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Abstract

We introduce an extended family of continuous-domain stochastic models for sparse, piecewise-smooth

signals. These are specified as solutions of stochastic differential equations, or, equivalently, in terms of a suitable

innovation model; this is analogous conceptually to the classical interpretation of a Gaussian stationary process

as filtered white noise. The two specific ingredients of our approach are: (1) signal generation is driven by a

random stream of Dirac impulses (Poisson noise) instead of Gaussian white noise, and (2) the class of admissible

whitening operators is considerably larger than what is allowed in the conventional theory of stationary processes.

We provide a complete characterization of these finite-rate-of-innovation signals within Gelfand’s framework

of generalized stochastic processes. We then focus on the class of scale-invariant whitening operators which

correspond to unstable systems. We show that these can be solved by introducing proper boundary conditions,

which leads to the specification of random, spline-type signals that are piecewise-smooth. These processes are the

Poisson counterpart of fractional Brownian motion; they are non-stationary and have the same 1/ω-type spectral

signature. We prove that the generalized Poisson processes have a sparse representation in a wavelet-like basis

subject to some mild matching condition. We also present a limit example of sparse process that yields a MAP

signal estimator that is equivalent to the popular TV-denoising algorithm.

I. INTRODUCTION

The hypotheses of Gaussianity and stationarity play a central role in the standard, textbook formulation

of signal processing [1], [2]. They fully justify the use of the Fourier transform—as the optimal signal

representation—and naturally lead to the derivation of optimal linear filtering algorithms for a large variety

of statistical estimation tasks. The Gaussian world of signal processing and its related linear textbook material

is elegant and reassuring, but it has reached its limits—it is not at the forefront of research anymore.

Starting with the discovery of the wavelet transform in the late 80s [3], [4], researchers in signal processing

have progressively moved away from the Fourier transform and have uncovered powerful alternatives. Two

examples of success are the wavelet-based JPEG-2000 standard for image compression [5], which outperforms

the widely-used DCT-based JPEG method, and wavelet-domain image denoising which provides a good alter-

native to more traditional linear filtering [6]–[8]. The key property that makes these techniques work is that

many naturally-occurring signals and images—in particular, the ones that are piecewise-smooth—have a sparse

representation in the wavelet domain [9]. The concept of sparsity has been systematized and extended to other

transforms, including redundant representations (a.k.a. frames); it is at the heart of recent developments in
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signal processing. Sparse signals are easy to compress; likewise, they can be denoised effectively by simple

pointwise processing in the transform domain (the rational being to discard small coefficients which are more

likely to be noise). Sparsity provides an equally powerful framework for dealing with more difficult, ill-posed

signal reconstruction problems [10], [11]. The strategy there is as follows: among the multitude of solutions

that are consistent with the measurements, one should favor the ”sparsest” one; that is, the one for which the

`0-norm of the expansion coefficients of the signal is minimum. In practice, one replaces the underlying `0-norm

minimization problem, which is NP hard, by a convex `1-norm minimization which is computationally much

more tractable. Remarkably, researchers have shown that the latter simplification of the problem does yield the

correct solution to the problem under suitable conditions (e.g. restricted isometry or incoherent measurements)

[12], [13]. This turns out to be one of the leading ideas behind the theory of compressed sensing that deals

with the problem of the reconstruction of a signal from a minimal, but suitably chosen, set of measurements

[10], [11], [14]. Another approach for breaking the traditional Nyquist’s sampling barrier is to take advantage

of specific knowledge of the form of the signal and to approach the signal reconstruction task as a parametric

estimation problem. Vetterli and co-workers introduced the concept of signals with a finite rate of innovation

(FRI) (the prototypical example being a stream of Dirac impulses with unknown locations and amplitudes)

and demonstrated the possibility of recovering such signals from a set a uniform measurements at twice the

“innovation rate”, rather than twice the bandwidth [15]–[17].

The current formulations of compressed sensing and sparse signal recovery are based on solid variational

principles, but they are fundamentally deterministic. By drawing on the analogy with the classical theory of

signal processing, there are chances that further progress may be achieved via the investigation of stochastic

processes that are the “sparse” counterparts of the stationary Gaussian ones. Ideally, the availability of such

models would allow for: 1) the derivation of (near)-optimal signal representations for certain classes of signals, 2)

the specification of signal-recovery procedures that are well-founded statistically, and 3) (near)-optimal sampling

strategies and/or feature-extraction methods. Our goal in this paper is to set the theoretical foundation for such

an approach by specifying an extended family of stochastic models that fulfills the following requirements:

Continuous-domain formulation. The proper interpretation of qualifying terms such as “piecewise-smooth”

and “scale-invariance”, which is central to wavelet theory, calls for continuous-domain models of signals

that are compatible with the notion of sparsity.

Beyond Gaussian statistics. The statistical justification of nonlinear algorithms requires non-Gaussian mod-

els. However, moving in this direction is not trivial because: (1) decorrelation is no longer synonymous with

independence, and (2) non-Gaussian distribution laws are generally not preserved under linear transformation.

Backward compatibility. The formulation should be compatible with the classical theory of Gaussian

stationary processes. In particular, the generation mechanism should provide a full control of the second-

order statistics (autocorrelation/power spectrum) of the sparse signals so that the classical MMSE filtering,

estimation and identification techniques remain applicable.

Our approach builds upon Vetterli et al.’s concept of signals with finite rate of innovation and provides a

complete characterization of stochastic processes with the desired properties. While the rigorous specification
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of these processes requires an appropriate mathematical formalism1, the payoff is a generative model that is

simple conceptually and parallel to the classical white-noise filtering model for Gaussian stationary processes.

The primary contributions of this work are as follows:

An extended innovation model where the usual Gaussian white noise is substituted by impulsive Poisson

noise with any prescribed amplitude distribution. The key descriptor of a process is its whitening operator

L which is shift-invariant.

A complete distributional characterization of such generalized Poisson processes by means of the charac-

teristic form which condenses all statistical information [18]. The relevant theoretical framework, which is

not standard in the field, is summarized in Appendix I.

The extension of the traditional spectral shaping filters (L−1) to a larger class of inverse operators, including

important ones that are unstable2 in the classical sense. The prototypical example is the integrator which

allows the generation of Brownian motion as well as piecewise-constant signals.

The link with spline theory through a common operator formalism.

The characterization of the sparsifying effect of the wavelet transform for a wide class of generalized

Poisson processes.

The paper is organized as follows. In Section II, we show the relevance of the proposed class of random

processes by contrasting the performance of the classical Wiener filter and sparsity-promoting restoration

methods (total variation and wavelet denoising) in a denoising experiment that involves a matched pair of

Gaussian vs. sparse processes. We then proceed in Section III with the definition of impulsive Poisson noise

and the derivation of its characteristic form within the framework of Gelfand and Vilenkin’s theory of generalized

stochastic processes. In Section IV, we specify our generalized Poisson processes as the solutions of a stochastic

differential equation driven by white impulsive noise, which is equivalent to the innovation model in Fig. 3 with

whitening operator L. We then focus on the class of scale-invariant whitening operators and show how these

can specify spline-type processes in one or several dimensions. In Section V, we consider the wavelet analysis

of generalized Poisson processes, including those of mixed type, and prove that it generally yields a sparse

signal decomposition. Finally, we illustrate the use of the proposed statistical formalism with the derivation of

the likehood function of a sparse, piecewise-constant process.

II. MOTIVATION: BEYOND WIENER FILTERING

To motivate the stochastic models proposed in this paper, we consider the problem of the reconstruction of

a continuously-defined signal s(x) given its noisy samples at the integers: {g[k] = s(k)+n[k]}k∈Z where n[k]

is a discrete Gaussian white noise with zero mean and variance σ2. When s(x) is a realization of a Gaussian

stationary process, the minimum-mean-square-error (MMSE) solution to this problem is the well-known Wiener

filter. The Wiener filter remains the best linear reconstruction algorithm when s(x) is non-Gaussian, but it is

1Impulse Poisson noise (random stream of Dirac impulses) can only be properly defined within the context of distribution theory. The

other point is that many of the processes that will be considering here are non-stationary, meaning that they don’t have a well-defined

power spectrum; they also involve fractional derivative operators which are difficult to handle using conventional stochastic calculus.
2A convolution operator is BIBO-stable (bounded-input bounded-output) iff. its impulse response is in L1(R). The integrator is not

BIBO-stable, but it is sometimes said to be marginally stable because its impulse response is bounded.
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generally not globally optimal anymore. In particular, it has been observed that linear filtering is suboptimal for

handling piecewise-smooth signals because it over-smoothes sharp transitions. For such signals, linear algorithms

are typically outperformed by simple wavelet thresholding [8], [19], which is a non-linear type of processing.

To demonstrate this behavior, we selected two continuous-time test signals which are part of the class of

stochastic processes considered in this paper. The first (Fig. 1a) is a Brownian motion (also known as the

Wiener process), which is a classical example of Gaussian process. The second (Fig. 1b), which is piecewise-

constant, is a compound Poisson process; the location of the singularities follow a spatial Poisson distribution

with parameter λ, while the heights of the transitions are random and uniformly distributed. The important

conceptual aspect is that these two signals share a common innovation model, as we shall prove in Section III.

They are both whitened by the derivative operator D = d
dx , the distinction being that the innovation process is

white Gaussian noise in the first case, and (sparse) impulsive Poisson noise in the second. Consequently, the

two processes have identical second order statistics and they admit the same Wiener filter as the best linear

signal estimator. In our earlier work, we have shown that the MMSE reconstruction of a Brownian motion

signal corrupted by white Gaussian noise is provided by a piecewise-linear smoothing spline estimator [20].

Remarkably, this smoothing spline estimator s̃ can also be defined as the solution of the variational problem

s̃spline(x) = arg min
s(x)

{∑
k∈Z
|g[k]− s(k)|2 + µ

∫
R
|Ds(x)|2 dx

}
= arg min

s(x)

{
‖g − s‖2`2 + µ‖Ds‖2L2(R)

}
(1)

with µ = σ2
σ2
0

with σ2
0 = Var{Ds(x)}. Note that the above cost criterion includes a discrete data term (squared

`2-norm) and a continuous regularization functional (squared L2-norm) that penalizes non-smooth solutions.

In contrast to conventional digital signal processing, the solution of the minimization problem is continuously-

defined: it is corresponds to a hybrid form of Wiener filter (discrete input and continuous output).

A more satisfactory handling of the second piecewise-constant signal is based on the observation that it has a

sparse decomposition in the Haar basis which is piecewise-constant as well. It therefore makes sense to seek a

reconstruction that has few significant wavelet coefficients. This is achieved by introducing an `p-norm penalty

on the wavelet coefficients of s(x): wi[k] = 〈s, 2i/2ψ(x/2i − k)〉 where i is the scale index and where ψ(x)

is the Haar wavelet. This leads to the wavelet-based signal estimator

s̃wave(x) = arg min
s(x)

{
‖g − s‖2`2 +

∑
i

µi‖wi‖p`p

}
(2)

where {µi} is an appropriate sequence of scale-dependant weights (typically, λ0 · 2i/2 to implement the Besov

norm associated with the first derivative of the function [21]). By applying Parseval’s identity to the data term

and formulating the problem in the wavelet domain, one finds that the solution is obtained by applying a

suitable pointwise non-linearity to the wavelet coefficients of the noisy signal [22]. For p = 1, the non-linearity

corresponds to a standard soft-thresholding. Formally, we can also consider the case p = 0, which yields a

sparse solution implemented by discarding all wavelet coefficients below a certain threshold.

Another popular reconstruction/denoising method is to penalize the total variation of the signal [23], which

results in the TV estimator

s̃TV(x) = arg min
s(x)

{
‖g − s‖2`2 + µTV(s)

}
(3)
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where TV(s) is the total variation of s(x). Note that when s is differentiable, TV(s) =
∫

R |Ds(x)| dx so that

criterion (3) is essentially the L1-regularized counterpart of (1). A remarkable property of (3) is that the global

optimum is achieved by a piecewise-constant function [24], which suggests that the TV criterion is ideally

matched to our second class of signals.

We implemented the three proposed estimators and applied them to the reconstruction of our two test signals

corrupted with various amounts of noise. In each case, we optimized the regularization parameter µ ≥ 0 for

maximum signal-to-noise ratio, taking the noise-free signal (oracle) as our reference. The results are summarized

in Fig. 2. According to theoretical predictions, the smoothing spline estimator (Wiener filter) performs best in

the Gaussian case. In the case of a piecewise-constant signal, the best linear estimator is outperformed by the

TV estimator over the entire range of signal-to-noise ratios, and also by wavelet denoising at lower noise levels.

The wavelet-based method performs adequately, but is sub-optimal—in fact, the results presented here were

obtained by using cycle spinning which is a simple, effective way of boosting the performance of the basic

threshold-based wavelet denoising algorithm [25].

This series of experiments confirms the well-documented observation that a change of regularization exponent

(i.e., p = 1 vs. p = 2) can have a significant effect on the restoration quality, especially for the second type of

signal which is intrinsically sparse. Other than that, the regularization functionals used in the three estimators

are qualitatively similar and perfectly matched to the spectral characteristics of the signals under considerations:

the whitening operator D appears explicitly in (1) and (3), while it is also present implicitly in (2). The latter

is seen by expressing the Haar wavelet as ψ(x) = Dφ(x) where the smoothing kernel φ(x) = 1
2β

1
+(2x) is a

rescaled causal triangle function (or B-spline of degree 1). This implies that the wavelet coefficients, which

can now be interpreted as smoothed derivatives, are statistically independent at any given scale i—indeed, by

duality, we have that 〈s, ψ(· − k)〉 = −〈Ds, φ(· − k)〉 where Ds is a continuously-varying white noise process

and where the integer-shifted versions of φ(x) are non-overlapping.

While the Gaussian part of the story is well understood, it is much less so for the second class on non-

gaussian signals which are more difficult to formalize statistically. Such Poisson processes, however, could be

important conceptually because they yield prototypical signals for which some of the current popular signal

processing methods (wavelets, compressed sensing, `1-minimization, etc.) perform best. In the sequel, we will

present a generalized distributional framework for the complete stochastic characterization of such processes

and their extensions. We will come back to the above denoising problem at the end of the paper and show that

the TV denoising solution (3) is compatible with the MAP signal estimator that can be derived for the second

process.

III. GENERALIZED POISSON NOISE

A. Classical Poisson processes

A Poisson process is a continuous-time process that is in direct correspondence with a series of independent

point events randomly scattered over the real line according to a Poisson distribution with a rate parameter λ.

Specifically, the probability of having a number N(x, x+T ) = n of events in the time interval (x, x+T ] with

T ≥ 0 is

Prob {N(x, x+ T ) = n} =
e−λT (λT )n

n!
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Fig. 1. Original test signals (solid lines) and their discrete noisy measurements. (a) Brownian motion. (b) Compound Poisson process

(piecewise-constant signal).
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Fig. 2. Comparative evaluation (input SNR vs output SNR) of smoothing spline, wavelet and total variation reconstruction algorithms for

a signal corrupted by white Gaussian noise. (a) Brownian motion. (b) Compound Poisson process.

with a mean value and variance given by λT . The time locations of these events are ordered and denoted by

xk with k ∈ Z. With this notation, the classical homogeneous Poisson process can be represented as

r(x) =
∑
k∈Z

1+(x− xk)

where 1+(x) =

 1, x ≥ 0

0, x < 0
is the unit step function. The statistical term “homogeneous” refers to the fact

that the rate parameter λ is constant over time; the term will be dropped in the sequel. The realizations of such

a Poisson process are piecewise-constant and monotonously increasing with unit increments; the parameter λ

represents the expected number of discontinuities per unit interval.

An extended version of this process that is much better suited for modeling FRI signals is the so-called

compound Poisson process

s(x) =
∑
k∈Z

ak 1+(x− xk) (4)

where the ak are i.i.d. random variables associated with the probability measure dP (a). This signal is piecewise-

constant in each time interval [xk, xk+1) and may be thought of as the stochastic version of a non-uniform
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spline of degree 0 where both the knots (xk) and heights of the piecewise-constant segments are random (cf.

Fig. 1b). It is also the primary example of a concrete signal with a finite rate of innovation [15]; in average, s(x)

has two degrees of freedom (xk, ak) per time interval of length λ−1. While the compound Poisson process

is clearly non-Gaussian, it has the interesting property of being indistinguishable from Brownian motion based

on its second order statistics alone (covariances). It is part of the same class of “1/ω”-type processes, keeping

in mind that the power spectrum of such signals is not defined in the conventional sense because of their non-

stationary character. In the sequel, we will strengthen the connection between these two classes of processes by

linking them to a common innovation model involving a spectral shaping operator and a specific white noise

excitation which may or may not be Gaussian.

B. White Poisson noise

By taking the distributional derivative of s(x), we obtain a weighted stream of Dirac impulses
∑

k∈Z akδ(x−

xk) whose positions and amplitudes are random and independent of each other. In this paper, we will consider a

more general multidimensional setting with signals and stochastic processes that are functions of the continuous-

domain variable x = (x1, . . . , xd) ∈ Rd. We introduce the compound Poisson noise

w(x) =
∑
k∈Z

akδ(x− xk) (5)

where the xk’s are random point locations in Rd, and where the ak are i.i.d. random variables with cumulative

probability distribution P (a). The random events are indexed by k (using some arbitrary ordering); they are

mutually independent and follow a spatial Poisson distribution. Specifically, let Π be any finite-measure subset

of Rd, then the probability of observing N(Π) = n events in Π is

Prob (N(Π) = n) =
e−λVol(Π) (λVol(Π))n

n!

where Vol(Π) is the measure (or spatial volume) of Π. This is to say that the Poisson parameter λ represents

the average number of random impulses per unit hyper-volume.

While the specification (5) of our compound Poisson noise is explicit and constructive, it is not directly

suitable for deriving its stochastic properties. The presence of Dirac impulses makes it difficult to handle such

entities using conventional stochastic calculus. Instead of trying to consider the point values of w(x) which

are either zero or infinite, it makes more sense to investigate the (joint) statistical distribution of the scalar

products (or linear functionals3) w(ϕ) := 〈w,ϕ〉 between our Poisson noise and a collection of suitable test

functions ϕ. The adequate mathematical formalism is provided by Gelfand’s theory of generalized stochastic

processes, whose main results are briefly reviewed in Appendix I. The conceptual foundation of this powerful

framework is that a generalized stochastic process s is “indexed” by ϕ rather than by the spatial variable x. It

is thereby possible to fully characterize a real-valued process s by specifying its characteristic form

Zs(ϕ) = E {e−j〈s,ϕ〉} (6)

3The linear functional w(ϕ) is formally specified by the scalar-product integral 〈w, ϕ〉 =
R

Rd w(x)ϕ(x) dx. It is a well-defined linear,

continuous mapping that associates a scalar to each ϕ within a suitable set of test functions.
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where E {·} denotes the expectation operator and where s(ϕ) = 〈s, ϕ〉 with ϕ fixed should be treated as a

classical scalar random variable. Zs(ϕ) is a functional of the generic test function ϕ whose role is analogous

to that of the index variable(s) used in the conventional definition of the characteristic function of a probability

distribution. The powerful aspect of this generalization, which can be traced back to Kolmogoroff [26], is that

ϕ has the ability to capture all the possible joint dependencies of the process. For instance, if we substitute

ϕ = ω1ϕ1 + · · · + ωNϕN in (6), then we obtain Zs(ϕ) = E {e−j(ω1s1+···ωN sN )} with sn = 〈s, ϕn〉 and the

ωn’s taking the role of frequency-domain variables; this is precisely the characteristic function of the N -vector

random variable (s1, · · · , sN ), meaning that the joint probability distribution p(s1, · · · , sN ) can be obtained,

at least conceptually, by N -D inverse Fourier transformation. The corresponding distributional extension of the

correlation function E {s(x1)s(x2)} is the so-called correlation form

Bs(ϕ1, ϕ2) = E {〈s, ϕ1〉 · 〈s, ϕ2〉} = E {s(ϕ1) · s(ϕ2)} (7)

which can also be deduced from Zs(ϕ). Clearly, (7) reverts to the classical correlation function if we formally

substitute ϕ1 = δ(· − x1) and ϕ2 = δ(· − x2).

In order to take advantage of this formalism, we need to obtain the characteristic form of the Poisson noise

defined above. Before presenting these results, we introduce some notations and conventions:

- The integration element over Rd is denoted by dx with dx = dx1 · · · dxd

- The amplitude statistics of the Poisson process are expressed in terms of the cumulative probability

distribution P (a) =
∫ a

−∞ dP (a) where dP (a) is the underlying probability measure. The p-order moment

of the amplitude distribution is denoted by E {ap} with E {ap} =
∫

R a
p dP (a).

- The Fourier transform of a “test” function ϕ ∈ S(Rd) is ϕ̂ with ϕ̂(ω) =
∫

Rd ϕ(x)e−j〈x,ω〉 dx. A

fundamental property is that the Fourier transform is a self-reversible mapping from S(Rd) (Schwartz’s

class of smooth and rapidly decreasing functions) into itself.

- ‖ϕ‖Lp(Rd) with 1 ≤ p ≤ +∞ stands for the Lp-norm of ϕ; it is bounded for all test functions.

Theorem 1: The characteristic form of the impulsive Poisson noise specified by (5) is

Zw(ϕ) = E {e−j〈w,ϕ〉} = euλ,P (ϕ) (8)

with

uλ,P (ϕ) = λ

∫
R

∫
Rd

(ejaϕ(x) − 1) dx dP (a); (9)

where λ is the Poisson density parameter, and where P (a) is the cumulative amplitude probability distribution.

The proof is given in Appendix II. Note that the above characteristic form is part of a more general family of

functionals that is derived by Gelfand and Vilenkin starting from first principles (processes with independent

values at every point, infinite divisibility) [18]. Here, we make the link between the abstract characterization of

such processes and Eq. (5), which provides a concrete generation mechanism. A direct consequence of Theorem

1 is that the impulsive Poisson process is a bona fide white noise, albeit a not a Gaussian one.

Corollary 1: The correlation form of the generalized Poisson process defined by (8) is

Bw(ϕ1, ϕ2) = λE {a2} · 〈ϕ1, ϕ2〉L2(Rd) + λ2E {a}2ϕ̂1(0)ϕ̂2(0).
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Hence, w is a (non-Gaussian) white noise process with variance σ2
w = λE {a2} provided that the random

variable a has zero-mean.

Proof: We rely on (22) in Appendix I and partially differentiate (8) by applying the chain rule twice:

∂2Zw(ω1ϕ1 + ω2ϕ2)
∂ω1∂ω2

= euλ,P

(
∂uλ,P

∂ω1

∂uλ,P

∂ω2
+
∂2uλ,P

∂ω1∂ω2

)
. (10)

The required first derivative with respect to ωi, i = 1, 2 is given by

∂uλ,P

∂ωi
= λ

∫
R

∫
Rd

∂

∂ωi
(eja(ω1ϕ1+ω2ϕ2) − 1) dx dP (a)

= λ

∫
R

∫
Rd

(ja)ϕi(x) eja(ω1ϕ1+ω2ϕ2) dx dP (a)

which, when evaluated at the origin, simplifies to

∂uλ,P

∂ωi

∣∣∣∣
ω=0

= λj

∫
R
a dP (a)

∫
Rd

ϕi(x) dx

= jλE {a} ϕ̂i(0).

Similarly, we get

∂2uλ,P

∂ω1∂ω2

∣∣∣∣
ω=0

= λ(j)2
∫

R
a2 dP (a)

∫
Rd

ϕ1(x)ϕ2(x) dx

= −λE {a2} 〈ϕ1, ϕ2〉L2(Rd)

The result then follows from (22) and the substitution of these expressions in (10).

When the density distribution p(a) is symmetrical with respect to the origin, the Poisson functional uλ,P

takes the simplified form

uλ,P (ϕ) = λ

∫
Rd

∫
R

(cos(aϕ(x))− 1) dP (a) dx, (11)

due to the cancellation4 of imaginary terms. We will refer to this case as symmetric Poisson noise.

We conclude this section by presenting an expression for the characteristic form of symmetric Poisson noise

that brings out the differences with the standard form of a Gaussian white noise and also gives us a better insight

into the influence of the amplitude variable a. To this end, we write the Taylor series of (11) and manipulate

it as follows

uλ,P (ϕ) = λ

∫
Rd

∫
R

+∞∑
n=1

(−1)n

(2n)!
a2nϕ(x)2n dP (a) dx

= λ
+∞∑
n=1

(−1)n

(2n)!
E {a2n}

∫
Rd

ϕ(x)2n dx

= − λ
2!

E {a2}‖ϕ‖2L2
+
λ

4!
E {a4}‖ϕ‖4L4

− · · ·

where we are assuming that the moments of P (a) are bounded in order to switch the order of summation. The

final expression is enlightening since the first term, which is purely quadratic, precisely matches the standard

Gaussian form u(ϕ) = 1
2‖ϕ‖

2
L2(Rd) [cf. (20)]. This is consistent with the fact that the second-order properties

of the process are indistinguishable from those of a Gaussian noise (cf. Corollary 1). The interesting aspect is

4This requires the interchange of the order of integration, which is justified by Lebesgue’s dominated convergence theorem; specifically,

we invoke the bounds | cos(u)−1| ≤ min(2, u2) and | sin(u)| ≤ min(1, |u|) together with the fact the test function ϕ(x) decays rapidly

at infinity.
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w(x) s(x)

White noise
 (Gaussian or Poisson)

Generalized
stochastic process

L{·}

Shaping filter

(appropriate boundary conditions)

Whitening operator

L−1{·}

Fig. 3. Innovation model of a generalized stochastic process. The delicate mathematical issue is to make sure that the operator L and its

inverse L−1 (resp., their duals L∗ and L−1∗) are well-defined over the space of tempered distributions (resp., Schwartz’s class of infinitely

differentiable and rapidly-decreasing test functions).

that the Poisson functional also includes higher-order terms involving the Lp-norms of ϕ for p even with the

pth moments of the amplitude distribution acting as weighting factors. This last formula also shows that we

have some freedom in shaping the Poisson noise via the control of the higher-order moments of a.

IV. GENERALIZED POISSON PROCESSES

Our quest in this paper is to specify stochastic models for the class of piecewise-smooth signals that are

well represented by wavelets and that also conform to the notion of finite-rate of innovation. To maintain

the backward compatibility with the classical Gaussian formulation, we are proposing the common innovation

model in Fig. 3 driven by white noise w, which may be either Gaussian or impulsive Poisson. The remarkable

feature is that the Poisson version of the model is capable of generating piecewise-smooth signals, in direct

analogy with the method of constructing splines that is reviewed in Section IV-A. This naturally leads to the

definition of generalized Poisson processes given in Section IV-B, with the catch that the underlying stochastic

differential equations are typically unstable. In Section IV-C, we show how to bypass this difficulty via the

specification of appropriate scale-invariant inverse operators. We then illustrate the approach by presenting

concrete examples of sparse processes (Sections IV-D to IV-E).

A. The spline connection

Splines provide a convenient framework for modeling 1-D piecewise-smooth functions. They can be made

quite general by allowing for non-uniform knots and different types of building blocks (e.g. piecewise polyno-

mials or exponentials) [27]. An elegant, unifying formulation associates each brand of splines with a particular

linear differential operator L. Here, we will assume that L is shift-invariant and that its null space is finite-

dimensional and non-trivial. Its Green function (not unique) will be denoted by ρL(x) with the defining property

that L{ρL} = δ.

Definition 1: A function s(x) is a non-uniform L-spline with knot sequence x1 < · · · < xk < · · · < xK iff.

L{s}(x) =
K∑

k=1

akδ(x− xk).
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The knot points xk correspond to the spline singularities. Interestingly, the Dirac impulse sequence on the

right-hand side of this equation is essentially the same as the one used to define the Poisson noise in (5), with

the important difference that it is now a deterministic entity.

We can formally integrate the above equation and obtain an explicit representation of the non-uniform spline

as a linear combination of shifted Green functions plus a component p0(x) that is in the null space of L:

s(x) = p0(x) +
K∑

k=1

akρL(x− xk).

For the spline to be uniquely-defined, one also needs to specify some boundary conditions to fix the null-space

component p0(x) (typically, m linear constraints for a differential operator of order m). The standard choice

of a differential operator is L = Dm = dm

dxm which corresponds to the family of polynomial splines of degree

m− 1. The generic form of such splines is

sm(x) =
m−1∑
n=0

bnx
n +

K∑
k=1

ak
(x− xk)m−1

+

(m− 1)!

where the one-sided power function
(x)m−1

+
(m−1)! is the causal Green function of Dm, or, equivalently, the impulse

response of the m-fold integrator D−m. One can verify that sm(x) coincides with a polynomial of degree m−1

in each interval [xk, xk+1) and that it is differentiable up to order m − 1 at the knot locations, implying that

the polynomial segments are smoothly joined together.

An equivalent higher-level description of the above inversion process is to view our spline as the solution of

the differential equation L{s} = r with driving term r(x) =
∑

k akδ(x − xk) and to express the solution as

s = L−1{r} where L−1 is an appropriate inverse operator that incorporates the desired boundary conditions. The

mathematical difficulty in this formulation is that it requires a precise, unambiguous specification of L−1. This

is the approach that we will take here to define our generalized Poisson processes. Intuitively, these correspond

to stochastic splines where both the weights and knot locations are random.

B. Generalized processes with whitening operator L

Let us now return to the innovation model in Fig. 3. The idea is to define the generalized process s with

whitening operator L as the solution of the stochastic partial differential equation (PDE)

L{s}(x) = w(x) (12)

where the driving term w is a white noise process that is either Gaussian or Poisson (or possibly a combination

of both). This definition is obviously only usable if we can specify a corresponding inverse operator T = L−1;

in the case where the inverse is not unique, we will need to select one preferential operator, which is equivalent

to imposing specific boundary conditions. Assuming that such an operator exists and that its adjoint L−1∗ is

mathematically well-defined on the chosen family of test functions, we are then able to formally solve the

equation as

s(x) = L−1{w}(x).

Moreover, based on the defining property 〈s, ϕ〉 = 〈L−1w,ϕ〉 = 〈w,L−1∗ϕ〉, we can transfer the action of the

operator onto the test function inside the characteristic form (cf. Appendix I.B) and obtain a complete statistical
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characterization of the so-defined generalized stochastic process

Zs(ϕ) = ZL−1w(ϕ) = Zw(L−1∗ϕ).

where Zw(ϕ) is specified by (20) or Theorem 1, depending on the type of driving noise. This simple manipu-

lation yields the following explicit formulas for the characteristic forms of our two kinds of processes:

1) Generalized Gaussian

Zs(ϕ) = e
− 1

2‖L
−1∗ϕ‖2

L2(Rd) (13)

2) Generalized Poisson

Zs(ϕ) = exp
(
λ

∫
R

∫
Rd

(ejaL−1∗{ϕ}(x) − 1) dx dP (a)
)

(14)

The correlation form, which is the same in both cases, is

Bs(ϕ1, ϕ2) = 〈L−1∗ϕ1,L−1∗ϕ2〉L2 = 〈(L−1L−1∗)ϕ1, ϕ2〉L2 .

The latter implies that the Gaussian and sparse processes defined by (13) and (14) have identical second-order

statistics, which is the matching condition emphasized in our introductory denoising experiment.

The above characterization is not only remarkably concise, but also quite general for it can handle a much

larger class of linear operators than conventional stochastic calculus. This will prove to be very helpful for our

investigation of spline-type processes in Section III.D.

In the special case where w is Gaussian and T = L−1 is a shift-invariant operator such that Ts = (h ∗ w)

where h ∈ L2(Rd) is a suitable, square-integrable convolution kernel, one recovers the classical family of

Gaussian stationary processes with spectral power density Φs(ω) = |H(ω)|2 where H(ω) is the frequency

response of the shaping filter h (cf. Appendix I-C). The corresponding autocorrelation function is given by

Bs(δ, δ(·−x)) = (h∨ ∗h)(x) with h∨(x) = h(−x), which is consistent with the Wiener-Kintchine theorem. If

one switches to a Poisson excitation, one obtains a class of stationary random processes sometimes referred to

as generalized shot noises [28], [29]. These signals are made up of shifted replicas of the impulse response of

the shaping filter with some random amplitude factor: s(x) =
∑

k∈Z akh(x− xk). They are typically bumpy

(depending on the localization properties of h) and quite distinct from what one would commonly call a spline.

Generating random splines is possible as well, but these will typically not be stationary.

C. Scale-invariant operators and their inverse

Among the large variety of admissible operators L, we are especially interested in those that commute with

the primary coordinate transformations: translation, dilation and rotation. This is because they are likely to

generate processes with interesting properties. These operators, which are also tightly linked to splines and

fractals, happen to be fractional derivatives.

We have shown in earlier work that the class of linear 1-D shift- and scale-invariant operators reduces to the

(γ, τ)-derivatives ∂γ
τ with τ ∈ R and γ ∈ R+ [30]. Their Fourier-domain definition is

∂γ
τ f(x) F←→ (−jω)

γ
2−τ (jω)

γ
2 +τ f̂(ω)

where f̂ is the Fourier transform of f (in the sense of distributions). The parameter τ is a phase factor that

allows for a progressive transition between a causal operator (τ = γ
2 ) and an anti-causal one (τ = −γ

2 ), which is
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the adjoint of the former (more generally, we have that (∂γ
τ )∗ = ∂γ

−τ ). Note that the causal fractional derivative

∂γ
γ
2

, whose frequency response is (jω)γ , coincides with Liouville’s fractional derivative of order γ which is

often denoted by Dγ . When γ = m is integer, one recovers the traditional derivatives Dm = dm

dxm .

Adding the requirement of rotation invariance further narrows down the options. One is then left with the

fractional Laplacians (−∆)
γ
2 with γ ∈ R+, which are the only multidimensional linear operators that satisfy the

requirement of simultaneous shift-, scale- and rotation invariance [31], [32]. The corresponding Fourier-domain

definition is

(−∆)
γ
2 f(x) F←→ ‖ω‖γ f̂(ω).

Here too, there is a direct correspondence with the classical Laplace operator ∆ =
∑d

i=1
∂2

∂x2
i

when the order

γ is even.

While the above differential operators are promising candidates for defining generalized stochastic processes,

one is faced with a technical difficulty in defining the inverse operator L−1 because the frequency responses of

∂γ
τ and (−∆)

γ
2 vanish at the origin. This means that the inversion problem, as such, is ill-posed. Fortunately,

it is not insurmountable because the null space of our fractional derivative operator is finite-dimensional: it

is made up of the polynomials of degree dγ − 1e. Concretely, this means that we can uniquely specify the

inverse operator (and solve our stochastic PDE) by imposing suitable boundary conditions. In previous work on

fractional Brownian motion, we have shown that one can design an inverse operator L−1 that forces the process

(and a proper number of derivatives) to vanish at the origin. Since the derivation of these inverse operators

(which are fractional integrators with boundary conditions at the origin) and their duals is somewhat involved,

we refer the reader to the corresponding publications for mathematical details [32], [33]. The basic results are

summarized in Table 1.

To gain some insight into the type of transformation, let us have a closer look at the fractional integral

operator L−1 = (−∆)−
γ
2

0 , which is defined as follows

(−∆)−
γ
2

0 ϕ(x) =
∫

Rd

ej〈x,ω〉 −
∑bγ− d

2 c
|k|=0

j|k|xkωk

k!

‖ω‖γ
ϕ̂(ω)

dω

(2π)d
(15)

with the condensed multi-integer notations: |k| = k1 + · · · + kd, k! = k1! · · · kd!, and ωk = ωk1
1 · · ·ω

kd

d . We

note that, except for the summation term within the integral, it corresponds to the inverse Fourier transform of

‖ω‖−γϕ̂(ω) which represents the filtering of ϕ with the (potentially unstable) inverse of the fractional Laplacian.

The correction term amounts to a polynomial (in the form of a Taylor series at the origin) that ensures that

the resulting function (−∆)−
γ
2

0 ϕ(x) and its derivatives up to order bγ − d
2c are vanishing at x = 0. This is

justified formally by invoking the moment property of the Fourier transform:∫
Rd

N∑
|k|=0

j|k|xkωk

k!
ϕ̂(ω)

dω

(2π)d
=

N∑
|k|=0

xk

k!

∫
Rd

j|k|ωkϕ̂(ω)
dω

(2π)d︸ ︷︷ ︸
ϕ(k)(0)

.

where ϕ(k)(x) = ∂k1+···+kd

∂x
k1
1 ···∂x

kd
d

ϕ(x). Forcing the values of the (generalized) function and its derivatives to be

zero at the origin is crucial for the specification of fractional Brownian motion as there, by definition, the

process should equal zero at x = 0 [34]. Conveniently, these are precisely the boundary conditions that are

imposed by all fractional integral operators L−1 in Table 1. Another important property is that LL−1u = u in

the distributional sense, which constitutes the foundation of the proposed innovation models.
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The adjoint operator of (−∆)−
γ
2

0 is specified by

(−∆)−
γ
2 ∗

0 ϕ(x) =
∫

Rd

ej〈x,ω〉
ϕ̂(ω)−

∑bγ− d
2 c

|k|=0 ϕ̂(k)(0)ωk

k!

‖ω‖γ
dω

(2π)d

and has the same type of flavor. The difference is that it now includes a Taylor series correction in the frequency

domain that sets the moments of the test function to zero up to order bγ− d
2c. Mathematically, this compensates

the singularity of ‖ω‖−γ at ω = 0 and ensures that this dual operator is well-behaved over the class of

test functions ϕ ∈ S. The domain of definition of the dual fractional integral operators can actually be

extended to the weighted L1 space L1(Rd, wα) =
{
f(x) : ‖wαf‖L1(Rd) < +∞

}
where wα = (1+ ‖x‖)α and

α > bγ − d/2c, which is considerably larger than S. This is stated in the following theorem, whose proof is

given in Appendix II.

Theorem 2: Let ϕ ∈ L1(Rd, wN ) with integer N > H = γ − d/2 ∈ R+\N. Then, ‖(−∆)−
γ
2 ∗

0 ϕ‖L2(Rd) <

+∞ and the corresponding generalized Gaussian and symmetric Poisson characteristic forms (13) and (14) are

well-defined. The same applies in 1-D for the operators ∂γ
τ for any τ ∈ R.

Note that the cases where H is an integer are excluded because the corresponding L2-norms are generally

unbounded, including when ϕ ∈ S. The proof that is given in Appendix II completely takes care of the Gaussian

and symmetric Poisson cases. In more recent work, we have extended the results for the general, non-symmetric

Poisson case by slightly modifying the inverse operators to make then stable in the L1-sense [35].

The boundedness result in Theorem 2 ensures that the definition of the corresponding Gaussian and gener-

alized Poisson processes is mathematically sound. By the same token, it also provides a constructive method

for solving the stochastic differential equation (12), thanks to the inverse operator specified by (15). Indeed,

we can show that (L−1∗)L∗ϕ = ϕ and LL−1ϕ = ϕ (which is the dual statement of the former) for all test

functions ϕ ∈ S. This means that L−1∗ is the left inverse of L∗, while L−1 is the right inverse of L. In the

first case, the operator L∗ sets the moments of the intermediate function to zero so that the effect of L−1∗ is

equivalent to that of the unregularized inverse. In the second case, L sets to zero the polynomial component

that was added by L−1 to fulfill the boundary conditions at x = 0.

We conclude this technical discussion by mentioning that, unlike the fractional derivatives and Laplacian, the

inverse operators specified in Table 1 are not shift-invariant (because of the boundary conditions). They are,

however, invariant with respect to scaling as well as rotation in the case of the Laplacian. The implication is

that the corresponding random processes will inherit some form of invariance, but that they will generally not

be stationary.

D. Fractal and spline-type processes

By combining the scale-invariant operators of Table 1 with the general framework proposed in Section III.C,

we obtain an interesting family of stochastic processes. Their key property is self-similarity in the sense that

the spatially-rescaled versions of a process are also part of the same family. Our generation model is ultimately

simple and boils down to a fractional integration of a white noise process subject to appropriate boundary

conditions. The mathematical technicalities have been dealt with in the preceding section by specifying the

proper fractional integration operators together with their domain of definition (cf. Theorem 2).
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TABLE I

INVERSION OF THE SCALE-INVARIANT OPERATORS IN ONE AND MULTIPLE DIMENSIONS.
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TABLE I

INVERSION OF THE SCALE-INVARIANT OPERATORS IN ONE AND MULTIPLE DIMENSIONS.

L ρ = L−1δ L−1ϕ L−1∗ϕ

Dγ xγ−1
+

Γ(γ)

Z

R

ejωx −
P#γ− 1

2 $
k=0

jkxkωk

k!

(jω)γ
ϕ̂(ω)

dω

2π

Z

R
ejωx ϕ̂(ω)−

P#γ− 1
2 $

k=0 ϕ̂(k)(0)ωk

k!

(−jω)γ

dω

2π

∂γ
τ Aγ

τ |x|γ−1 + Bγ
τ sign(x)|x|γ−1

Z

R

ejωx −
P#γ− 1

2 $
k=0

jkxkωk

k!

(−jω)
γ
2 −τ (jω)

γ
2 +τ

ϕ̂(ω)
dω

2π

Z

R
ejωx ϕ̂(ω)−

P#γ− 1
2 $

k=0 ϕ̂(k)(0)ωk

k!

(jω)
γ
2 −τ (−jω)

γ
2 +τ

dω

2π

(−∆)
γ
2 Cγ‖x‖γ−d, γ − d /∈ 2N

Z

Rd

ej〈x,ω〉 −
P#γ− d

2 $
|k|=0

j|k|xkωk

k!

‖ω‖γ
ϕ̂(ω)

dω

(2π)d

Z

Rd
ej〈x,ω〉

ϕ̂(ω)−
P#γ− d

2 $
|k|=0 ϕ̂(k)(0)ωk

k!

‖ω‖γ

dω

(2π)d

with Aγ,τ = −
cos πτ

2Γ(γ) sin(π
2 (γ − 1))

, Bγ,τ = −
sin πτ

2Γ(γ) cos(π
2 (γ − 1))

, and Cγ =
2γΓ( d+γ

2 )

π
d
2 Γ
`
− γ

2

´

ϕ ∈ S. In fact, the dual fractional integral operators can be safely applied to a much larger set of functions as S;

for instance, the weighted L1 space L1(Rd, wα) =
{
f(x) : ‖wαf‖L1(Rd) < +∞

}
where wα = (1 + ‖x‖)α and

α > $γ − d/2&.

Theorem 2: Let ϕ ∈ L1(Rd, wN ) with integer N > H = γ − d/2 ∈ R+\N. Then, ‖(−∆)−
γ
2 ∗

0 ϕ‖L2(Rd) < +∞

and the corresponding generalized Gaussian and symmetric Poisson characteristic forms (12) and (13) are well-

defined. The same applies in 1-D for the operators ∂γ
τ for any τ ∈ R.

Note that the cases where H is an integer are excluded because the corresponding L2-norms are generally

unbounded, including when ϕ ∈ S. The proof that is given in Appendix II completely takes care of the Gaussian

and symmetric Poisson cases. The current version also extends to the general, non-symmetric Poisson case, but at

the cost of some restriction on ϕ (vanishing moments)—we believe that there is room for improvement there.

We can also show that (L−1∗)L∗ϕ = ϕ and LL−1ϕ = ϕ (which is the dual statement of the former) for all test

functions ϕ ∈ S. This means that L−1∗ is the left inverse of L∗, while L−1 is the right inverse of L. In the first

case, the operator L∗ sets the moments of the intermediate function to zero so that the effect of L−1∗ is equivalent

to that of the unregularized inverse. In the second case, L sets to zero the polynomial component that was added

by L−1 to fulfill the boundary conditions at x = 0.

We conclude this technical discussion by mentioning that, unlike the fractional derivatives and Laplacian, the

inverse operators specified in Table 1 are not shift-invariant (because of the boundary conditions). They are, however,

invariant with respect to scaling as well as rotation in the case of the Laplacian. The implication is that the

corresponding random processes will inherit some form of invariance, but that they will generally not be stationary.

August 25, 2009 DRAFT

We first consider the one-dimensional case. If the driving noise is Gaussian, the formulation is equivalent

to that presented in [33]. Specifically, by taking L = ∂γ
τ with 1

2 < γ < 3
2 and any τ ∈ R, one obtains fractal

processes that are equivalent to the fractional Brownian motion (fBm) introduced by Mandelbrot and Van Ness

[36]. Rather than the order, fBms are usually characterized by their Hurst exponent H = γ − d
2 whose value

is restricted to the open interval ]0, 1[; the fractal dimension is D = d + 1 −H . The case γ = 1 (or H = 1
2 )

corresponds to the Brownian motion (or Wiener) process, which is illustrated in Fig. 1a. By definition, this

process is whitened by all first-order derivative operators ∂1
τ ; in particular, by D = ∂1

1
2

, which corresponds to

the optimal regularization functional for the Brownian motion denoising problem (1). The formalism is also

applicable for H = γ − 1
2 > 1 (but non-integer), in which case it yields the higher-order extensions of fBm

introduced by Perrin et al. [37].

Alternatively, if we excite the system with impulse noise, we obtain a stochastic process that is a random

spline of order γ or, equivalently, of degree γ − 1. The corresponding ∂γ
τ -Poisson processes are piecewise-

smooth: they have pointwise discontinuities with a Hölder exponent5 γ−1 at the spline knots and are infinitely

differentiable in between (this follows from the properties of the Green functions in Table 1). In other words,

they are infinitely differentiable almost everywhere, whereas the γth order fBms are uniformly rough everywhere

(i.e., Hölder-continuous of order γ−1). Another distinction between the Gaussian and Poisson processes is the

importance of the phase factor τ for the latter. Specifically, we can use any fractional derivative operator ∂γ
τ to

whiten an fBm of order γ, while in the case of a random spline, the value of τ = τ0 needs to be matched to the

type of singularity (generation model) to recover Poisson noise. Some examples of extended fBms and random

splines with matching exponents are shown in Fig. 4. The important point is that the signals that are shown

side by side share a common innovation model (same whitening operator L) but yet are fundamentally different:

the random splines on the right have a sparse representation (due to their finite rate of innovation), which is not

the case for the Gaussian fBms on the left. These signals were generated by inverse FFT using a discretized

version of the Fourier representation of the operator L−1. The Poisson noise was generated using uniform

5A function f(x) is r-Hölder-continuous iff supx,y

˛̨
f (N)(y) − f (N)(x)

˛̨
/|y − x|r−N is finite with N = dre − 1.
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fBm; H = 0.50

fBm; H = 0.75

fBm; H = 1.25

fBm; H = 1.50

Poisson; H = 0.50

Poisson; H = 0.75

Poisson; H = 1.25

Poisson; H = 1.50

H
=

.5
H

=
.7

5
H

=
1
.2

5
H

=
1
.5

Version 2: Different excitations

Fig. 4. Gaussian vs. sparse signals: Comparison of fractional Brownian motion (left column) and Poisson (right column) generalized

stochastic processes as the order inceases. The processes that are side-by-side have the same order γ = H + 1
2

and identical second order

statistics.

random generators for the location and amplitude parameters. The underlying operators in this experiment

are causal derivatives so that the generalized Poisson processes of integer order are polynomial splines (e.g.,

piecewise-constant for H = 0.5 and piecewise-linear for H = 1.5). As the order increases, the functions become

smoother and the two types of processes are less and less distinguishable visually.

The generation mechanism naturally extends to multiple dimensions. In the case of a Gaussian excitation,

we obtain fractional Brownian fields [38], whose detailed characterization as generalized random processes

was presented in a recent paper [32]. If we switch to a Poisson noise, we generate random fields that are

polyharmonic splines of order γ. For d
2 < γ < d, these exhibit impulse-like singularities which are explained

by the form of the Green function (cf. Table 1); the impulse-like behavior disappears as the order increases

and as the process becomes smoother. A series of generalized fBms and random polyharmonic splines with

matching exponents is presented in Fig. 5. Note the characteristic cloud-like appearance of low order fBms.

Here too, the two types of processes become more and more similar visually as the order increases.

We did allude to the fact that the processes in Fig. 4 and 5 are self-similar. This property is well known

for the fBms which are the prototypical examples of stochastic fractals [38], [39]. The random splines that we

have defined here are self-similar as well, but in a weaker sense. Specifically, if one dilates such a generalized

Poisson process by a factor of a one obtains a generalized Poisson process that is in the same family but with

a rescaled Poisson parameter λa = λ1/a
d where λ1 is the parameter of the primary process.

E. Mixed Poisson processes

Conveniently, the characteristic form of the sum of two independent processes is the product of their

characteristic forms; i.e., Zs1+s2(ϕ) = Zs1(ϕ) · Zs2(ϕ) [18]. A direct implication is that a Poisson noise

w(x) is infinitely divisible in the sense that it can always be broken into a sum of N i.i.d. Poisson processes.
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H=.5 H=.75 H=1.25 H=1.75

Version 2: Different excitations

Fig. 5. Gaussian vs. sparse signals in 2-D: Comparison of fractional Brownian (upper row) and Poisson (lower row) generalized stochastic

fields as the order increases. The processes in the same column have the same order γ = H + 1 and identical second order statistics.

Following this line of thought, we propose to construct mixed Poisson processes by summing N independent

generalized Poisson processes with parameters
{(

Ln, λn, Pn(a)
)}N

n=1
. The characteristic form of such a mixed

process is

Zs1+···+sN
(ϕ) =

N∏
n=1

Zsn
(ϕ) = exp

(
N∑

n=1

λnvn(ϕ)

)
where

vn(ϕ) =
∫

R

∫
Rd

(ejaL−1
n ϕ(x) − 1) dx dPn(a). (16)

The corresponding random signals exhibit different types of singularities. They will generally be piecewise-

smooth—sums of random splines—if the operators Ln are scale-invariant (cf. subsection IV.C). We can vary

their structural complexity by including more or less independent Poisson components. Yet, their intrinsic

sparsity (or rate of innovation) remains the same as long as λ =
∑N

n=1 λn = Const. The variations along this

theme are countless, especially in 1-D, due to the large variety of available operators (e.g., ∂γ
τ with τ ∈ R+

and γ > 1
2 ).

F. The Mondrian process

We became especially intrigued by the generalized Poisson process associated with the partial differential

operator L = ∂d

∂x1···∂xd
and decided to call it the “Mondrian process”. A colorful realization is shown in Fig. 6.

The 2-D process u(x, y) corresponding to this illustration is the solution of the (marginally unstable) stochastic

PDE:
∂2u(x, y)
∂x∂y

=
K∑

k=1

akδ(x− xk, y − yk)
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1-

2D generalization: the Mondrian process

22

λ = 30

L = DxDy
F←→ (jωx)(jωy)

Fig. 6. Pseudo-color display of a realization of the Mondrian process with λ = 30.

where the ak, xk and yk are independent uniformly-distributed random variables. Since L is separable, its

Green function is separable as well: it is the multidimensional Heaviside function 1+(x) =
∏d

n=1 1+(xn) (e.g.,

L−1 is a quarter plane integrator in 2-D). This results in a signal that is the direct multi-D counterpart of (4).

The Mondrian process in Fig. 6 was constructed and first shown at a conference in the honor of Martin

Vetterli in 2007. It is distinct from the Mondrian process of Roy and Teh [40] which is generated hierarchically

via a random subdivision of rectangular regions. The characteristic feature of the present construct is the spatial,

long-range dependance that is introduced by the (quarter plane) integration process. This type of pattern is more

intriguing visually and intellectually than a mere random superposition of colored rectangles—remarkably, it is

also shorter to describe mathematically (cf. equation above).

G. Poisson processes and system modeling

The proposed stochastic framework is general enough to handle many other types of operators; essentially, all

those that lead to viable deterministic spline constructions since these require the resolution of the same type of

operator equation [cf. (12)]. The choice of the “optimal” operator may be motivated by physical considerations.

For instance, it is possible to model time-domain signals s(t) that are generated by a physical system driven

by random impulse-like events. Specifically, the operator L associated with an N th order ordinary differential

equation is characterized by the generic rational frequency response

L̂(ω) =
(jω)N + aN−1(jω)N−1 + · · ·+ a1(jω) + a0

bN−1(jω)N−1 + · · ·+ b1(jω) + b0
. (17)
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Event/impulse-driven process

sparse wavelet

representationMatched 

wavelet

 transform+ noise

Differential

system

multiscale “deconvolution”

∑

n

an pn(x− xn) s(x)

Fig. 7. A signal analysis paradigm where the operator L as well as the corresponding wavelet decomposition are matched to the

characteristics of a physical, event-driven linear system.

It admits a stable causal inverse (i.e., L−1δ(t) = h+(t) ∈ L1(R), which is the impulse response of the system)

iff. the poles of the system are in the left complex plane. Interestingly, there is no such restriction for defining

the corresponding family of exponential splines, which are entirely specified by the poles and zeros of the

system [20], nor for using this type of operator for specifying generalized stochastic processes. In general,

the processes corresponding to BIBO stable inverse operators6 are stationary, while the ones corresponding

to unstable operators (poles on the imaginary axis) are non-stationary. The prototypical examples in this last

category are the random polynomials splines; these are generated by N -fold integration which is basically an

unstable operation (N th-order pole at 0).

We believe that the major benefit of adopting a system modeling point of view is that it provides us with a

conceptual framework for developing new “designer wavelets” that are matched to particular classes of signals,

in accordance with the scheme outlined in Fig. 7.

V. ON THE WAVELET COMPRESSIBILITY OF GENERALIZED POISSON PROCESSES

A. Operator-like wavelets

It is well known that conventional wavelets bases act like multi-scale derivatives [9]. We have exemplified

this behavior for the Haar basis in our introductory discussion. More generally, N th order wavelets, which have

N vanishing moments, behave like N th order derivatives; i.e., they can be represented as ψ(x) = DNφ(x)

where φ(x) is a suitable (lowpass) smoothing kernel. In the case where the wavelet is a polynomial spline (e.g.

Battle-Lemarié or B-spline wavelet), the link with the differential operator can be made completely explicit.

For instance, it is well-known that the cardinal spline wavelet

ψDN (x) = DNφint(2x),

where φint(x) is the unique cardinal spline interpolator of order 2N , generates a semi-orthogonal Riesz basis

of L2(R) for any N ≥ 1 [41].

Remarkably, this concept carries over to more general classes of operators provided that there is a corre-

sponding spline construction available. In particular, there exist wavelet bases that are perfectly matched to the

complete range of fractional derivative operators in Table 1:

6The present mathematical framework can cope with poles that are in the right complex plane by allowing non-causal inverses, irrespective

of any physical consideration.
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the fractional spline wavelets which are linked to the operator Dγ [42], and well as ∂γ
τ [43], [44];

the multidimensional polyharmonic spline wavelets associated with the fractional Laplacian (−∆)
γ
2 [45].

The latter are thin-plate spline functions that live in the span of the radial basis functions ‖x− k‖γ−d,k ∈ Zd

(cf. Green’s function in Table 1). The spline wavelets come in a variety of flavors (semi-orthogonal, B-spline,

operator-like) and can also be constrained to be orthogonal.

When the operator L is not scale-invariant anymore, we can still build wavelets that form multiresolution

hierarchies and yield Riesz bases of L2(Rd), but that are no longer dilates of one another. Yet, as long as the

operator is shift-invariant, the wavelets at a given resolution i remain translates of a single prototype whose

generic form is

ψi(x) = L∗φi(x)

where φi is a resolution-dependent smoothing kernel [46]. In the canonical construction, φi is an L∗L-spline

interpolator with respect to the grid at resolution i (in accordance with Definition 1), which ensures that ψi(x) is

itself an L-spline. The corresponding transform can also be implemented using Mallat’s fast filterbank algorithm

but with resolution-dependent filters. In particular, we have shown how to construct 1-D wavelets that replicate

the behavior of any given N th order differential operator, as specified by (17) [47]. While the basic wavelet

prototypes are exponential splines, the scheme can be extended to obtain generalized, operator-like Daubechies

wavelets that are both orthogonal and compactly supported [48].

B. Wavelet analysis of generalized Poisson processes

We will now argue that the above operator-like wavelets are matched to the type of generalized Poisson

processes introduced in this paper and that they will generally result in a sparse representation. By solving the

operator equation (12), we obtain the following explicit representation of a generalized L1-Poisson process:

s1(x) = pL1(x) +
∑

n

anρL1(x− xn)

where pL1(x) is a finite-dimensional signal component that is in the null space of L1 and where ρL1 is the

Green’s function of L1 such that L1ρL1 = δ; the xn’s are random locations that follow a Poisson distribution

with parameter λ while the an’s are i.i.d. random weights with probability distribution p(a).

Let us consider the analysis of such a process with any higher-order L-wavelet transform with the property

that L = L0L1 where the factor L0 is a proper7 differential operator (the limit case being L0 = Identity). The

wavelet coefficients at resolution i of s(x) are obtained as follows

〈s1, ψi,k〉 = 〈s1,L∗φi(· − 2ik)〉

= 〈s1,L∗1L∗0φi(· − 2ik)〉

= 〈L1s1,L∗0φi(· − 2ik)〉 (by duality)

= 〈
∑

n

anδ(x− xn),L∗0φi(· − 2ik)〉

=
∑

n

anL∗0φi(xn − 2ik). (18)

7The requirements are: 1) linear shift-invariance and 2) L∗0φ ∈ L2(Rd) with sufficient decay, the worst case being O(|x|−γ0−d) where

γ0 is the (possibly fractional) order of the operator L0 [35, Proposition 2.4].
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Recalling that the density of Poisson impulses is proportional to λ, this result suggests that the wavelet

representation of such a process is intrinsically λ-sparse, provided that the L∗0φi’s are decaying sufficiently fast.

Indeed, since the essential support of the smoothing kernel φi is usually proportional to 2i (the wavelet scale),

it implies that a singularity will affect the same number of wavelet basis functions at any resolution (cone-like

region of influence). This last characteristic number, which is 1 for the Haar transform, can also be expected

to increase with the order of L since higher-order wavelets are typically less localized. Another implicit effect

is that the amplitude of the wavelet coefficients will exhibit a certain rate of decay (or growth) with i because

of the unit-norm normalization of the basis functions. For instance, in the case of the Haar basis, we have that

2−i/2ψ(x/2i) = Dφi(x) where φi(x) = 2i/2φ0(x/2i) is a rescaled triangle function.

Interestingly, this sparsifying behavior subsists if we consider a mixed process of the type s(x) = s1(x) +

· · · + sN (x) where the sn’s are independent generalized Ln-Poisson processes (cf. subsection IV-E) with the

Ln’s all being admissible factors of L. In the case of 1-D derivative-like wavelets, the argument applies to a

broad class of piecewise-smooth signals because of the numerous ways of factorizing a derivative of order γ

∂γ
τ = ∂γ1

τ1
∂γ−γ1

τ−τ1
;

where τ1 ∈ R and γ1 ∈ [0, γ] can be arbitrary. Concretely, this means that a conventional wavelet of order

N will sparsify signals that contain any variety of α-Hölder point singularities with α ≤ N − 1 (cf. Green’s

function in Table 1). The spline operator-like wavelets discussed earlier turn out to be ideal for this task

because the calculations of L∗0φi in (18) can be carried out analytically [44, Theorem 1]. Such a behavior of

the wavelet transform of a piecewise-smooth signal is well documented in the literature, but it has not been

made as explicit before, to the best of our knowledge.

The above analysis also suggests that wavelet compressibility is a robust property (i.e., it is not necessary to

pick the “optimal” wavelet that precisely matches the whitening operator of the process). This is good practical

news because it means that any wavelet will do, provided its order is sufficient.

Less standard is the extension of the argument for other types of operators that are not necessarily scale-

invariant. In particular, if we have prior physical knowledge of the signal generation mechanism, we can invoke

the above results to justify the signal processing paradigm in Fig. 8. The proposed wavelet-based approach

is stable and much more robust to modeling errors and noise than a conventional deconvolution scheme. We

have applied this strategy and demonstrated its benefits in two concrete applications: (1) the reconstruction

of the dynamic positron emission tomograms with a constraint on the `1-norm of the spatio-temporal wavelet

coefficients [49], and (2) the detection of neuronal activity using functional magnetic resonance imaging [50].

In the first case, we have tuned the time-domain wavelets to the pharmacokinetic model that rules the time

activity curve in response to the injection of a radioactive tracer. In the second case, we matched the wavelets

to a linearized version of an established model of the hemodynamic response of the brain. In both instances,

the results obtained with “designer” wavelets were superior to those obtained with conventional ones.

VI. BACK TO THE COMPOUND POISSON PROCESS

To illustrate the suitability of the proposed formalism for deriving new signal estimators, we consider the

compound Poisson process whose explicit form is given by (4). First, we note that the total variation of this signal
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is TV(s) =
∑

k∈Z |ak| = ‖ak‖`1 , which already makes an interesting connection between parametric (FRI)

estimation and `1-minimization (cf. Eq. (3)). To specify an optimal statistical estimator (MAP or minimum mean-

square error) for the denoising problem in Section II, we need to know the N th-order joint probability density of

the samples of the signal at the integers: p
(
s(1), s(2), · · · , s(N)

)
. Instead of working with these samples which

are strongly correlated, we propose to consider the finite-difference process wd(x) = s(x)−s(x−1) = Dds(x),

which is stationary with a very short correlation distance. To specify this latter process mathematically, we use

the technique of Section IV-B to transfer the underlying operators onto the argument of the characteristic form

of the Poisson noise w given by Theorem 1:

Zwd
(ϕ) = ZDds(ϕ) = ZDdD−1w(ϕ) = Zw(D−1∗D∗

dϕ) = Zw(β0
− ∗ ϕ)

where β0
−(x) is the anti-causal B-spline of degree 0, which is piecewise-constant and compactly supported in

x ∈ [−1, 0). The critical step here is to show that D−1∗D∗
dϕ(x) = (β0

− ∗ ϕ)(x), which is best achieved in the

Fourier domain by using the relevant formula for D−1∗ (γ = 1) in Table 1:

D−1∗D∗
dϕ(x) F←→ (1− ejω)ϕ̂(ω)− (1− ej0)ϕ̂(0)

−jω
= ϕ̂(ω)

(
1− ejω

−jω

)
where the right-hand side factor is precisely the Fourier transform of β0

−. Note that the (forward) finite difference

operator D∗
d, whose frequency response is (1− ejω), suppresses the zero-order correction term of D−1∗ (inte-

gration constant), which is crucial for obtaining a stationary output. Next, we get the 2-D characteristic function

p̂(ωm, ωn) of the joint distribution p(wd(m), wd(n)) with m,n ∈ Z and m 6= n by evaluating the characteristic

form of wd for ϕ = ωmδ(· −m) + ωnδ(· − n), which yields p̂(ωm, ωn) = Zw

(
ωmβ

0
−(· −m) + ωnβ

0
−(· − n)

)
.

Moreover, since the B-splines β0
−(· − m) and β0

−(· − n) are non-overlapping and the Poisson characteristic

form in Theorem 1 factorizes for functions with disctinct support, we have that p̂(ωm, ωn) = p̂w(ωm) · p̂w(ωn)

with

p̂w(ω) = Zw

(
ωβ0

−
)

= exp
(
λ

∫
R

∫
R
(ejaωβ0

−(x) − 1) dx dP (a)
)

= exp
(
λ

∫
R
(ejaω − 1) dP (a)

)
where we have used the fact that β0

−(x) is equal to one for x ∈ [−1, 0) and zero elsewhere to evaluate the

inner integral over x. This factorization result proves independence and has the following implication:

Proposition 1: The integer samples of the finite-difference process wd(x) = Dds(x) = s(x)−s(x−1) where

s is a generalized poisson process with parameters (D, λ, P (a)) are i.i.d. random variables with probability

distribution function pw(wd) = F−1{exp
(
λ
∫

R(ejaω − 1) dP (a)
)
}(wd).

It follows that pw provides the complete information for the statistical description of the sampled version

of such signals. Proposition 1 allows us to express the regularization functional for the MAP estimator as a

summation of independent log-likelihood terms, which results in a form that is compatible with the discretized

version of the TV estimator described by (3). Interestingly, we can get an exact equivalence by making the

formal substitution e−|a|

|a| da = λ dP (a) in the Poisson functional. The relevant Fourier-domain identity is

exp
∫

R
(ejaω − 1)

e−|a|

|a|
da =

1
1 + ω2

= F{1
2
e−|wd|}(ω).

where the integral on the left-hand side is convergent because ejaω−1 = jaω+O(a2) as a→ 0. This translates

into a pure `1-norm log-likelihood term:
∑

k − log (p(s(k)− s(k − 1)) ∝
∑

k |s(k)− s(k − 1)|, which may
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explain the superiority of the TV algorithm in the denoising experiment in Section II. The existence of this limit8

example is hard evidence of the relevance of the proposed stochastic framework for sparse signal recovery. We

should keep in mind, however, that `1-regularization is only one of the many possibilities, and that the proposed

framework is rich enough to yield a board class of statistical estimators. The topic calls for a more detailed

investigation/evaluation which is beyond the scope of the present paper.

Let us close by providing an intuitive justification for the digital prefiltering step that is implicit in Proposition

1: while the defining equation (12) would suggest applying the exact whitening/sparsifying operator L to the

signal, this is not feasible conceptually nor practically because: 1) we cannot handle Dirac impulses directly,

and 2) the measurements are discrete. The next best thing we can do is to apply a discrete approximation of

the operator (e.g. finite difference instead of a derivative) to the samples of the signal to essentially replicate

its whitening effect. Remarkably, this discretization does not result in any statistical approximation.

VII. CONCLUSION

We introduced a unifying operator-based formulation of stochastic processes that encompasses the traditional

Gaussian stationary processes, stochastic fractals which are Gaussian but non-stationary, as well as a whole

new category of signals with finite rates of innovation. These signals are all specified as solutions of stochastic

differential equations driven by white noise of the appropriate type. When the system is stable and the driving

noise is Gaussian, the approach is equivalent to the traditional formulation of Gaussian stationary processes.

Sparse or FRI signals are obtained in a completely analogous fashion by considering an impulsive Poisson

noise excitation. It is important to note that these generalized Poisson processes are not Gaussian, irrespective

of the choice of the amplitude distribution of the driving noise.

A particularly interesting situation occurs when the whitening operator is scale-invariant; while the cor-

responding system is unstable, we have shown that the operator can be inverted by introducing suitable

boundary conditions. The corresponding Gaussian processes, which are self-similar, include Mandelbrot’s

famous fractional Brownian fields. The Poisson counterparts of these processes in one or multiple dimensions are

random splines—unlike their fractal cousins, they are infinitely differentiable almost everywhere and piecewise-

smooth by construction.

We believe that this latter class of signals constitutes a good test bed for the evaluation and comparison of

sparsity-driven signal processing algorithms. The specification of a statistical model is obviously only a first

step. A topic for future research is the investigation and extension of the type of result in Proposition 1 and the

derivation and assessment of corresponding statistical estimators. While `1-minimization and wavelet-based

algorithms are attractive candidates, they are probably not the ultimate solution of the underlying statistical

estimation problem.

8The proposed example does not correspond to a compound Poisson process in the strict sense of the term because the function |a|−1e−|a|

is not integrable. It can be described as the limit of the Poisson process: λ
R

R(ejaω − 1) dP (a) =
R
|a|> 1

n
(ejaω − 1) e−|a|

|a| da with

λ =
R
|a|> 1

n

e−|a|

|a| da, as n tends to infinity. Taking the limit is acceptable and results in a well-defined stochastic process that is part of

the extended Lévy family.
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APPENDIX I: RESULTS FROM THE THEORY OF GENERALIZED STOCHASTIC PROCESSES [18]

We recall that a multidimensional distribution u (or generalized function) is not defined through its point

values (samples) u(x),x ∈ Rd, but rather through its scalar products (linear functionals) u(ϕ) := 〈u, ϕ〉 with

all “test” functions ϕ ∈ S(Rd). Here, S(Rd) denotes Schwartz’s class of indefinitely differentiable functions

of rapid descent (i.e., ϕ as well as all its higher order derivatives decay faster than O(‖x‖−m),∀m ∈ N+). In

an analogous fashion, Gelfand defines a generalized stochastic process s via the probability law of its scalar

products with arbitrary test functions ϕ ∈ S(Rd), rather than by considering the probability law of its pointwise

samples {. . . , s(x1), s(x2), . . . , s(xN ), . . . }, as is customary in the conventional formulation.

A. The characteristic form

Given a generalized process s and some test function ϕ ∈ S(Rd), y = 〈s, ϕ〉 is a random variable

characterized by a probability density pϕ(y) dy. The specification of this PDF for any ϕ allows one define the

characteristic form of the process:

Zs(ϕ) = E {e−j〈s,ϕ〉} =
∫

R
e−jypϕ(y) dy (19)

where E {·} is the expectation operator. Zs(ϕ) is a functional of ϕ that fully characterizes the generalized

stochastic process s. In fact, Gelfand’s theory rests upon the principle that specifying Zs(ϕ) is equivalent to

defining the underlying generalized stochastic process.

Theorem 3 (Existence): Let Z(ϕ) be a positive-definite continuous functional on a test space S such that

Z(0) = 1. Then there exists a generalized process s whose characteristic functional is Z(ϕ).

We will illustrate the concept with the (normalized) white Gaussian noise process g, which, in Gelfand’s

framework, is succinctly defined by

Zg(ϕ) = e
− 1

2‖ϕ‖2
L2(Rd) . (20)

If we now substitute ϕ = ω1ϕ1 with the variable ω1 ∈ R and define g1 = 〈g, ϕ1〉, we get

Zg(ω1ϕ1) =
∫

R
e−jω1g1p(g1) dg1 = e

− 1
2 ω2

1‖ϕ1‖2
L2(Rd)

which is the characteristic function (in the classical sense) of the scalar random variable g1. The PDF of g1 is

obtained by inverse 1-D Fourier transformation, which yields

p(g1) =
1√
2πσ

e−
g2
1

2σ2

with σ2 = ‖ϕ1‖2L2(Rd). This clearly shows that all first-order densities of the process are Gaussian. Similarly,

to derive its second order statistics, we substitute ϕ = ω1ϕ1 +ω2ϕ2 in (20) with g1 as above and g2 = 〈g, ϕ2〉;

this produces the 2-D Gaussian-type characteristic function

Zg(ω1ϕ1 + ω2ϕ2) =
∫

R2
e−j(ω1g1+ω2g2)p(g1, g2) dg1 dg2 = e−

1
2 ωT Cω (21)

with ω = (ω1, ω2) ∈ R2 and

C =

 〈ϕ1, ϕ1〉L2 〈ϕ1, ϕ2〉L2

〈ϕ2, ϕ1〉L2 〈ϕ2, ϕ2〉L2

 .
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By taking the 2-D inverse Fourier transformation of (21), we readily derive the PDF of p(g1, g2) = N (0,C),

which is zero-mean Gaussian with covariance matrix C. This result also yields the covariance form of the white

Gaussian noise process

Bg(ϕ1, ϕ2) = E {g1g2} = [C]12 = 〈ϕ1, ϕ2〉L2(Rd)

More generally, based on the central equality in (21) which is valid for any process (including non-Gaussian

ones), we invoke the general moment generating properties of the Fourier transform to relate the covariance

form of a process s to a second-order derivative of its characteristic form:

Bs(ϕ1, ϕ2) = (j)2
∂2Zs(ω1ϕ1 + ω2ϕ2)

∂ω1∂ω2

∣∣∣∣
ω1=0,ω2=0

. (22)

The generalized stochastic process w is called normalized white noise iff. its covariance properties are

described by the simplest possible bilinear form Bw(ϕ1, ϕ2) = 〈ϕ1, ϕ2〉L2 . Note that such a process need not

be Gaussian and that it will essentially take independent values at every point9. To see this, we may select

ϕ2(x) = ϕ1(x− x0) and consider a series of contracting functions ϕ1 converging to a Dirac impulse. In the

limit, the correlation form will tend to Bw (δ(·), δ(· − x0)) = δ(x0) which is entirely localized at the origin

and zero elsewhere.

B. Linear transformation of a generalized process

While the characteristic form may look intimidating on first encounter, it is a powerful tool that greatly

simplifies the characterization of derived processes that are obtained by linear transformation of the primary

ones, including the cases where the operator is highly singular (e.g., derivatives). Specifically, let T be a linear

operator whose action over Schwarz’s space of tempered distributions (S ′(Rd)) is specified using a standard

duality formulation

∀u ∈ S ′(Rd), ϕ ∈ S(Rd), 〈Tu, ϕ〉 = 〈u,T∗ϕ〉, (23)

where S ′(Rd) is the topological dual of S(Rd). The key point in such a definition is to make sure that the

adjoint operator T∗ is such that it maps a test function ϕ ∈ S into another test function T∗ϕ ∈ S; otherwise, the

space S of test functions needs to be modified accordingly. Then, it is a trivial matter to obtain the characteristic

form of the transformed generalized stochastic process

Z(Ts)(ϕ) = Zs(T∗ϕ)

where we have used the adjoint’s definition 〈Ts, ϕ〉 = 〈s,T∗ϕ〉 to move the operator onto the test function.

For instance, we can apply such an operator T to white Gaussian noise to obtain a generalized “colored”

version of a noise process:

ZTw(ϕ) = Zw(T∗ϕ) = e
− 1

2‖T
∗ϕ‖2

L2(Rd) .

The noise will obviously remain white if and only if T (or, equivalently, T∗) is norm preserving over L2(Rd),

which is equivalent to T being unitary. Note that this condition is fulfilled by the Fourier transform (up to some

normalization factor), which proves that the Fourier transform of white noise is necessarily white as well.

9this is obviously a loose statement: white noise is discontinuous everywhere and there is no hope in trying to specify its samples in

the traditional pointwise sense.
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It is not hard to show that the correlation form of the linearly transformed noise process is

BTw(ϕ1, ϕ2) = 〈T∗ϕ1,T∗ϕ2〉L2(Rd) = 〈ϕ1, (TT∗)ϕ2〉L2(Rd),

where we observe that (TT∗) = Id iff. T is unitary.

C. Generalized Power spectrum

By restricting ourselves to the class of linear, shift-invariant operations Tw = h ∗ w where h is a suitable

multidimensional convolution kernel and w is (non-necessarily Gaussian) white noise, we can use this transfor-

mation mechanism to generate an extended class of stationary processes. The corresponding correlation form

is given by

B(h∗w)(ϕ1, ϕ2) = 〈h∨ ∗ ϕ1, h
∨ ∗ ϕ2〉L2(Rd)

=
∫

Rd

ϕ̂1(ω)ϕ̂∗2(ω) |H(ω)|2 dω

(2π)d

=
∫

Rd

ϕ̂1(ω)ϕ̂∗2(ω)Φ(ω)
dω

(2π)d

with h∨(x) = h(−x) and Φ(ω) = |H(ω)|2. Here, Φ(ω) is an extension of the classical power spectrum that

remains valid when H(ω) is not square-integrable. For instance, Φ(ω) = 1 corresponds to the case of white

noise (e.g. h = δ). The filter h has the same spectral shaping role as in the classical theory of stochastic

processes with the advantage that it is less constrained.

APPENDIX II: PROOF OF THEOREM 1

The goal is to derive the characteristic form (8) starting from the explicit representation of the Poisson process

(5). To that end, we select an arbitrary infinitely differentiable test function ϕ(x) of compact support, with its

support included in, say, a centred cube Πϕ = [−cϕ, cϕ]d. We denote by Nw,ϕ the number of Poisson points

of w in Πϕ; by definition, it is a Poisson random variable with parameter λVol(Πϕ). The restriction of w to

Πϕ corresponds to the random sum
Nw,ϕ∑
n=1

a′nδ(x− x′
n),

using an appropriate relabeling of the variables {(ak,xk)|xk ∈ Πϕ} in (5); correspondingly, we have 〈w,ϕ〉 =∑Nw,ϕ

n=1 a′nϕ(x′
n).

By the order statistics property of Poisson processes, the x′
n are independent and all equivalent in distribution

to a random variable x′ that is uniform on Πϕ.

Using the law of total expectation, we expand the characteristic functional of w, Zw(ϕ) = E
{
ej〈w,ϕ〉}, as

Zw(ϕ) = E
{

E
{
ej〈w,ϕ〉

∣∣∣Nw,ϕ

}}
= E

E


Nw,ϕ∏
n=1

eja′nϕ(x′
n)

∣∣∣∣∣∣Nw,ϕ




= E


Nw,ϕ∏
n=1

E
{
eja′ϕ(x′)

} (by independence)
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= E


Nw,ϕ∏
n=1

E
{

E
{
ejaϕ(x′)

∣∣∣a}}
 (total expectation)

= E


Nw,ϕ∏
n=1

E

{∫
Πϕ

ejaϕ(x′) dx′

Vol(Πϕ)

} (as x′ is uniform in Πϕ)

= E


Nw,ϕ∏
n=1

∫
R
∫
Πϕ

ejaϕ(x) dx dP (a)

Vol(Πϕ)

 (24)

The last expression has the inner expectation expanded in terms of the distribution P (a) of the random variable

a. Defining the auxiliary functional

M(ϕ) =
∫

R

∫
Πφ

ejaϕ(x) dx dP (a),

we rewrite (24) as

E


Nw,ϕ∏
n=1

M(ϕ)
Vol(Πϕ)

 = E

{[
M(ϕ)

Vol(Πϕ)

]Nw,ϕ
}

.

Next, we use the fact that Nw,ϕ is a Poisson random variable to compute the above expectation directly:

E

{[
M(ϕ)

Vol(Πϕ)

]Nw,ϕ
}

=
∑
n≥0

[
M(ϕ)

Vol(Πϕ)

]n
e−λVol(Πϕ) [λVol(Πϕ)]n

n!

= e−λVol(Πϕ)
∑
n≥0

[λM(ϕ)]n

n!

= e−λVol(Πϕ)eλM(ϕ) (Taylor)

= exp [λ (M(ϕ)−Vol(Πϕ))] .

We now replace M(ϕ) by its integral equivalent, noting also that Vol(Πϕ) =
∫

R
∫
Πϕ

1 dx dP (a), whereupon

we obtain the expression

Zw(ϕ) = exp
[
λ

∫
R

∫
Πϕ

(ejaϕ(x) − 1) dx dP (a)
]
.

As ejaϕ(x) − 1 vanishes outside the support of ϕ(x) (and, therefore, outside Πϕ), we may enlarge the domain

of the inner integral to all of Rd, yielding (8). Finally, we evoke a density/continuity argument to extend the

result to the functions of the Schwartz class that are not compactly supported.

APPENDIX III: PROOF OF THEOREM 2

First, we prove that (−∆)
γ
2 ∗
0 ϕ ∈ L2(Rd) for H = γ − d

2 ∈ R+\N.

The condition ϕ ∈ L1(Rd, wN ) ensures that the moments,
∫

Rd ϕ(x)xk dx = j|k|ϕ̂k(0), are finite up to order

N . More generally, it implies that ϕ̂ and its derivatives up to order N are uniformly bounded. The auxiliary

function f(ω) = ϕ̂(ω) −
∑bHc

|k|=0 ϕ̂
(k)(0)ωk

k! is therefore well-defined, and the task reduces to showing that∥∥∥f̂(ω)/‖ω‖γ
∥∥∥

L2(Rd)
< +∞.

To guarantee square integrability of the singularity of f̂(ω)/‖ω‖γ at the origin, we must make sure that

f̂(ω) = O(‖ω‖γ+γ′
) with γ′ > −d/2 as ω tends to 0. Since ϕ̂ is sufficiently regular for its N th order

taylor series to be well-defined, we have that f̂(ω) = O(‖ω‖N ) where N = bHc+ 1 so that the condition is

automatically satisfied.
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To establish L2-integrability over the rest of the domain, we invoke the triangle inequality. The delicate aspect

there is the decay at infinity of the elementary signals ωk

‖ω‖γ = O(‖ω‖γ′
) with γ′ = |k|−H− d

2 for |k| ≤ bHc.

The strict requirement is that γ′ < −d/2, which is guaranteed for H non-integer, but not otherwise.

This boundedness result ensures that the Gaussian characteristic form (13) is well-defined. As for the Poisson

functional, we can transfer the Gaussian bound to the real part of the argument in the exponential function in

(14). Specifically, we have that

Re
(
uλ,P (L−1∗ϕ)

)
= λ

∫
R

∫
Rd

[
cos
(
aL−1∗ϕ(x)

)
− 1
]

dx dP (a),

which is bounded by∫
R

∫
Rd

| cos
(
aL−1∗ϕ(x)

)
− 1| dx dP (a) <

∫
R

∫
Rd

a2|L−1∗ϕ(x)|2 dP (a) = E (a2) ‖L−1∗ϕ‖2L2
,

based on the inequality | cos(y)− 1| < y2. This takes care entirely of the symmetric Poisson case.

We construct a similar bound for the imaginary part using the inequality | sin(y)| ≤ min(|y|, 1). It will be

finite whenever g = L−1∗ϕ ∈ L1(Rd), or more generally, if g(x) decays like ‖x‖−γ′
with γ′ > d as ω goes to

infinity. In order to complete the proof for the non-even case, one needs to show that L−1∗ϕ meets the required

conditions, which is presently left as an open issue. The problem is easily overcome when the moments of ϕ

are zero up to order N + d, but this is probably too restrictive a condition.

Upon the completion of this work, we came up with an alternative approach where we further regularize

the inverse operator by including higher-order correction terms in (15) to ensure that g = L−1∗ϕ ∈ L1(Rd)

for all ϕ ∈ S [35]. A remarkable finding is that the combination of scale-invariance and Lp-stability uniquely

specifies the inverse, and that full L1-stability is generally not compatible with L2-stability.
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