Section II.F). For instance, we can use the
steering equation (13) to rotate the first component wavelet
ψ

(N,0,...,0)
i,k = R(N,0,...,0)ψi,k to any desired orientation:

HN
u ψi,k(x) =

∑
|n|=N

cn(u)ψn
i,k = ψ

(N,0,...,0)
i,k (Rux), (25)
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where the right-hand side of the equality is valid provided
that the primal wavelet ψ(x) = ψ(‖x‖) is isotropic. Similar
steering equations can be derived for all other Riesz wavelet
components. Concretely, this means that the global wavelet
analysis is rotation-covariant.

Finally, if the wavelet decomposition (22) is build around
a Mallat-type multiresolution analysis and admits a fast fil-
terbank algorithm, then there is a corresponding perfect re-
construction filterbank implementation for its N th-order Riesz
counterpart in Proposition 2.

IV. THE GENERALIZED RIESZ TRANSFORM AND 2-D
STEERABLE FILTERBANKS

In 2-D, there is an interesting connection between the
generalized Riesz transform (as defined in §II.E), steerable
filterbanks that are polar-separable, and the steerable pyramid
of Simoncelli et al. [11].

The N th-order Riesz transform for d = 2 has N + 1
distinct components. The corresponding frequency responses

span the subspace V̂N,2 = span
{
ĥn1,N−n1(ω)

}N

n1=0
, which

is rotation-invariant—this is simply the frequency-domain
transposition of what has already been stated for the space
domain in §II.F. The specific form of these filters is

ĥn1,N−n1(ω) =

√(
N

n1

)(
−jω1

‖ω‖

)n1
(
−jω2

‖ω‖

)N−n1

= (−j)N

√(
N

n1

)
(cos θ)n1 (sin θ)N−n1

= Hn1,N−n1(e
jθ)

where we have made the polar-coordinate substitution cos θ =
ω1√

ω2
1+ω2

2

and sin θ = ω2√
ω2

1+ω2
2

. The main point is that these

basis functions are purely polar and that they are completely
characterized by the 2π-periodic radial profile functions

Hm,n(z) = (−j)m+n

vuut m + n

m

!„
z + z−1

2

«m„
z − z−1

2j

«n

.

(26)
with z = ejθ. The complete set of 2-D basis functions for
N = 2, 3, 4 are displayed in Fig. 2.

For any given order, we can associate the filters in pairs
(ĥn1,n2(ω), ĥn2,n1(ω)) that are rotated with respect to each
other by 90◦. As the order increases, the frequency patterns
become more intricate and distinct from those observed in
conventional steerable filterbanks where all components are
rotated versions of a single template. The case N = 2 calls
for a comment: even though the central pattern looks visually
similar to the two others, the (1, 1) filter is not a rotated version
of the two others because one also has to take the range of
the display into consideration; e.g., (black=-1, white=0) for
(n1, n2) ∈ {(2, 0), (0, 2)} and (black=-1, white=1) otherwise.

As far as steerability is concerned, the important property
is that the profile functions are angularly “bandlimited” [2];
that is, that their Fourier series have a limited number of
terms. In fact, they all have the form of a N -term truncated

(1,0) (0,1)

(2,0) (1,1) (0,2)

(3,0) (2,1) (1,2) (0,3)

Fig. 2. Frequency responses (real or imaginary part) of the components filters
of the first, second and third order Riesz transform. The origin of the 2-D
frequency domain is in the center and the intensity scale is stretched linearly
for maximum contrast. The plots are labeled by (n1, n2) with n2 = N−n1.

θ0 = 2π/3

θ0 = 3π/4θ0 = π/4

θ0 = π/3

θ0 = π/2

(a) θ0 = 0

(b) θ0 = 0

Fig. 3. Frequency responses of the angular filters of Simoncelli’s third (a) and
fourth (b) order steerable pyramids. The origin of the 2-D frequency domain
is in the center and the intensity scale is stretched linearly for maximum
contrast.

Fourier series Hn1,n2(e
jθ) =

∑N
k=−N cn1,n2 [k]e

jkθ with
cn1,n2 [±N ] 6= 0, as is readily checked by expanding (26).

The idea of the generalized Riesz transform is to construct
new basis functions by taking suitable linear combinations of
the primary ones. Each of these basis functions will be polar
as well and characterized by a generic profile function

H(ejθ) =
N∑

k=−N

c[k]ejkθ. (27)

A truly remarkable property is that we can use any profile
function to define a self-inverting generalized Riesz transform
that has the structure of a steerable filterbank corresponding
to the block diagram in Fig. 4.

Theorem 2: Let H(ejθ) =
∑N

k=−N c[k]ejkθ where the
c[k]’s are arbitrary real-valued (or purely imaginary) coeffi-
cients. Then, the (N + 1)-channel filterbank whose filters for
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Generalized self-inverting Riesz transform

9

f(x)

h0(x) h0(−x)

...
... f(x)

hN (x) hN (−x)

f0

fN

ĥn(ω cos θ, ω sin θ) = 1q
(N+1)

PN
k=−N |c[k]|2

· H(ej(θ+ πn
N+1 ))

General radial profile function: H(ejθ) =
N∑

k=−N

c[k]ejkθ

⇒
N∑

n=0

|ĥn(ω)|2 = 1

Fig. 4. 2-D self-invertible steerable filterbank. The filters are rotated versions
of each other with an equi-angular spacing. Their frequency responses are
purely polar and angularly bandlimited. They span the same space as the
components of the N th order Riesz transform.

n = 0, . . . , N are given by

ĥn(ω cos θ, ω sin θ) =
H(ej(θ+ πn

N+1 ))√
(N + 1)

∑N
k=−N |c[k]|2

is steerable and self-inverting.

Proof: We make the substitution z = ejθ and consider the
Laurent polynomial H(z) =

∑N
k=−N c[k]zk. The crucial ob-

servation is that the coefficients a[k] of the product polynomial

H(z)H(z−1) =
2N∑

k=−2N

a[k]zk

correspond to the autocorrelation of the sequence c[k] (of
length 2N + 1); in particular, this implies that the terms
with index |k| > 2N are necessarily zero. Therefore, if
we down-sample the sequence a[k] by a factor (2N + 2),
we are left with a single non-zero coefficient at the origin:
a[0] =

∑N
k=−N |c[k]|2. In the frequency domain, this down-

sampling operation corresponds to a periodization, leading to
the identity

1
2N + 2

2N+1∑
n=0

|H(ej(θ+ 2πn
2N+2 ))|2 = a[0],

where the right-hand side is the Fourier transform of the
remaining impulse. Next we note that |H(ejθ)|2 is π-periodic
since the coefficients are real-valued (or purely imaginary).
We can therefore divide the sum in two equal parts, which
leads to the partition of unity formula

1
a[0] (N + 1)

N∑
n=0

|H(ej(θ+ πn
N+1 ))|2 = 1.

This is equivalent to

N∑
n=0

|ĥn(ω)|2 = 1,

which ensures that the filterbank in Fig. 4 has the perfect
reconstruction property.

While the proof relies on rather basic signal processing con-
cepts, this result does not appear to have been reported before;
at least not in such general terms. It allows for generalizations
of the design of Simoncelli et al. who used the profile function

Fig. 5. Original 256× 256 cameraman with subimage.

HN (ejθ) = (cos θ)N to construct their steerable pyramid,
having noted that this function would satisfy the required self-
reversibility condition (up to some unspecified normalization
constant). The autocorrelation filter in that particular case is

HN (z)HN (z−1) =
(
z + z−1

2

)2N

=
1

22N

N∑
k=−N

(
2N
k +N

)
z−2k,

allowing for the identification of aN [0] = 1
22N

(
2N
N

)
. The

application of Theorem 2 then yields the normalized version
of Simoncelli’s original reproduction formula,

(2NN !)2

(2N)! (N + 1)
·

N∑
n=0

cos2N

(
θ +

πn

N + 1

)
= 1,

which is given here for reference. This particular choice of
polar profile corresponds to a steerable implementation of
the directional Hilbert transform operator HN

(cos θ,sin θ), which
clearly falls within the framework of the generalized Riesz
transform. The corresponding frequency responses for N+1 =
3 and N + 1 = 4 are given in Fig. 3a and 3b, respectively,
and should be compared to the second and third row in Fig.
2. The filterbanks are identical for N = 1, but not otherwise.
Yet, they span the same spaces and define a self-invertible
transform in either formulation.

We would like to emphasize that the results in this section
are also directly relevant for the design of general 2-D polar-
separable steerable filters whose polar frequency response
is of the form ĥ(ω, θ) = ŵ(ω)H(ejθ) where ŵ(ω) is a
given radial frequency window. This factorization allows for
a complete decoupling of the radial and angular parts of
the design. Since the self-reversibility of the angular part
is automatically guaranteed (thanks to Theorems 1 and 2),
the designer can concentrate on the problem of specifying a
radial (or quasi-isotropic) multi-resolution decomposition that
ensures a perfect (or near perfect) reconstruction, which is
essentially the approach that was taken by Simoncelli et al. in
[11]. An important point, though, is that the present framework
gives access to a larger variety of angular profiles and steerable
basis functions than what has been considered so far.

V. HIGH-ORDER STEERABLE RIESZ-LAPLACE WAVELETS

While the construction method outlined in §III is applicable
to any primary wavelet transform, it will give the most
satisfactory results when the underlying primary wavelets are
nearly isotropic. We will therefore illustrate the concept using
a primary Laplacian-like (or Mexican hat) decomposition of
L2(Rd) [43].
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γ=5 (3,0) (2,1) (1,2) (3,0)

(a) (b)

(c)

Fig. 8. Reversible wavelet decompositions of Cameraman image (zoom on a 64× 64 subimage). (a) Primary Laplace wavelet pyramid with γ = 5. (b) 3rd
order Riesz-Laplace wavelet transform. (c) Rotated filterbank spanning the same steerable wavelet subspaces as (b).

(a) (b)

(3,0) (1,2)(2,1) (0,3)

(c)

Fig. 9. Frequency responses (real or imaginary part) of the wavelet analysis filters associated with Fig. 8. (a) Primary Laplace wavelets bψiso,i(ω) with
γ = 5. (b) 3rd-order Riesz-Laplace wavelets bψ(n1,n2)

i (ω) with n1 + n2 = 3. (c) Corresponding “à la Simoncelli” directional filterbank.
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Laplace Riesz-Laplace

(a)

(2,0) (1,1) (0,2)

(b)

(1,0) (0,1)γ=3

γ=4

(c) (d)

Fig. 6. Reversible wavelet decompositions of Cameraman image (zoom on
a 64× 64 subimage). (a)-(b): Primary Laplace wavelet pyramid with γ = 3
and its corresponding 1st order Riesz-Laplace (or Marr) wavelet transform.
(c)-(d): Primary Laplace wavelet pyramid with γ = 4 and its corresponding
2nd order Riesz-Laplace wavelet transform.

A. Primary Laplacian-like wavelets

Polyharmonic splines are the natural spline functions asso-
ciated with the Laplace operator; they can be used to specify
a family of multiresolution analyses L2(Rd) which is indexed
by the order of the Laplacian [44]. In prior work, we have
introduced a pyramid-like representation of the underlying
wavelet subspaces that involves a single quasi-isotropic anal-
ysis wavelet (cf [43, Section IV.B]):

ψiso(x) = (−∆)γ/2β2γ(2x) (28)

where γ > d
2 is the order (possibly fractional) of the wavelet.

The function β2γ(x) is the “most-isotropic” polyharmonic B-
spline of order 2γ; it is a smoothing kernel that converges to
a Gaussian as γ increases [44, Proposition 2].

The corresponding “Laplacian” analysis wavelets in (22)
are given by ψi,k(x) = 2−id/2ψiso(x/2i−k) and the wavelet
transform has a fast reversible filterbank implementation, as
described in [43]. The resulting wavelet decomposition has a
pyramid-like structure that is similar to the Laplacian pyramid
of Burt and Adelson [45]. The fundamental difference, how-
ever, is that the proposed transform involves a single analysis
wavelet (28) that is specifically tied to the operator (−∆)γ/2.
Two examples of wavelet decompositions with γ = 3, 4 of
Cameraman (cf. Fig. 5) are displayed in Fig. 6a and 6c;
we have zoomed on a fragment of the image to facilitate
the visualization. The decomposition is a frame with a small
redundancy factor (R = 4/3 in 2-D and R = 6/5 for d = 3).
The corresponding 2-D wavelet frequency responses are shown
in Fig. 7a and 7c. Note the bandpass behavior of these filters

Laplace Riesz-Laplace

(a) (b)

(2,0) (0,2)(1,1)

(1,0) (0,1)

(3,0) (1,2)(2,1) (0,3)

(c) (d)

Fig. 7. Frequency responses (real or imaginary part) of the wavelet analysis
filters associated with Fig. 6. (a)-(b) Primary Laplace wavelets bψiso,i(ω)

with γ = 3 and 1st-order Riesz-Laplace wavelets bψ(1,0)
i (ω) and bψ(0,1)

i (ω).
(c)-(d) Primary Laplace wavelets bψiso,i(ω) with γ = 4 and 2nd-order
Riesz-Laplace wavelets bψ(2,0)

i (ω), bψ(1,1)
i (ω), and bψ(0,2)

i (ω). The scale i
is increasing from i = 0 upto 2 as one moves down.

and their good isotropy properties, especially over the lower
frequency range.

B. Steerable Riesz-Laplace wavelets

The associated N th-order steerable Riesz-Laplace wavelet
transform is obtained through the direct application of Proposi-
tion 1. The explicit form of the underlying directional analysis
wavelets is

ψ(n1,...,nd)
γ (x) =

√
N !

n1! · · ·nd!
Rn1

1 · · ·R
nd

d (−∆)
γ
2 β2γ(2x)

(29)
for all multi-indices n = (n1, . . . , nd) with |n| = N . The
enlightening aspect in this formula is that the directional be-
havior of these wavelets is entirely encoded in the differential
operators that are acting on the B-spline smoothing kernel: the
Riesz transform factor is steerable while the Laplacian part,
which is responsible for the vanishing moments, is perfectly
isotropic. The order parameter γ > d

2 is a degree of freedom of
the transform that can be tuned to the spectral characteristics
of the signal; this is especially handy if we are dealing with
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fractal processes because of the whitening properties of the
fractional Laplacian [46]. In the sequel, we will set it to
γ = N + 2m with integer m ≥ 0 to establish a link with
conventional (non-fractional) derivative operators.

The proposed wavelets appear to be well suited for fea-
ture extraction and analysis because they provide multiscale
estimates of the N th order derivatives of the image. Indeed,
by using Eq. (19) that links the Riesz transform and partial
derivatives, we get

ψ
(n1,...,nd)
N+2m (x) = (−1)N

√
N !

n1! · · ·nd!
∂Nξ(x)

∂n1x1 · · · ∂ndxd
(30)

where the smoothing kernel ξ(x) = −∆mβ2N+4m(2x) is
isotropic-bandpass (mth Laplacian of a Gaussian-like func-
tion). Note that for N > 1, we can select m = 0 to impose
a Gaussian-like smoothing kernel instead of a Mexican hat. If
we now consider the analysis of the signal f(x) at scale i with
the rescaled wavelet ψ(n1,...,nd)

N+2m,i (x) = 2−id/2ψ
(n1,...,nd)
N+2m (x/2i)

at location x0, we obtain that

〈f, ψ(n1,...,nd)
N+2m,i (· − x0)〉L2 ∝

∂N (f ∗ ξi)(x)
∂n1x1 · · · ∂ndxd

∣∣∣∣
x=x0

(31)

where we have made use of the adjoint and scale-covariance
properties of the partial derivative operators. The interpre-
tation of this relation is that the Riesz wavelet coefficients
w

(n1,...,nd)
i [k] = 〈f,R(n1,...,nd)ψi,k〉 correspond to the partial

derivatives of order N (sampled at location x0 = 2ik)
of the bandpass-filtered version (f ∗ ξi) of the signal with
ξi(x) = 2−id/2ξ(x/2i). The non-trivial aspect of these
partial-derivative wavelets is that the corresponding signal
decomposition is fully reversible (frame property) and that the
transform admits an efficient perfect-reconstruction filterbank
implementation.

Interestingly, the simplest case (d,N,m) = (2, 1, 1) yields
two gradient-like wavelets that happen to be mathematically
equivalent to the Marr wavelets described in [47]. An example
of such a wavelet decomposition is shown in Fig. 6(b).
In our earlier work, we have argued that such a transform
could be interpreted as a multiscale edge detector and that
it could yield a compact description of an image in terms
of its primal wavelet sketch [47]. The interest of the present
formulation is that it gives the 3-D generalization of this
complex representation without resorting to any sophisticated
algebra (e.g., quaternions).

The steerable Riesz-Laplace transforms for N > 1 are all
new. For instance, for (d,N,m) = (2, 2, 1), we obtain three
parallel wavelet channels that provide a multiscale Hessian
analysis. The corresponding three-channel directional wavelet
transform is shown in Fig. 6(b). The frequency responses of
the 1st and 2nd order wavelet filters are displayed in Fig. 7.
It is also interesting to consider the 3-D versions of these
wavelets (i.e., (d,N,m) = (3, n, 1) with n = 1, 2), which are
represented in Fig. 10. The first-order wavelet may serve as
a contour/surface detector, while the second order wavelet is
more suitable for detecting lines or ridges.

The scheme can be pushed further to obtain multiscale
image representations with higher orders of steerability. Two
examples of 3rd order decompositions with γ = 5 are shown

∆
(
∂2

∂x2
1

+
∂2

∂x2
2

)

(a) surface detector (b) line detector

∆
∂

∂x1

Fig. 10. Isosurface representation of the first and second-order 3-D Riesz-
Laplace wavelets ψ(n,0,0)

n+2 (x) (white: positive threshold, black : negative
threshold). (a) : surface or contour detector with n = 1. (b) : line or ridge
detector with n = 2.

in Fig. 8. The first involves the Riesz-Laplace wavelets which
produces a local description of image features in terms of
third-order derivatives [cf. (31)]. The second corresponds to
an equivalent directional filterbank with a basic detector (first
Riesz wavelet) that is rotated in the four principal directions
θ0 = π/2, π/4, 0,−π/4 using the steering equations (13) and
(14) with u = (cos θ0, sin θ0). This decomposition represents
the “à la Simoncelli” counterpart of the basic Riesz-Laplace
transform; it is obtained through the application of Theorem 2
with H(ejθ) = (cos θ)N with N = 3. These filters also have
a differential interpretation: they all correspond to third-order
directional derivatives, in accordance with (20) and (25). The
latter decomposition obviously achieves a better decomposi-
tion of the image in terms of directional components, while
the former has a greater pattern diversity since it involves two
distinct templates (3, 0) and (2, 1) which can, in principle, also
be steered in arbitrary directions.

The comparison of the frequency responses of these two
systems is given in Fig 9. The directional character of the
“rotated-filterbank” decomposition is quite apparent in Fig
9(c). The steering is not perfect in the higher portion of
the spectrum due to the “square-shaped” outer frequency
profile of the primary wavelet decomposition, which is only
approximately isotropic [cf. Fig 9(a)]. While this constitutes a
limitation of the current Laplacian-based design, the distorting
effect is far less noticeable in the space domain because the
underlying polyharmonic B-spline smoothing kernel β2γ in
(29) is guaranteed to converge to an isotropic Gaussian as γ
increases.

VI. DISCUSSION

The proposed operator-based framework is very general: it
can yield a large variety of multidimensional wavelets with
arbitrary orders of steerability. The goal that we are pursuing
here is quite similar to that achieved by Simoncelli with his
steerable pyramid [11]. However, there are two fundamental
differences. First, Simoncelli’s approach is primarily based on
digital filterbank design. Ours, on the other hand, is analytical
and rooted in functional analysis; the distinction is similar to
that between Mallat’s multiresolution theory, which provides a
continuous-domain interpretation of wavelets, and the design
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of critically-sampled perfect reconstruction filterbanks that ac-
tually predate wavelets but contain the algorithmic essence of
this type of decomposition. The second difference is that, for
N > 1, the prototypical Riesz wavelets are no longer rotated
version of a single template, as is the case with traditional
steerable filters. This is quite apparent in Figures 8 and 9.
The “à la Simoncelli” counterpart of the 3rd-order Riesz-
Laplace transform involves four rotated versions of the first
filter uniformly spread over the circle (e.g., at 0◦, 45◦, 90◦ and
135◦). In fact, the Riesz-Laplace wavelets that we introduced
in Section V to illustrate our concept are much closer to
derivatives than to rotated filterbanks; we believe that this
could be an advantage for analysis purposes.

Our approach is obviously not limited to polyharmonic
splines. It works best—i.e., provides exact steerability—when
the primary wavelets are isotropic; it also automatically yields
a tight frame whenever the primary decomposition is tight to
start with. Other relevant considerations—including topics for
future research—are as follows:

1) Decoupling between multiresolution and multiorienta-
tion properties: The proposed framework decouples the direc-
tional and multi-scale aspects of wavelet design. While this is
valuable conceptually, it also suggests some new design chal-
lenges; i.e., the specification of wavelet frames with improved
isotropy properties. The Riesz-Laplace wavelets that we have
presented are very nearly isotropic, but they are not tight.
Alternatively, we could have considered a primary orthogonal
wavelet transformation, such a quincunx decomposition with
good isotropy properties [48], which would have automatically
yielded a tight Riesz frame. The practical difficulty is to
optimally integrate the requirements of self-reversibility and
isotropy (or radial symmetry) into a given computational
structure; this is a research subject in its own right which
we plan to investigate in future work.

2) Steerable wavelets diversity: Our extended subspace-
based definition of steerability opens up the perspective of a
much larger variety of steerable wavelets than what has been
used so far. We are proposing two possible design strategies,
both of which preserve self-reversibility. The first is to consider
a generalized Riesz transform of the form UR(N) where U
is any user-specified unitary matrix; for a justification, see
(15). An attractive possibility is to derive U using some kind
of principal component analysis. The second option, which is
limited to 2-D, is to take advantage of Theorem 2 to specify
a rotating filterbank profile that is optimized for a specific
task. Since there is no constraint on the selection of the
coefficients of the filter profile (27), one can optimize these
for better angular selectivity or tune them to the characteristics
of a given type of pattern. For instance, we can optimize
the 2nd-order (or Hessian-like) wavelets for the task of ridge
detection using a Canny-like criterion [5]. The fact that such
a weight adjustment can improve the central elongation of the
wavelet is illustrated in Fig. 11; the first detector corresponds
to the conventional choice (cos θ)2, while the second uses
the optimal weights given in [5, Table 2]. The remarkable
feature is that the two proposed design methodologies are
essentially constraint-free. The extent to which this increased
flexibility can improve performance is an aspect that remains
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Fig. 11. Two examples of steerable 2nd-order wavelets. (a): Hessian-like
wavelet ψ(2,0)
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to be investigated.
3) Simplicity of implementation: The Riesz compo-

nents/wavelet coefficients are straightforward to compute in
the Fourier domain using a FFT-based version of the fast
wavelet transform algorithm. They can then be recombined lin-
early as desired to generate a large variety of steerable wavelet
transforms, including rotated filterbanks. This computational
approach simplifies the implementation and frees us from the
requirement of using finitely-supported filters. For the present
work, we did implement the 2-D Riesz-Laplace transforms
for orders up to 11, even though we did only show results for
N = 1, 2, 3 (Figs. 6b-c, 8b). The “à la Simoncelli” version of
these transforms (Fig. 8(c)) were obtained by performing the
adequate linear combinations of the Riesz wavelet coefficients;
we found this to be a convenient, cost-effective solution.

4) Exact reconstruction property: The exact reconstruction
property comes as a direct consequence of Proposition 3 which
ensures that the generalized Riesz transform preserves the
frame property. In other words, we have a general mechanism
for mapping any reversible multi-resolution decomposition
into its directional counterpart which is automatically guaran-
teed to be reversible as well. This is not necessarily so in the
case of Simoncelli’s steerable pyramid. Indeed the structure of
the underlying filterbank is such that it will only yield perfect
reconstruction when the aliasing is completely suppressed; that
is, when the radial lowpass/highpass filters are bandlimited.
The implication is that the reconstruction with finite length
filters will only be approximate. There is no such constraint
in the present scheme because the computational structure
of the primary “isotropic” multiresolution decomposition is
essentially irrelevant, as long as it satisfies the frame property.

5) Preservation of approximation theoretic properties:
Because the Riesz transform and its higher order extension
are well-defined convolution operators in L2(Rd), they will
preserve all important approximation theoretic properties of
the primary wavelet transform that is used for the construction.
These include:

the order of approximation γ, which means that the
approximation error of a scale-truncated expansion decays
like the γth power of that scale.

the initial number of vanishing moments; this implies that
the Riesz wavelet coefficients are essentially zero in smooth
image areas where the image is well represented by its
lower-order Taylor series.

the Sobolev degree of smoothness of the basis functions.
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Another important aspect is that, even though the Riesz
transform is a non-local operator, it will minimally impact the
decay of the wavelet functions. This is because its Fourier-
domain singularity at the origin is tempered by the zeros
(vanishing moments) of the primary wavelets.

6) Generalization to higher dimensions: To the best of our
knowledge, this is the first scheme that can provide steerable
wavelets in dimensions greater than 2. Such transforms could
turn out to be valuable for the analysis and processing of 3-D
biomedical data sets (e.g., X-ray tomograms, MRI, and con-
focal micrographs). By contrast, the extension of Simoncelli’s
steerable pyramid, which uses rotated filters that are angularly
uniformily distributed, to 3-D does not seem feasible because
of the lack of a systematic mechanism for uniformly tiling the
sphere.

VII. CONCLUSION

We introduced a general operator framework that provides
a mathematical bridge between the continuous-domain theory
of the wavelet transform and steerable filterbanks. In effect,
we are taking advantage of the invariance properties (with
respect to translation, scaling and rotation) of the general-
ized Riesz transform, together with its self-reversibility, to
decouple the directional and multi-scale aspects of wavelet
design. The primary theoretical contribution is a rigorous and
straightforward formalism for the specification of steerable
wavelet transforms in the continuous-domain—i.e., as frames
of L2(Rd)—while ensuring that they are endowed with all
important approximation-theoretic wavelet properties: order of
approximation, vanishing moments, regularity, etc.

The present work is also practically relevant because of the
new perspective that it offers for image processing. Interesting
topics for future research include the design of novel families
of steerable wavelet transforms (in particular, tight frames), the
development of steerable wavelet algorithms for the process-
ing of volumetric data, and the investigation of the concept
of steerable wavelet diversity—in particular, signal-adapted
design—, which holds good promises for data processing (e.g.,
denoising) and feature extraction.
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