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Abstract Regularization addresses the ill-posedness of the training problem
in machine learning or the reconstruction of a signal from a limited number of
measurements. The method is applicable whenever the problem is formulated
as an optimization task. The standard strategy consists in augmenting the
original cost functional by an energy that penalizes solutions with undesirable
behavior. The effect of regularization is very well understood when the penalty
involves a Hilbertian norm. Another popular configuration is the use of an `1-
norm (or some variant thereof) that favors sparse solutions. In this paper,
we propose a higher-level formulation of regularization within the context of
Banach spaces. We present a general representer theorem that characterizes
the solutions of a remarkably broad class of optimization problems. We then
use our theorem to retrieve a number of known results in the literature such as
the celebrated representer theorem of machine leaning for RKHS, Tikhonov
regularization, representer theorems for sparsity promoting functionals, the
recovery of spikes, as well as a few new ones.
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Biomedical Imaging Group, École polytechnique fédérale de Lausanne (EPFL), Station 17,
CH-1015, Lausanne, Switzerland
E-mail: michael.unser@epfl.ch



2 Michael Unser

1 Introduction

A recurrent problem in science and engineering is the reconstruction of a mul-
tidimensional signal f : Rd → R from a finite number of (possibly noisy) linear
measurements y = (ym) = ν(f) ∈ RM , where the operator ν = (νm) : f 7→
ν(f) = (〈ν1, f〉, . . . , 〈νM , f〉) symbolizes the linear measurement process. The
machine-learning version of the problem is the determination of a function
f : Rd → R from a finite number of samples ym = f(xm) + εm where εm is a
small perturbation term; it is a special case of the former with νm = δ(·−xm).
Since a function that takes values over the continuum is an infinite-dimensional
entity, the reconstruction problem is inherently ill-posed.

The standard remedy is to impose an additional minimum-energy require-
ment which, in effect, regularizes the solution. A natural choice of regulariza-
tion is a smoothness norm associated with some function space X ′ (typically,
a Sobolev space), which results in the prototypical formulation of the problem
as

S = arg min
f∈X ′

‖f‖X ′ s.t. 〈νm, f〉 = ym, m = 1, . . . ,M. (1)

An alternative version that is better suited for noisy data is

S = arg min
f∈X ′

M∑
m=1

|ym − 〈νm, f〉|2 + λ‖f‖pX ′ (2)

with an adequate choice of hyper-parameters λ ∈ R+ and p ∈ [1,∞). We
note that the unconstrained form (2) is a generalization of (1): the latter is
recovered in the limit by taking λ→ 0.

The term “representer theorem” is typically used to designate a paramet-
ric formula—preferably, a linear expansion in terms of some basis functions—
that spans the whole range of solutions, irrespective of the value of the data
y ∈ RM . Representer theorems are valued by practitioners because they indi-
cate the way in which the initial problem can be recast as a finite-dimensional
optimization, making it amenable to numerical computations. The other bene-
fit is that the description of the manifold of possible solutions provides one with
a better understanding of the effect of regularization. The best known exam-
ple is the representer theorem for reproducing-kernel Hilbert spaces (RKHS),
which states that the solution of (2) with 〈νm, f〉 = f(xm) and a Hilbertian
regularization norm necessarily lives in a subspace of dimension M spanned
by kernels centered on the data coordinates xm [7] [31] [36] [35] [43]. This
theorem, in its extended version [42], is the foundation for the majority of
kernel-based methods for machine learning, including regression, radial-basis
functions, and support-vector machines [44] [23] [48]. There is also a whole
line of generalizations of the concept that involves reproducing kernel Banach
spaces (RKBS) [56] [57] [55]. More recently, motivated by the success of `1 and
total-variation regularization for compressed sensing [19] [14] [11], researchers
have derived alternative representer theorems in order to explain the sparsify-
ing effect of such penalties and their robustness to missing data [26] [52] [28]
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[8]. A representer theorem for measures has also been invoked to justify the
use of the total-variation norm for the super-resolution localization of spikes
[12] [17] [21] [37] (see, Section 4.1 for details).

In this paper, we present a unifying treatment of regularization by con-
sidering the problem from the abstract perspective of optimization in Ba-
nach spaces. Our motivation there is essentially two-fold: (1) to get a better
“geometrical” understanding of the effect of regularization, and (2) to state
a generic representer theorem that applies to a wide variety of objects de-
scribable as elements of some native Banach space. The supporting theory
is developed in Section 2. Our formulation takes advantage of the notion of
Banach conjugates which is explained in Section 2.1. We then immediately
proceed with the presentation of our key result: a generalized representer the-
orem (Theorem 2) that is valid for arbitrary convex data terms and Banach
spaces in general, including the non-reflexive ones. The proof that is developed
Section 2.2 is rather soft (or “high-level”), as it relies exclusively on the pow-
erful machinery of duality mappings and the Hahn-Banach theorem—in other
words, there is no need for Gâteaux derivatives nor subdifferentials, which are
often invoked in such contexts. The resulting form of the solution in Theo-
rem 2 is enlightening because it separates out the effect of the measurement
operator from that of the regularization topology. Specifically, the measure-
ment functionals ν1, . . . , νM in (1) or (2) specify a linear solution manifold
that is then isometrically mapped into the primary space via the conjugate
map JX : X → X ′, which may or may not be linear, depending on wether the
regularization norm is Hilbertian or not.

The theory is then complemented with concrete examples of usage of Theo-
rem 2 to illustrate the power of the approach as well as its broad range of appli-
cability. Section 3 is devoted to the scenario where the regularization norm is
strictly convex, which ensures that the solution of the underlying minimization
problem is unique. We make the link with the existing literature by deriving of
a number of classical results: Schölkopf’s generalized representer theorem for
RKHS (Section 3.1), the closed-form solution of continuous-domain Tikhonov
regularization with a Hilbertian norm (Section 3.2), and the connection with
the theory of reproducing kernel Banach spaces (Section 3.3). In addition, we
present a novel representer theorem for `p-norm regularization (Section 3.4).
Then, in Section 4, we turn our attention to sparsity promoting regularization
which is more challenging because the underlying Banach spaces are typically
non-reflexive and non-convex. The enabling ingredient there is a recent result
by Boyer et al. [8], which allows one to express the extreme points of the so-
lution set in Theorem 2 as a linear combination of a few basic atoms that are
selected adaptively (Theorem 3). This result, in its simplest incarnation with
X ′ = `1(Z), supports the well-documented sparsifying effect of `1-norm mini-
mization, which is central to the theory of compressed sensing. By switching
to a continuum, we obtain the representer theorem for X ′ =M(Ω)—the space
of signed Radon measures on a compact domain Ω—(Section 4.1), which is
relevant to super-resolution localization. We then also derive a representer the-
orem for generalized total-variation (Section 4.2)—in the spirit of [53]—that
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justifies the use of sparse kernel expansions for machine learning, in line with
the generalized LASSO [39].

2 Mathematical Formulation

2.1 Banach Spaces and Duality Mappings

The notion of Banach space—basically, a vector space equipped with a norm—
is remarkably general. Indeed, the elements (or points) of a Banach space
can be vectors (e.g., v ∈ RN ), functions (e.g., f ∈ L2(Rd)), sequences (e.g.,
u[·] ∈ `1(Z)), continuous linear functionals (e.g., f ∈ X ′ where X ′ is the dual of
some primary Banach space), vector-valued functions (e.g., f = (f1, . . . , fN )
with fn ∈ L2(Rd)), matrices (e.g.,X ∈ RN×N ), and, even, bounded linear
operators from a Banach space U (domain) to another Banach space V (range)
(e.g., X ∈ L(U ,V)) [32].

Definition 1 A normed vector space X is a linear space equipped with a
norm, henceforth denoted by ‖·‖X . It is called a Banach space if it is complete
in the sense that every Cauchy sequence in (X , ‖ · ‖X ) converges to an element
of X . It is said to be strictly convex if, for all v1, v2 ∈ X such that ‖v1‖X =
‖v2‖X = 1 and v1 6= v2, one has that ‖λv1 + (1− λ)v2‖X < 1 for any λ ∈ (0, 1).
Finally, a Hilbert space is a Banach space whose norm is induced by an inner
product.

We recall that X ′ (the continuous dual of X ) is the space of linear func-

tionals u : v 7→ 〈u, v〉 M
= u(v) ∈ R that are continuous on X . It is a Banach

space equipped with the dual norm

‖u‖X ′
M
= sup
v∈X\{0}

〈u, v〉
‖v‖X

. (3)

A direct implication of this definition is the generic duality bound

|〈u, v〉| ≤ ‖u‖X ′‖v‖X , (4)

for any u ∈ X , v ∈ X ′. In fact, (4) can be interpreted as the Banach general-
ization of the Cauchy-Schwarz inequality for Hilbert spaces. By invoking the
Hahn-Banach theorem, one can also prove that the duality bound is sharp
for any dual pair (X ,X ′) of Banach spaces [41]. This remarkable property
inspired Beurling and Livingston to introduce the notion of duality mapping
and to identify conditions of uniqueness [4]. We like to view the latter as the
generalization of the classical Riesz map R : H′ → H or, rather, its inverse
JH = R−1 : H → H′, which describes the isometric isomorphism between
a Hilbert space H and its continuous dual H′ [38]. The caveat with Banach
spaces is that the duality mapping is not necessarily bijective nor even single-
valued.
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Definition 2 (Duality mapping) Let (X ,X ′) be a dual pair of Banach
spaces. Then, the elements v∗ ∈ X ′ and v ∈ X form a conjugate pair if they
satisfy:

1. Norm preservation: ‖v∗‖X ′ = ‖v‖X , and
2. Sharp duality bound: 〈v∗, v〉X ′×X = ‖v∗‖X ′‖v‖X

For any given v ∈ X , the set of admissible conjugates defines the duality
mapping

JX (v) = {v∗ ∈ X ′ : ‖v∗‖X ′ = ‖v‖X and 〈v∗, v〉X ′×X = ‖v∗‖X ′‖f‖X },

which is a nonempty subset of X ′. Whenever the duality mapping is a singleton
(for instance, when X ′ is strictly convex), one also defines the corresponding
duality operator JX : X → X ′, which is such that JX (v) = {v∗ = JX {v}}.

We now list the properties of the duality mapping that are relevant for
our purpose (see [4], [15, Proposition 4.7 p. 27, Proposition 1.4, p. 43], [45,
Theorem 2.53, p. 43]).

Theorem 1 (Properties of duality mappings) Let (X ,X ′) be a dual pair
of Banach spaces. Then, the following holds:

1. Every v ∈ X admits at least one conjugate v∗ ∈ X ′.
2. JX (λv) = λJX (v) for any λ ∈ R (homogeneity).
3. For every v ∈ X , the set JX (v) is convex and weak∗-closed in X ′.
4. The duality mapping is single-valued if X ′ is strictly convex; the latter

condition is also necessary if X is reflexive.
5. When X is reflexive, the duality map is bijective if and only if both X and
X ′ are strictly convex.

The most favorable scenario is covered by Item 5. In that case, the duality
map is invertible with v = (v∗)∗ = JX ′JX {v}; that is, J−1X = JX ′ , in conformity
with the property that X ′′ = X .

We now prove that the duality map is linear if and only if X = H is a
Hilbert space. In that case, the unitary operator JH : H → H′ is precisely the
inverse of the Riesz map R : H′ → H.

Proposition 1 Let (X ,X ′) be a dual pair of Banach spaces such that X ′ is
strictly convex. Then, the duality map JX : X → X ′, v 7→ JX {v} = v∗ is linear
if and only if X is a Hilbert space.

Proof First, we recall that all Hilbert spaces are strictly convex. Consequently,
the indirect part of the statement is Riesz’ celebrated representation theorem,
which identifies the canonical linear isometry JX = R−1 between a Hilbert
space and its dual [41]. As for the converse implication, we show that the
underlying inner product is

〈u, v〉X = 1
2 〈JX {u}, v〉X ′×X + 1

2 〈JX {v}, u〉X ′×X . (5)
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Its bilinearity follows from the bilinearity of the duality product and the lin-
earity of JX , while the symmetry in u and v is obvious. Finally, the definition
of the conjugate yields

〈v, v〉X = 〈JX {v}, v〉X ′×X = 〈v∗, v〉X ′×X = ‖v‖2X , (6)

which confirms that the bilinear form 〈·, ·〉X is positive-semi-definite. Hence,
it is the inner product that induces the ‖ · ‖X -norm.

As an example, we provide the expression of the (unique) Banach conjugate
v∗ = JX {v} ∈ Lq(Rd) of a function v ∈ Lp(Rd)\{0} with 1 < p < ∞ and
1
p + 1

q = 1:

v∗(x) =
|v(x)|p−1

‖v‖p−2Lp

sign
(
f(x)

)
. (7)

This formula is intimately connected to Hölder’s inequality. In particular, the
L2 conjugation map with p = q = 2 is an identity.

2.2 General representer theorem

We now make use of the powerful tool of conjugation to characterize the solu-
tion of a broad class of unconstrained optimization problems in Banach space.
Let us note that the result also covers the equality constraint of Problem (1)
if one selects the barrier functional

Eequal(y, z) =

{
0, y = z

+∞, otherwise.

Theorem 2 (General Banach representer theorem) Let us consider the
following setting:

– A dual pair (X ,X ′) of Banach spaces.
– The analysis subspace Nν = span{νm}Mm=1 ⊂ X with the νm being linearly

independent.
– The linear measurement operator ν : X ′ → RM : f 7→

(
〈ν1, f〉, . . . , 〈νM , f〉

)
(it is weak∗ continuous on X ′ because ν1, . . . , νM ∈ X ).

– The loss functional E : RM × RM → R+ ∪ {+∞} that is proper, weak
lower-semi-continuous and convex in its second argument.

– Some arbitrary strictly increasing and convex function ψ : R+ → R+.

Then, for any fixed y ∈ RM , the solution set of the generic optimization
problem

S = arg min
f∈X ′

E
(
y,ν(f)

)
+ ψ (‖f‖X ′) (8)
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is nonempty, convex, and weak∗-compact. If E is strictly convex (or if it im-
poses the equality y = ν(f)), then any solution f0 ∈ S ⊂ X ′ is a (X ′,X )-
conjugate of a common

ν0 =

M∑
m=1

amνm ∈ Nν ⊂ X (9)

with a suitable set of weights a ∈ RM ; i.e., S ⊆ JX (ν0). Moreover, if X
is strictly convex and f 7→ ψ(‖f‖X ′) is strictly convex, then the solution is
unique with f0 = JX {ν0} ∈ X ′ (Banach conjugate of ν0). In particular, if X
is a Hilbert space, then f0 =

∑M
m=1 amν

∗
m, where ν∗m is the Riesz conjugate of

νm.

The condition of unicity requires the strict convexity of both ψ : R+ → R
and f 7→ ‖f‖X ′ . This applies to Banach spaces such as X ′ =

(
Lq(Rd)

)′
=

Lp(Rd) (up to some isometric isomorphism) with 1 < p <∞ and the canonical
choice of regularization R(f) = λ‖f‖pLp

with ψ(t) = λ|t|p being strictly convex.

While the solution of (8) also exists for Banach spaces such as M(Rd) =(
C0(Rd)

)′
or L∞(Rd) =

(
L1(Rd)

)′
, the uniqueness is usually lost in such non-

reflexive scenarios (see Section 4).

Proof The proof uses standard arguments in convex analysis together with
a dual reformulation of the problem inspired from the interpretation of best
interpolation given by Carl de Boor in [6].

(i) Existence and Reformulation as a Generalized Interpolation Problem.
First, we recall that the basic properties of (weak lower semi-) continuity
and coercivity1 are preserved though functional composition. The functional
f 7→ ‖f‖X ′ is convex, (norm-)continuous and coercive on X ′ from the definition
of a norm. Since ψ : R+ → R+ is strictly increasing and convex, it is necessarily
continuous and coercive. This ensures that f 7→ ψ (‖f‖X ′) is endowed with the
same three basic properties. The linear measurement operator ν : X ′ → RN
is continuous on X ′ by assumption (i.e., νm ∈ X ⇒ νm ∈ X ′′ because of the
canonical embedding of a Banach space in its bidual) and trivially convex.
Since z 7→ E

(
y, z

)
is lower semicontinuous on Rd and convex, this implies

by composition the lower-semicontinuity and convexity of f 7→ E
(
y,ν(f)

)
.

Consequently, the functional f 7→ F (f) = E
(
y,ν(f)

)
+ ψ (‖f‖X ′) is (weakly)

lower-semicontinuous, convex, and coercive on X ′, which guarantees the exis-
tence of the solution (as well as the convexity and closedness of the solution
set) by a standard argument in convex analysis [22]—see [28, Proposition 8]
for the non-reflexive case. Moreover, unicity is ensured when f 7→ F (f) is
strictly convex which happens to be the case when both z 7→ E

(
y, z

)
and

f 7→ ψ (‖f‖X ′) are strictly convex.
For the general (not necessarily unique) scenario, we take advantage of the

strict convexity of E(y, ·) to show that all minimizers of F (f) share a common

1 The functional F : X → R, where X is a Banach space, is said to be coercive if F (f) → ∞
as ‖f‖X → ∞.
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measurement vector z0 = ν(f0) ∈ RM . To that end, we pick any two distinct
solutions fi ∈ S, i = 1, 2 with corresponding measurements zi = ν(fi) and
regularization cost ri = λψ(‖fi‖X ′). The convexity of S implies that, for any
α ∈ (0, 1), f = αf1 + (1 − α)f2 ∈ S with z = ν(f) = αz1 + (1 − α)z2 and
F (f) = F (fi), i = 1, 2. Let us now assume that z1 6= z2. Then, by invoking
the strictly convexity of z 7→ E(y, z) and the convexity of f 7→ λψ(‖f‖X ′),
we get that

F (f) = E
(
y, αz1 + (1− α)z2

)
+ λψ

(
‖αf1 + (1− α)f2‖X ′

)
< αE (y, z1) + (1− α)E (y, z2) + αr1 + (1− α)r2︸ ︷︷ ︸

αF (f1)+(1−α)F (f2)=F (f)

,

which is a contradiction. It follows that zi = ν(fi) = z0 which, in turn, implies
that the optimal regularization cost ri = r0 is the same for all fi ∈ S. Although
z0 = ν(f0) ∈ RM is usually not known before hand, this property provides us
with a convenient parametric characterization of the solution set as

Sz = arg min
f∈X ′

‖f‖X ′ s.t. ν(f) = z, (10)

where z ranges over RM . In this reformulation, we also exploit the property
that the minimization of ‖f‖X ′ is equivalent to that of ψ(‖f‖X ′) because the
mapping between the two quantities is monotone.

(ii) Explicit Resolution of the Generalized Interpolation Problem (10).
The linear independence of the functionals νm ensures that any ν ∈ Nν has the
unique expansion ν =

∑M
m=1 amνm. Based on this representation, we define

the linear functional

ν 7→ ζ(ν) =

M∑
m=1

amzm

with z = z0 fixed. By construction, ζ is continuous
(
Nν , ‖ · ‖X

) c.−−→ R with
|ζ(ν)| ≤ ‖ζ‖ ‖ν‖X , where ‖ζ‖ = supν∈Nν : ‖ν‖X=1 ζ(ν) < ∞. Moreover, the
Hahn-Banach theorem ensures the existence of a continuous, norm-preserving
extension of ζ to the whole Banach space X ; that is, an element f0 ∈ X ′ such
that

‖f0‖X ′ = sup
g∈X : ‖g‖X=1

〈f0, g〉 = ‖ζ‖.

The connection between the above statement and the generalized interpolation
problem (10) is that the complete set of continuous extensions of ζ to X ⊃ Nν
is given by

U = {f ∈ X ′ : 〈f, ν〉 = ζ(ν) for all ν ∈ Nν}
with the property that

f0 ∈ arg inf
f∈U
‖f‖X ′ = Sz0

⇔ ‖f0‖X ′ = ‖ζ‖. (11)

The next fundamental observation is that Nν =
(
N ′ν
)′

because both spaces
are of finite dimension M and, hence, reflexive. Consequently, for any ν0 ∈
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JX (ζ) ⊆
(
N ′ν
)′

= Nν , we have that ‖ν0‖X = ‖ζ‖ and ζ(ν0) = ‖ν0‖2X , as well
as ‖ν0‖X = ‖f0‖X ′ for all f0 ∈ Sz0 because of (11). Since f0 ∈ U ⊂ X ′ and
ν0 ∈ Nν ⊂ X , this yields

〈f0, ν0〉 = λ(ν0) = ‖f0‖X ′‖ν0‖X ,

which implies that f0 ∈ JX (ν0) with JX the duality mapping from X to X ′.
(iii) Structure of the Solution Set.
We have just shown that Sz0

⊆ JX (ν0) for any extremal element ν0 ∈ {g ∈
Nν : ζ(g) = ‖ζ‖ ‖g‖X , ‖g‖X = ‖ζ‖}. We now deduce that Sz0

is weak∗-
compact since it is included in the closed ball in X ′ of radius ‖f0‖X ′ < ∞,
which is itself weak∗-compact, by the Banach-Alaoglu theorem.

When X ′ is strictly convex, the situation is simpler because the duality
mapping from X to X ′ is single-valued and the solution f0 ∈ X ′ is unique.
Moreover, the latter conjugate map is linear if and only if X is a Hilbert space,
by Proposition 1. ut

Note that the existence of the conjugate of ν0 ∈ Nν ⊂ X is essential to the
argumentation. This is the reason why the problem is formulated with f ∈
X ′ subject to the hypothesis that ν1, . . . , νM ∈ X (weak∗ continuity). These
considerations are inconsequential in the simpler reflexive scenario where the
role of the two spaces is interchangeable since X = X ′′. The hypothesis of
linear independence of the νm in Theorem 2 is only made for convenience.
When it does not hold, one can adapt the proof by picking a basis of Nν of
reduced dimension M ′ < M , which then leads to a corresponding reduction
in the number M ′ of degrees of freedom of the solution.

In the sequel, as we shall apply Theorem 2 to concrete scenarios, we shall
implicitly interpret f ∈ X ′ in (8) as a function (or, eventually, a vector)
rather than a continuous linear functional on X (the abstract definition of
an element of the dual space). This is acceptable provided that the defining
space X ′ is isometrically embedded in some classical function spaces such as
Lp(Rd) because of the bijective mapping (isometric isomorphism) that relates
the two types of entities; for instance, there is a unique element of f ∈ Lp(R)
with p the conjugate exponent of q ∈ [1,∞) such that the linear functional

ζ ∈
(
Lq(Rd)

)′
can be specified as ζ(g) = 〈f, g〉 =

∫
Rd f(x)g(x)dx and vice

versa. This allows us to identify ζ = ζf as f ∈ Lp(Rd), while it also gives a

precise meaning to identities such as Lp(Rd) =
(
Lq(Rd)

)′
.

3 Strictly-Convex Regularization

The solution of the optimization problem in Theorem 2 is unique whenever
the Banach space X (or X ′) is reflexive and strictly convex. This is the setting
that has been studied the most in the literature. We now illustrate the unifying
character of Theorem 2 by using it to retrieve the key results in this area; that
is, the classical kernel methods for machine learning in RKHS (Section 3.1),
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the resolution of linear inverse problems with Tikhonov regularization (Section
3.2), and the link with reproducing kernel Banach spaces (Section 3.3). In
addition, we make use of the conjugate map to present a novel perspective on
`p regularization for p > 1 in Section 3.4.

3.1 Kernel/RKHS Methods in Machine Learning

Here, the search space X ′ is a reproducing-kernel Hilbert space on Rd denoted
by H with ‖f‖2H = 〈f, f〉H, where 〈·, ·〉H is the underlying inner product.
The predual space is X = H′ which agrees with X ′ = H′′ = H (reflexive
scenario). The RKHS property [3] is equivalent to the existence of a (unique)
positive-definite kernel rH : Rd × Rd → R (the reproducing kernel of H) such
that

(i) rH(·,xm) ∈ H (12)

(ii) f(xm) = 〈f, rH(·,xm)〉H (13)

for all f ∈ H and any xm ∈ Rd.
In the context of machine learning, the loss function E is usually chosen

to be additive with E(y, z) =
∑M
m=1Em

(
ym, zm

)
[43] [29]. Given a series of

data points
(
xm, ym

)
, m = 1, . . . ,M with xm ∈ Rd, the learning problem is

then to estimate a function f0 : Rd → R such that

f0 = arg min
f∈H

(
M∑
m=1

Em
(
ym, f(xm)

)
+ λ‖f‖2H

)
(14)

where λ ∈ R+ is an adjustable regularization parameter. In functional terms,
the reproducing kernel represents the Schwartz kernel [27] [46] of the Riesz
map R : H′ → H : ν 7→ ν∗ =

∫
Rd rH(·,y)ν(y)dy so that ν∗m(x) = R{δ(· −

xm)}(x) = rH(x,xm). The application of Theorem 2 with X ′ = H then
immediately yields the parametric form of the solution

f0(x) =

M∑
m=1

amrH(x,xm), (15)

which is a linear kernel expansion. The optimality of such kernel expansions
is precisely the result stated in Schölkopf’s representer theorem for RKHS
[42]. Moreover, by invoking the reproducing-kernel property (13) with f =
rH(·,xn) ∈ H, one readily finds that ‖f0‖2H = aTGa, where the Gram matrix
G ∈ RM×M is specified by [G]m,n = rH(xm,xn). By injecting the parametric
form of the solution into the cost functional in (14), we then end up with the
equivalent finite-dimensional minimization task

a0 = arg min
a∈RM

(
E
(
y,Ga) + λaTGa

)
, (16)
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which yields the exact solution of the original infinite-dimensional optimiza-
tion problem. In short, (16) is the optimal dicretization of the functional op-
timization problem (15), which is then readily transcribable into a numerical
implementation using standard (finite-dimensional) techniques.

3.2 Tikhonov Regularization

Tikhonov regularization is a classical approach for dealing with ill-posed linear
inverse problems [50] [30]. The goal there is to recover a function f : Rd → R
from a noisy or imprecise series of linear measurements ym = 〈νm, f〉 + εm,
where εm is the disturbance term. By using the same functional framework as
in Section 3.1 with ν1, . . . , νM ∈ H′ = X , and X ′ = H′′ = H, one formulates
the recovery problem as

f0 = arg min
f∈H

(
M∑
m=1

|ym − 〈νm, f〉|2 + λ‖f‖2H

)
. (17)

The application of Theorem 2 then yields a solution that takes the parametric
form

f0 =

M∑
m=1

amϕm (18)

with ϕm = R{νm}, where R is the Riesz map H′ = X → H = X ′. The next
fundamental observation is that the bilinear form (νm, νn) 7→ 〈νm,R{νn}〉
is actually the inner product for the dual space H′ leading to 〈νm, ϕn〉 =
〈νm, νn〉H′ . In fact, by using the property that νm and ϕm = ν∗m are Hilbert
conjugates, we have that

〈νm, ϕn〉 = 〈νm, νn〉H′ = 〈ν∗m, ν∗n〉H = 〈ϕm, ϕn〉H (19)

which, somewhat remarkably, shows that the underlying system matrix is equal
to the Gram matrix of the basis {ϕm}.

Therefore, by injecting (18) into the cost functional in (17), we are able
to reformulate the initial optimization problem as the finite-dimensional min-
imization

a0 = arg min
a∈RM

(
‖y −Ha‖2 + λaTHa

)
, (20)

where the system/Gram matrix H ∈ RM×M with [H]m,n = 〈νm, ϕn〉 =
〈ϕm, ϕn〉H is symmetric positive-definite. By differentiating the quadratic form
in (20) with respect to a and setting the gradient to zero, we readily derive
the very pleasing closed-form solution

a0 = (HH + λH)−1Hy = (H + λI)−1y (21)

under the implicit assumption that H is invertible. We note that the latter is
equivalent to the linear independence of the ϕm (resp., the linear independence
of the νm due to the Riesz pairing).
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3.3 Reproducing Kernel Banach Spaces

The concept of reproducing kernel Banach space, which is the natural gener-
alization of RKHS, was introduced and investigated by Zhang and Xu in [56]
[55]. Similar to the Hilbertian case, one can identify the RKBS property as
follows.

Definition 3 A strictly convex and reflexive Banach space B of functions on
Rd is called a reproducing kernel Banach space (RKBS) if δ(· − x) ∈ B′ for
any x ∈ Rd. Then, the unique representer rB(·,x) = JB′{δ(· − x)} ∈ B when
indexed by x is called the reproducing kernel of the Banach space.

It is then of interest to consider the Banach variant of (14) that involves a

slightly more general regularization term: Given the data points
(
xm, ym

)M
m=1

,
m = 1, . . . ,M , we want to find the unique solution of the optimization problem

f0 = arg min
f∈B

(
M∑
m=1

E
(
ym, f(xm)

)
+ ψ(‖f‖B)

)
(22)

where the loss function E : R× R → R is convex in its second argument and
the regularization strength modulated by the function ψ : R → R+, which is
convex and strictly increasing. Since the space B is reflexive by assumption,
the optimization problem falls into the framework of Theorem 2 with X = B′

and X ′ = B′′ = B and νm = δ(· − xm) ∈ B′,m = 1, . . . ,M , where the
latter inclusion is guaranteed by the RKBS property. We thereby obtain the
parametric form of the solution as

f0 = JB′

{
M∑
m=1

amδ(· − xm)

}
= JB′

{
M∑
m=1

amr
∗
B(·,xm)

}
(23)

with appropriate coefficients (am) ∈ RM , where the expression on the right-
hand side has been included in order to make the connection with the Banach
reproducing kernel, as in [56] [57]. Due to the homogeneity and invertibility
of the duality mapping (see Theorem 1), we have that JB′ {amr∗B(·,xm)} =
amrB(·,xm). This implies that (23) yields a linear expansion in terms of ker-
nels if and only if M = 1 or if the duality map JB : B′ → B is linear. We note
that the latter condition together with Definition 3 is equivalent to B = H
being a RKHS (by Proposition 1), which brings us back to the classical set-
ting of Section 3.1. The same argumentation is also extendable to the vector-
valued setting which has been considered by various authors both for RKHS
and RKBS settings [1] [33] [58]. We also like to point our that our analysis
is compatible with some recent results of Combettes et al. [16], where the
corresponding conditions of optimality are stated using subdifferentials.
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3.4 Towards Compressed Sensing: `p-Norm Regularization

A classical problem in signal processing is to recover an unknown discrete sig-
nal s ∈ RN from a set of corrupted linear measurements ym = hTms + εm,
m = 1, . . . ,M . The measurement vectors h1, . . . ,hM ∈ RN specify the system
matrix H = [h1 h2 · · · hM ]T ∈ RM×N . When M (the number of measure-
ments) is less than N (the size of the unknown signal s), the reconstruction
problem is a priori ill-posed, and strongly so when M � N (compressed-
sensing scenario). However, if the original signal is known to be sparse (i.e.,
‖s‖0 ≤ K0 with K0 < 2M) and the system matrix H satisfies some “inco-
herence” properties, then the theory of compressed sensing provides general
guarantees for a stable recovery [26] [14] [19]. The computational strategy then
is to impose an `p regularization (with p small to favor sparsity) on the solution
and to formulate the reconstruction problem as

s = arg min
x∈RN

(
E
(
y,Hx) + λ‖x‖p`p

)
(24)

with ‖x‖`p
M
=
(∑N

n=1 |xn|p
)1/p

. The traditional choice for compressed sens-

ing is p = 1, which is the smallest exponent that still results in a convex
optimization problem.

We now show how we can use Theorem 2 to characterize the effect of
such a regularization for p ∈ (1,∞). The corresponding Banach space is X ′ =
(RN , ‖ · ‖`p) whose predual is X = (RN , ‖ · ‖`q ) with 1

p + 1
q = 1. Moreover,

the underlying norms are strictly convex for p > 1, which guarantees that the
solution is unique, irrespective of M and H. By introducing the dual signal
ν0 = HTa ∈ X and by using the known form of the corresponding Banach
q-to-p duality map JX : X → X ′, we then readily deduce that the solution can
be represented as

[s]n =

∣∣[HTa]n)
∣∣q−1

‖HTa‖q−2`q

sign
(
[HTa]n

)
(25)

for a suitable value of the (dual) parameter vector a ∈ RM . While the exact
value of a is data-dependent, (25) provides us with the description of the
solution manifold of intrinsic dimension M . Another way to put it is that
the fact that s minimizes (24) induces a nonlinear pairing between the data
vector y ∈ RM and the dual variable a ∈ RM in (25). In particular, for p = 2,

we have that s = HTa =
∑M
m=1 hmam, which confirms the well-known result

that s ∈ span{hm}. The latter also explains why classical quadratic/Tikhonov
regularization performs poorly when M is much smaller than N .
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4 Sparsity-Promoting Regularization

The limit case2 of the previous scenario is p = 1 (CS) for which the norm is no
longer strictly convex. To deal with such cases where the solution is potentially
non-unique, we first recall the Krein-Milman theorem [41, p. 75], which allows
us to describe the weak∗-compact solution set S in Theorem 2 as the convex
hull of its extreme points. We then invoke a recent result by Boyer et al. that
yields the following characterization of the extremal points of Problem (8).

Theorem 3 All extremal points f0,ext of the solution set S of Problem (8)
can be expressed as

f0,ext =

K0∑
k=1

akek (26)

for some 1 ≤ K0 ≤ M where the ek are some extremal points of the unit
“regularization” ball BX ′ = {f ∈ X ′ : ‖f‖X ′ ≤ 1} and (ak) ∈ RK0 is a vector
of appropriate weights.

The above is a direct corollary of [8, Theorem 1 with j = 0] applied to an
extreme point of the equivalent generalized interpolation problem (10). We
also note that the existence of a minimizer f0 ∈ S of the form (26) has been
established independently by Bredies and Carioni [9] in a framework that
is even more general than the one considered here. The latter property is
also directly deducible from the reduced problem (10) and a classical result
by Singer [47, Lemma 1.3, p. 169]. It remains that the existence of a global
minimizer of the form (26) is not as strong a result as Theorem 3, which tells
us the characterization applies for all extremal points of S. Moreover, it should
be pointed out that the result in Theorem 3 is not particularly informative
for strictly convex spaces such as `p(Z) or Lp(Rd) with p ∈ (1,∞) for which
all unit vectors (i.e., e ∈ X ′ with ‖e‖X ′ = 1) are extremal points of the unit
ball. Indeed, since the corresponding solution is unique (by Theorem 2), we
trivially have that f0 = ‖f0‖X ′e1 with K0 = 1 and e1 = f0/‖f0‖X ′ .

By contrast, the characterization in Theorem 3 is highly relevant for the
non-strictly convex space X ′ = `1(Z) whose extreme vectors are intrinsically
sparse; i.e, ek = (±δ[n−nk])n∈Z for some fixed offset nk ∈ Z. Here, δ[·] denotes
the Kronecker impulse which is such that δ[0] = 1 and δ[n] = 0 for n 6= 0.
Hence, the outcome is that the use of the `1 penalty (e.g., (24) with p = 1)
has a tendency to induce sparse solutions with ‖f‖0 = K0 ≤ M , which is
the flavor of the representer theorem(s) in [52]. Two other practically-relevant
examples that fall in the non-strictly convex category are considered next.

2 Our analysis is not applicable to p < 1 because the corresponding metric no longer fulfills
the properties of a norm; in other words, `p(Z) fails to be a Banach space for p ∈ (0, 1).
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4.1 Super-resolution Localization of Spikes

The space of continuous functions over a compact domain Ω ⊂ Rd equipped
with the supremum (or L∞) norm is a classical Banach space denoted by

C(Ω) = {f : Ω → R : ‖f‖∞
M
= sup
x∈Ω
|f(x)| <∞}. (27)

Its continuous dual

M(Ω) = {f : C(Ω)→ R : ‖f‖M
M
= sup
ϕ∈C(Ω): ‖ϕ‖∞≤1

〈f, ϕ〉 <∞} (28)

is the Banach space of bounded (signed) Radon measures on Ω (by the Riesz-
Markov representation theorem [40]). Moreover, it is well known that the ex-
treme points of the unit ball in M(Ω) are point measures (a.k.a. Dirac im-
pulses) of the form ek = ±δ(· − xk) for some xk ∈ Ω, with the property
that

ϕ 7→ 〈δ(· − xk), ϕ〉 = ϕ(xk) (29)

for any ϕ ∈ C(Ω). For a series of (independent) analysis functions ν1, . . . ,
νM ∈ C(Ω) (e.g., Fourier exponentials), we can invoke Theorems 2 and 3 with
X ′ =M(Ω) to deduce that the extreme points of the problem

S = arg min
f∈M(Ω)

(
E
(
y,ν(f)

)
+ λ‖f‖M

)
(30)

are inherently sparse. This means that there necessarily exists at least one
minimizer of the form

f0 =

K0∑
k=1

akδ(· − xk) (31)

with K0 ≤ M , (ak) ∈ RK0 , and x1, . . . ,xK0
∈ Ω. The fact that (30) admits

a global solution whose representation is given by (31) is a result that can
be traced back to the work of Fisher and Jerome in [25, Theorem 1]. This
optimality result is the foundation for a recent variational method for super-
resolution localization that was investigated by a number of authors [10,12,
24]. Besides the development of grid-free optimization schemes, researchers
have worked out the conditions on xk and νm under which (30) can provide a
perfect recovery of spike trains of the form given by (31) with a small K0 [13,
17,37]. The remarkable finding is that there are many configurations for which
super-resolution recovery is guaranteed, with an accuracy that only depends
on the signal-to-noise ratio and the minimal spacing between neighbouring
spikes.



16 Michael Unser

4.2 Sparse Kernel Expansions

Schwartz’ space of smooth and rapidly decaying functions on Rd is denoted by
S(Rd). Its continuous dual is S ′(Rd): the space of tempered distributions. In
this section, L : S ′(Rd) c.−−→ S ′(Rd) is an invertible operator with continuous
inverse L−1 : S ′(Rd) c.−−→ S ′(Rd). We also assume that the generalized impulse
response of L−1 is a bivariate function of slow growth h : Rd × Rd → R. In
other words, the inverse operator L−1 has the explicit integral representation

L−1{ϕ} =

∫
Rd

h(·,y)ϕ(y)dy (32)

for any ϕ ∈ S(Rd). In conformity with the nomenclature of [53], the native
Banach space for

(
L,M(Rd)

)
is

ML(Rd) = {f ∈ S ′(Rd) : ‖Lf‖M
M
= sup
ϕ∈S(Rd): ‖ϕ‖∞≤1

〈Lf, ϕ〉 <∞}. (33)

It is isometrically isomorphic to M(Rd) (the space of bounded Radon mea-
sures on Rd). This is to say that the operators L,L−1 have restrictions L :
ML(Rd) c.−−→ M(Rd) and L−1 : M(Rd) c.−−→ ML(Rd) that are isometries.
Consequently, we can apply Theorem 2 to deduce that the generic learning
problem

S = arg min
f∈ML(Rd)

(
M∑
m=1

Em
(
ym, f(xm)

)
+ λ‖Lf‖M

)
(34)

admits a solution, albeit not necessarily a unique one since the underlying
search space ML(Rd)—or, equivalently, the parent space M(Rd)—is neither
reflexive nor strictly convex.

In order to refine the above statement with the help of Theorem 3, we
first observe that the extreme points of the unit ball in M(Rd) take the form
ek = ±δ(· − τ k) with τ k ∈ Rd, which is consistent with the result in Section
4.1 for M(Ω). Since the map L−1 : M(Rd) c.−−→ ML(Rd) is isometric, this
allows us to identify the extreme points of the unit ball in ML(Rd) as

uk = L−1{ek} = ±L−1{δ(· − τ k)} = ±h(·, τ k) (35)

where h : Rd×Rd → R is the kernel of the operator in (32). Consequently, we
can invoke Theorem 3 to prove that the extreme points of Problem (34) are
all expressible as

f0(x) =

K0∑
k=1

akh(x, τ k) (36)

with parameters K0 ≤M , τ 1, . . . , τK0 ∈ Rd, and (ak) ∈ RK0 . Moreover, since
L{h(·, τ k)} = δ(· − τ k) and ‖δ(· − τ k)‖M = ‖ek‖M = 1, the optimal regu-

larization cost is ‖Lf0‖M =
∑K0

k=1 |ak| = ‖a‖`1 , which makes an interesting
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connection with `1-norm minimization and the generalized LASSO [49] [39].
To sum up, the solution (36) has a kernel expansion that is similar to (15),
with the important twist that the kernel centers τ k are adaptive, meaning that
their location as well as their cardinality K0 is data-dependent. In effect, it is
the underlying `1-norm penalty that helps reducing the number K0 of active
kernels, thereby producing a sparse solution. We should also point out that
the form of the solution is compatible with the empirical method of moving
and learning the data centers in kernel expansions (see [35, Section IV]) with
the important difference that the present proposal is purely variational.

When L : S ′(Rd) c.−−→ S ′(Rd) is linear shift-invariant (LSI) with frequency

response F
{

Lδ
}

(ω) = L̂(ω), then h(x, τ ) = hLSI(x− τ ) with

hLSI(x) = F−1
{

1

L̂(ω)

}
(x), (37)

where the operator F−1 : S ′(Rd) → S ′(Rd) is the generalized inverse Fourier
transform.

The overarching message in the optimality result of the present section
is that the choice of the regularization operator L in (34) predetermines the
parametric form of the kernel in (36). Now, in light of (37), we can choose to
specify first a kernel hLSI : Rd → R and then infer the frequency response of
the corresponding regularization operator

L̂(ω) =
1

ĥLSI(ω)
. (38)

Now, the necessary and sufficient condition for the continuity of L : S ′(Rd)→
S ′(Rd) is that the function L̂ : Rd → R be smooth and slowly growing [46].
A parametric class of kernels that meets this admissibility requirement is the
super-exponential family

hLSI(x) = exp (−‖x‖α) (39)

with α ∈ (0, 2). The limit case with α = 2 (Gaussian) is excluded because the
corresponding frequency response in (38) (inverse of a Gaussian) fails to be
slowly increasing.

5 Conclusion

We have shown that the fundamental ingredient in the quest for a representer
theorem is the identification and characterization of a dual pair of Banach
spaces that is linked to the regularization functional. The main result of the
paper is expressed by Theorem 2, which is valid for Banach spaces in general.
This characterization of the solution of the general optimization problem (8)
is directly exploitable in the reflexive and strictly convex scenario—in which
case the solution is also known to be unique—whenever the duality mapping is
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known. While our formulation also offers interesting insights for certain non-
strictly convex and sparsity-promoting norms such as ‖·‖`1 and its continuous-
domain counterpart—the total variation ‖ · ‖M and generalization thereof—it
raises intriguing questions about the unicity of such solutions and the necessity
to develop some corresponding numerical optimization schemes.

We have made the link with the existing literature in machine learning
(regression) and the resolution of ill-posed inverse problems by considering
several concrete cases, including reproducing kernel Hilbert spaces (RKHS)
and compressed sensing. The conciseness and self-containedness of the pro-
posed derivations is a good indication of the power of the approach.

Since the concept of Banach spaces is remarkably general, one can eas-
ily conceive of other variations around the common theme of regularization
and representer theorems. Potential topics for further research include the
use of nonstandard norms, the deployment of hybrid regularization schemes,
vector-valued functions or feature maps [1], and the consideration of direct-
sum spaces and semi-norms, as in the theory of splines [7] [20] [54] [18] [34]
[53]. In short, there is ample room for additional theoretical and practical in-
vestigations, in direct analogy with what has been accomplished during the
past few decades in the simpler but more restrictive context of RKHS [2,1].
Interestingly, there also appears to be a link with deep neural/kernel networks,
as has been demonstrated recently [5,51].
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