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Abstract

In this paper, we use polyharmonic B-splines to build multi-dimensional wavelet bases. These functions are

non-separable, multi-dimensional basis functions that are localized versions of radial basis functions. We show

that Rabut’s elementary polyharmonic B-splines do not converge to a Gaussian as the order parameter increases,

as opposed to their separable B-spline counterparts. Therefore, we introduce a more isotropic localization operator

that guarantees this convergence, resulting into the isotropic polyharmonic B-splines. Next, we focus on the two-

dimensional quincunx subsampling scheme. This configuration is of particular interest for image processing,

because it yields a finer scale progression than the standard dyadic approach. However, up to now, the design of

appropriate filters for the quincunx scheme has mainly been done using the McClellan transform. In our approach,

we start from the scaling functions, which are the polyharmonic B-splines and as such explicitly known, and we

derive a family of polyharmonic spline wavelets corresponding to different flavors of the semi-orthogonal wavelet

transform; e.g., orthonormal, B-spline, dual. The filters are automatically specified by the scaling relations satisfied

by these functions. We prove that the isotropic polyharmonic B-spline wavelet converges to a combination of four

Gabor atoms, which are well separated in the frequency domain. We also show that these wavelets are nearly

isotropic and that they behave as an iterated Laplacian operator at low frequencies. We describe an efficient

FFT-based implementation of the discrete wavelet transform based on polyharmonic B-splines.
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Isotropic Polyharmonic B-splines:

Scaling Functions and Wavelets

I. INTRODUCTION

Multiresolution analysis has proved to be a powerful framework for providing time-frequency localized

expansions with applications in many areas of signal processing. The well-known one-dimensional algorithm

for the discrete wavelet transform corresponds to a two-channel filterbank: it splits the signal into two subsampled

channels (at the analysis side), and it offers perfect reconstruction after upsampling and filtering again at the

synthesis side. The wavelet transform can also be formulated in the continuous time domain, an approach that is

often favored by mathematicians [1], [2]. Instead of working directly with the filters, this representation considers

continuously-defined basis functions; i.e., scaling functions and wavelets. Recently, it has been demonstrated

that the scaling function can always be expressed as a convolution of a B-spline (its regular part) and a residual

distribution without order nor smoothness [3].

In the context of image processing, the most frequently used two-dimensional wavelet transforms are sepa-

rable; their basis functions and filters are simply tensor products of the one-dimensional ones. Unfortunately,

these decompositions introduce preferred (vertical and horizontal) directions and create a “diagonal” cross-term

that does not have a straightforward interpretation. This has motivated researchers to design better non-separable

wavelet transforms. One option is to priviledge angular selectivity. Numerous directional wavelet transforms,

both frames (i.e., redundant) and bases (i.e., non-redundant), have been proposed [4]–[11]. Such representations

can serve to sparsely represent essential image features such as edges combined with their orientation. Another

interesting option, which has received less attention, is to emphasize isotropy. A strong motivation for this kind

of design is that many standard image processing algorithms exploit the rotation-invariant properties of filters

such as the Gaussian and Laplacian.

Our construction starts from radial basis functions (RBF), which are isotropic versions of power functions.

Rabut has introduced a scheme to produce basis functions that are localized versions of these RBFs—the

so-called “elementary polyharmonic B-splines”. These B-splines share many interesting properties with their

classical 1D counterparts. While studying these functions we discovered that, contrary to our expectations,

they fail to converge to a Gaussian as the order increases. Since it is very desirable to have Gaussian-like

basis functions, which are isotropic and optimally localized in space-frequency in the sense specified by the

uncertainty principle, we decided to further investigate this issue. This led us to the construction of the “isotropic

polyharmonic B-splines”, which is presented in Sect. II. Our scheme utilizes a more isotropic discretization of

the Laplacian operator, which guarantees the desired Gaussian convergence property. The generalization remains

valid in higher dimensions as well.

The isotropic polyharmonic B-spline is an interesting candidate to be used as a scaling function for a

wavelet decomposition. First, it has been shown that any multi-dimensional scaling function of order γ can be

represented as the convolution of a polyharmonic B-spline of order γ and a distribution with a bounded Fourier
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transform [12], [13]. It is the polyharmonic B-spline that brings all the desirable mathematical properties.

Second, the isotropic polyharmonic B-spline satisfies a wide variety of scaling relations; in fact, many more

than the classical dyadic ones. Here, we will focus on a particularly interesting one in two dimensions: the

quincunx subsampling scheme. This scheme provides a more progressive transition through scale than the

dyadic subsampling scheme [14]–[19]. For each iteration, the number of samples is halved, so a single wavelet

can be used to characterize each bandpass subband. Up to now, most research for quincunx subsampling has

focused on filterbank design and it has been difficult to define general wavelet families, as in one dimension,

due to the lack of multi-variate factorization theorems. One popular option to circumvent this difficulty is to

use the McClellan transform that maps a one-dimensional design into a two-dimensional one [20]–[22].

In Sect. III, we consider an alternative approach and introduce new wavelet bases for the quincunx sub-

sampling scheme based on the two-dimensional isotropic polyharmonic B-splines. Specifically, we present a

semi-orthogonal design procedure that yields a complete family of polynomial isotropic polyharmonic B-spline

wavelets. We demonstrate that these wavelets form Riesz bases and that they qualitatively behave as a γ-th

order Laplacian operator for low frequencies, which is isotropic once more. We also prove that one particular

wavelet—the isotropic polyharmonic B-spline wavelet—converges to the sum of four Gabor atoms as the order

increases. Additionally, it behaves as (fractionally) iterated Laplacian (and therefore isotropic) operator for

low frequencies. Clearly, in our design, the continuously-defined functions (scaling functions and wavelets)

play a central role. Nevertheless, the associated filters, which are required to implement the transform, are

automatically defined. Explicit formulas are given in the Fourier domain. The implementation of the discrete

wavelet transforms is presented in Sect. IV.

II. POLYHARMONIC B-SPLINES

A. The univariate case: B-spline basis functions and signal spaces

The construction of the polyharmonic B-splines is best explained by using the analogy with the standard one-

dimensional B-splines. In particular, we consider the symmetric B-spline of odd degree 2m − 1, m ∈ N\{0}.

Its Fourier transform is given by

β̂2m−1(ω) =
(

4 sin2(ω/2)
ω2

)m

. (1)

We recognize the localization filter as the numerator and the power function as the denominator. In the spatial

domain, such a B-spline can be regarded as a localized version of the two-sided power function |x|2m−1 [23].

Consequently, the B-splines are piecewise polynomials.

The B-splines span the integer-shift-invariant signal space

V(β2m−1) =

{
s(x) =

∑
k

c(k)β2m−1(x − k), c ∈ l2(Z)

}
, (2)

where c(k) are coefficients that are used as weights for the shifted basis functions. The notation
∑

k stands for

the sum of all k ∈ Z. An essential property [24] of each spline signal s(x) of V(β2m−1) is that they satisfy

d2ms(x)
dx2m

= 0, for x ∈ R\Z. (3)
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In fact, the two-sided power function |x|2m−1 is the symmetric Green function (or fundamental solution) of the

differential operator in (3); i.e., the solution of the differential operator that gives δ(x). This implies, among

other things, that the signal space V(β2m−1) is also spanned by shifted versions of |x|2m−1 [23]. Another

important observation is that the localization filter of the B-spline, represented by the numerator of (1), is

the most elementary discretization of the corresponding “ideal” differential operator (m-th iterate of a second

derivative).

B. The polyharmonic case: from radial basis functions to B-splines

Historically, the first extension of the univariate spline principles to N dimensions—next to tensor products—

consists of building splines s(x), x ∈ R
N , that satisfy

∆ms(x) = 0, for x ∈ R
N\ZN , (4)

where ∆ =
∑N

i=1 ∂2/∂x2
i denotes the Laplacian operator. As in the one-dimensional case, such splines s(x)

can be represented as linear combinations of shifted Green functions of the m-iterated Laplacian, which are

known to be

ρ(x) = ||x||2m−N (cN,m ln ||x|| + c′N,m) ←→ ρ̂(ωωω) =
1

||ωωω||2m , (5)

where cN,m and c′N,m are some suitable constants (c′N,γ is zero when 2m − N is even, while cN,γ is zero

otherwise). The functions ρ(x) are better known as generalized thin plate splines, an interesting class of radial

basis functions (RBF). Each spline in the space spanned by this type of RBFs can be written as

s(x) =
∑
k

c(k)ρ(x − k), (6)

and will necessarily satisfy (4). Often a polynomial of degree m − 1 is added to the right-hand side of (6),

however, on the (infinite) Cartesian grid Z
N , this polynomial is automatically included in the closure of the

span of the RBFs. These splines have been studied intensively for (finite) scattered data interpolation [25]–[31]

and also for the representation of signals on a uniform grid [32]–[34]. Probably the earliest example has been

given by Harder [25], which corresponds to N = 2 and m = 2.

The direct application of RBFs to interpolation, as in (6), poses various theoretical and practical difficulties.

Therefore, it is interesting to look for better conditioned basis functions, such as B-splines, that span the same

signal space but are essentially localized. Rabut [35] defined “elementary m-harmonic cardinal B-splines1” by

choosing the localization filter as the most elementary discretization of the Laplacian.

Definition 1 (Elementary m-harmonic cardinal B-splines): Their definition in the Fourier domain is remark-

ably similar to the univariate case:

φ̂m(ωωω) =
||2 sin (ωωω/2)||2m

||ωωω||2m =

(
4
∑N

k=1 sin2 (ωk/2)∑N
k=1 ω2

k

)m

, (7)

with sin(ωωω) = (sin(ω1), . . . , sin(ωN )). The parameter m is an integer with m ≥ N/2.

1Rabut introduced this terminology: “elementary” to emphasize that they are obtained by using the most elementary discretization of the

Laplacian operator; “m-harmonic” since they are in the span of the fundamental solution of ∆mf = δ (see also [32], [33]); “cardinal”

due to the uniform grid; “B-splines” since they are “bell-shaped” and regularize the Dirac distribution.
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Fig. 1. (a) Filter coefficients for Rabut’s 2D discretization of the Laplacian operator (m = 1, γ = 2). (b) Filter coefficients for the

isotropic 2D discretization of the Laplacian operator. (c) Filter coefficients for Rabut’s 3D discretization of the Laplacian operator. (d) Filter

coefficients for the isotropic 3D discretization of the Laplacian operator.

In Fig. 1 (a) and (c), we show the discretized Laplacian operator (m = 1) for the two-dimensional and three-

dimensional case. From now on, we prefer to denote the polyharmonic B-splines by their order of approximation,

which is given by γ = 2m (see later). Therefore, we denote them also as φm = φ2m = φγ . The signal space

generated by φγ , which is the same as that spanned by RBFs of degree γ − N , can be written as

V(φγ) =

{∑
k

c(k)φγ(x − k), c ∈ l2(ZN )

}
. (8)

The polyharmonic B-splines defined in this way satisfy most of the properties of the conventional B-splines:

close resemblance of their definition in the Fourier domain, convolution relation φγ1+γ2 = φγ1 ∗ φγ2 , partition

of unity, total positivity (φ̂γ > 0). These splines are also reported to be “bell-shaped” functions. Unfortunately,

and despite the fact that they are generated by multiple convolutions, they do not converge toward a Gaussian

as the order increases.

Proposition 1: The elementary m-harmonic cardinal B-splines violate the conditions for the applicability of

the central limit theorem and do not converge towards a Gaussian as the order increases.

Proof: The central limit theorem guarantees the convergence of iterated convolutions to a Gaussian. However,

it requires a well-defined second-order moment. The second-order moment can be identified in the Fourier

domain by considering the Taylor series development of φ̂2(ωωω) for ωωω → 0:

φ̂2(ωωω) =
4
∑N

k=1 sin2(ωk/2)∑N
k=1 ω2

k

= 1 − 1
12

(∑N
k=1 ω4

k∑N
k=1 ω2

k

)
+ O(||ωωω||4), ωωω → 0. (9)

The second term is not twice continuously differentiable at 0, which implies that the second-order moment does

not exist2. Following the outline of the proof of the central limit theorem, we can find the limiting function,

2For the two-dimensional case, it is instructive to switch to polar coordinates, which amounts to replacing (ω1, ω2) by

(rω cos(θω), rω sin(θω)) in Eq. (9).
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using (9), as

φ̂γ

(
ωωω√
γ

)
≈

(
1 − 1

γ

1
12

(∑N
k=1 ω4

k∑N
k=1 ω2

k

))γ/2

−→ exp

(
− 1

24

∑N
k=1 ω4

k∑N
k=1 ω2

k

)
, as γ → ∞,

which, clearly, is not a Gaussian.

Rabut [36] also defined “n-th level m-harmonic cardinal B-splines” that were primarily designed to be

improved quasi-interpolants; i.e., functions that interpolate polynomials of higher degree than the elementary

versions. The higher level polyharmonic splines only converge towards a degenerated Gaussian, namely a Dirac

distribution.

C. Isotropic polyharmonic B-splines

The discretization of the Laplacian operator corresponding to the numerator of Eq. (7) uses the least possible

number of filter coefficients. The downside of this approach is the non-convergence to a Gaussian, which can be

explained by a lack of isotropy of the discrete approximation of the Laplacian. This motivates us to introduce the

“isotropic polyharmonic B-splines” using a slightly different, but more isotropic, discretization of the Laplacian

operator. Stricly speaking, these B-splines are only quasi-isotropic, but they do become more and more isotropic

as the order increases. Notationally, we usually specify a filter h(k), k ∈ Z
N , by its Z-transform as

H(z) =
∑
k

h(k)zk,

where zk is a shortcut notation for
∏N

i=1 zki
i . We obtain its frequency response by putting z = ejωωω , i.e., H(ejωωω).

Definition 2 (Isotropic polyharmonic B-splines): For N = 2 and 3, the isotropic polyharmonic B-splines of

order γ are defined in the Fourier domain as

β̂γ(ωωω) =
Vγ(ejωωω)
‖ωωω‖γ

(10)

where Vγ(ejωωω) = V2(ejωωω)γ/2 and

V2(ejωωω) = 4
N∑

k=1

sin2
(ωk

2

)
− 8

3

N−1∑
k=1

N∑
l=k+1

sin2
(ωk

2

)
sin2

(ωl

2

)
. (11)

The second term in V2(ejωωω) is a slight change of the elementary localization operator, but is essential to

ensure the Gaussian convergence. Moreover, using standard trigonometric formulæ, one checks that V2(ejωωω) is

positive for N = 2, 3, because it can be expressed as a sum of positive quantities:

V2(ejωωω) =
4
3
(4 − N)

N∑
k=1

sin2
(ωk

2

)
+

2
3

N−1∑
k=1

N∑
l=k+1

(
sin2

(ωk + ωl

2

)
+ sin2

(ωk − ωl

2

))
.

For N ≥ 4, it would be necessary to include higher order terms for the localization filter to be strictly positive—

when N = 4, the present filter vanishes at ω = (π, π, π, π) which makes the lower Riesz bound ill-defined (see

Section II-D.2).

Proposition 2: The isotropic polyharmonic B-splines converge to a Gaussian as the order γ increases.

Proof: Reconsider the development of the elementary polyharmonic B-splines of (9). Clearly, for the second
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term to be isotropic, its numerator should be proportional to (
∑N

k=1 ω2
k)2. This can be obtained by adding the

missing crossterms to
∑N

k=1 ω4
k. It can be verified that the new numerator proposed in (10) results into

β̂γ

(
ωωω√
γ

)
= 1 − 1

24
||ωωω||2 + O(||ωωω||4), as ωωω → 0. (12)

The second-order moment is now a constant (γ/12), irrespective of the direction. This property ensures that

the isotropic polyharmonic B-splines rapidly converge to a Gaussian as the order γ increases.

We want to show the effect of the isotropic discretization of the Laplacian (i.e., for γ = 2), as compared to the

elementary discretization. In the two-dimensional case, the adjustment term of the localization filter introduces

new knots at the corners of the 3 × 3, see Fig. 1 (b). Interestingly, the proposed isotropic discretisation of the

Laplacian can also be seen3 as the particular combination

V2(z) =
2
3
L+(z) +

1
3
L×(z),

where L+ represents the elementary discretisation along the axes (i.e., the numerator of (7) for m = 1)

L+(z) = z1 + z−1
1 + z2 + z−1

2 − 4,

and L× the elementary discretisation along the diagonals

L×(z) =
1
2
(
z1z2 + z−1

1 z2 + z1z
−1
2 + z−1

1 z−1
2 − 4

)
.

For the three-dimensional case, we notice that not all coefficients of the 3 × 3 × 3 cube are required, see

Fig. 1 (d).

From now on, we consider the definition of the isotropic polyharmonic B-splines for any fractional order

γ ∈ R with γ > N/2, since this extension does not present any theoretical difficulty, as long as we work in

the Fourier domain. In Fig. 2, we show the 2D elementary and isotropic polyharmonic B-spline for γ = 5,

respectively. These functions are easy to evaluate numerically, for any order γ, by resampling (10) with a

sufficient number of points and applying an inverse FFT.

D. Key properties

We now present the key properties of the polyharmonic B-splines (both the elementary and the isotropic

ones). When necessary, we make a distinction between both.

1) Partition of unity: The partition of unity property guarantees that the polyharmonic B-splines reproduce

the constant: ∑
n∈ZN

βγ(x − n) = 1 ←→ β̂γ(2〈k,πππ〉) = δk, k ∈ Z
N , (13)

where we denote πππ = (π, . . . , π). This can be established directly by checking that the condition on the

righthand side is verified.

3We thank an anonymous reviewer for this remark.
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Fig. 2. Two-dimensional example of polyharmonic B-splines of fifth order (N = 2, γ = 5). (a) The elementary polyharmonic B-spline.

(b) The isotropic polyharmonic B-spline.

2) Riesz basis: The polyharmonic B-splines {βγ(x − k)}k∈ZN generate a Riesz basis; i.e., there exist two

constants 0 < C0, C1 < ∞ such that

C0 ||c||�2 ≤
∣∣∣∣∣
∣∣∣∣∣
∑
n

cnβγ(x − n)

∣∣∣∣∣
∣∣∣∣∣
L2

≤ C1 ||c||�2 . (14)

This condition is equivalent to

C0 ≤ Aγ(ejωωω) ≤ C1, (15)

where Aγ(ejωωω) is the Fourier transform of the autocorrelation sequence 〈βγ(·), βγ(· − n)〉; i.e.,

Aγ(ejωωω) =
∑
n

〈βγ(·), βγ(· − n)〉 exp(−j〈ωωω,n〉) (16)

=
∑
k

∣∣∣β̂γ(ωωω + 2πk)
∣∣∣2 . (17)

Using the convolution property of the polyharmonic B-spline, we can rewrite the autocorrelation filter as

Aγ(ejωωω) =
∑
k

β̂2γ(ωωω + 2πk). (18)

Given that Aγ(ejωωω) ≥ |β̂γ(ω)|2 and that the continuous function |β̂γ(ω)|2 does not vanish inside [−π, π]N ,

the existence of a lowerbound is trivial. The existence of the upperbound is also garanteed by the uniform

convergence of the sum (18) as shown in App. A. As a sidenote, we would like to point out that there is a

surprising connection between this autocorrelation filter and the so-called Epstein Zeta function which finds

applications in crystallography (see [37]), in number theory (see [38]) and in quantum field theory (see [39]).

3) Orthonormal and dual flavors: The polyharmonic B-splines βγ can be orthonormalized such that

〈
β⊥

γ (x), β⊥
γ (x − n)

〉
= δn, for n ∈ Z

N . (19)
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The Fourier expression of β⊥
γ is given by

β̂⊥
γ (ωωω) =

β̂γ(ωωω)√
Aγ(ejωωω)

. (20)

Analogously, one can define the dual polyharmonic B-spline as the unique function β γ̊ ∈ V(βγ) that is

biorthonormal to βγ(x). In the Fourier domain, this yields:

β̂ γ̊(ωωω) =
β̂γ(ωωω)

Aγ(ejωωω)
. (21)

The dual splines are important since they allow us to specify the orthogonal projection of an L2-function f(x)

onto V(βγ); that is, the function of V(βγ) that approximates f(x) “best”. Specifically, the projection Pf(x)

can be written equivalently as

Pf(x) =
∑
n

〈f(·), β γ̊(· − n)〉βγ(x − n)

=
∑
n

〈
f(·), β⊥

γ (· − n)
〉
β⊥

γ (x − n)

=
∑
n

〈f(·), βγ(· − n)〉β γ̊(x − n).

4) Spatial decay: Unlike traditional B-splines (1D or the tensor product extension) of integer order, the

polyharmonic B-splines (N ≥ 2) are not compactly supported. Rabut has shown that the elementary polyhar-

monic B-splines decay like O(1/ ||x||N+2) as ||x|| → ∞. The proof in [35, Th. 2] is quite technical but can be

extended. First, when γ is not an even integer, the spatial decay becomes O(1/ ||x||N+min(2,γ)). Second, for the

isotropic polyharmonic B-splines, the new discretization of the Laplacian operator improves the smoothness of

β̂γ(ωωω) around ωωω = 0 by 2 orders, which, in turn, increases the spatial decay of βγ(x) by 2 orders, at least for

γ sufficiently large. Therefore, we obtain a O(1/ ||x||N+min(4,γ)) decay. This faster decay property is another

indication that the isotropic basis functions should be better localized.

5) Asymptotic convergence: As a result of the central limit theorem and Proposition 2, we also know that

the isotropic polyharmonic B-spline tend to the following isotropic Gaussian as γ increases:

βγ(x) ≈
(

6
πγ

)N/2

exp

(
−6 ||x||2

γ

)
, (22)

whose standard deviation is σ =
√

γ/12. The normalized squared difference between βγ and its Gaussian

limiting function is below 5% for γ ≥ 3. For the case γ = 5 of Fig. 2 (b), the difference barely reaches 3%.

Consequently, the order provides a tuning parameter for the size of the support, allowing us to search for an

optimal tradeoff between spatial and spectral selectivity. Due to the convergence to a Gaussian, the isotropic

polyharmonic B-splines tend to be asymptotically optimally localized in the sense of the Heisenberg uncertainty

principle. More precisely, the product of their spatial and spectral bandwidth, defined as

Sβγ
Sβ̂γ

, with Sβγ
=

(∫ ||τττ ||2 |βγ(τττ)|2 dτττ∫ |βγ(τττ)|2 dτττ

)1/2

. (23)

reaches the minimum 1/2 as γ increases.
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6) Order of approximation: Similar to classical B-splines, polyharmonic B-splines can approximate a given

(well-behaved) function f(x) to any required accuracy by projecting it onto a rescaled spline space with step size

h. This property is related to the rate of decrease when the sampling grid gets finer of the approximation error

between f(x), where f(x) and its γ-th derivative are in L2, and the best polyharmonic B-spline representation:

inf
c(n)

∣∣∣∣∣
∣∣∣∣∣f(x) −

∑
n

c(n)βγ (x/h − n)

∣∣∣∣∣
∣∣∣∣∣
L2

≤ Const × hγ , (24)

where the constant depends on f and γ, but not on h. Given their Fourier definition, it is easy to show that

∀k ∈ Z
N\{0}, β̂γ(2πk + ωωω) = O(||ωωω||γ), for ωωω → 0, (25)

which implies that the order of approximation for polyharmonic B-splines corresponds to γ [40], [41], thus

justifying our terminology and notation for the γ-th order polyharmonic B-spline βγ .

III. MULTI-RESOLUTION ANALYSIS

In this section, we investigate the multiresolution properties of the polyharmonic B-splines. Madych [42],

[43] showed already that certain polyharmonic splines are perfectly valid scaling functions. Micchelli et al. [44]

constructed pre-wavelets from (elliptic) polyharmonic B-splines for dyadic subsampling schemes. Here we will

start from the isotropic polyharmonic B-splines to build semi-orthogonal wavelet bases. First, we briefly show

that isotropic polyharmonic B-splines are admissible scaling functions that satisfy a whole variety of scaling

relations. We then concentrate on the 2D quincunx subsampling scheme. When necessary, we will emphasize

instances where we encounter an important difference between the elementary polyharmonic B-splines and the

isotropic ones.

A. Scaling function and scaling relations

We want to define a dilation matrix M that maps every point k ∈ Z
N to a subset of Z

N . Therefore, we

introduce M as a matrix of size N × N that contains only integer elements and with |detM| ≥ 2. Another,

more technical, requirement is that all eigenvalues of M should be strictly greater than 1; i.e., M should be a

dilation in all directions [45].

We now recall the approximation space spanned by the polyharmonic B-splines, V(βγ), as defined in Eq. (8).

Similarly, we consider the approximation space VM at a finer resolution M as

VM = spann∈ZN {βγ(Mx − n)} , (26)

where we will further elaborate on the admissible choices of M later on. The idea is to generate a sequence

of embedded subspaces of L2(R2):

· · · VM−1 ⊂ VM0 ⊂ VM ⊂ VM2 ⊂ · · ·L2. (27)

Mallat [1] defined the minimal requirements that a scaling function needs to satisfy to generate an MRA. These

requirements are functionally equivalent to: (i) Riesz conditions to ensure that we have shift-invariant subspaces;

(ii) Partition of unity to guarantee the convergence limi→∞ VMi = L2; (iii) Scaling relation for M. The first
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two properties have already been proven in the previous section. The scaling relation brings along the space

inclusion property; i.e., it expresses βγ in the finer resolution space:

βγ(x) =
∑
n

bγ(n)βγ(Mx − n), (28)

or, equivalently, in the Fourier domain:

Bγ(ejωωω) = |detM| β̂γ(MTωωω)

β̂γ(ωωω)
. (29)

In order to obtain a valid scaling filter b(n), the respective denominators of β̂γ(MTωωω) and β̂γ(ωωω) in Eq. (29)

need to cancel each other up to a scalar factor. Due to the isotropic denominator ||ωωω||γ of the polyharmonic

B-splines, M may correspond to any similarity transform; i.e., any rotation or symmetry combined with a

dilation |detM| ≥ 2. In particular, in two dimensions, the dilation matrix can be chosen

M =

⎡
⎣ a b

−b a

⎤
⎦ , or M =

⎡
⎣ a b

b −a

⎤
⎦ , (30)

for a and b being integer and a2 + b2 ≥ 2. It is interesting to mention that an MRA using the traditional tensor-

product B-splines is much more restrictive; i.e., it requires the dilation matrix to be separable (corresponding

to an integer scaling along each dimension).

Now we can define the wavelet space WMi uniquely as the orthogonal complement of VMi in VMi+1 :

VMi ⊕WMi = VMi+1 . Finally, it is well-known that there exist m = |detM|−1 wavelets ψ(1), . . . , ψ(m), that

span the residual spaces WMi :

WMi = spann∈ZN

{
ψ(1)(Mix − n), . . . , ψ(m)(Mix − n)

}
. (31)

Many desirable mathematical properties of the wavelets, for instance the number of vanishing moments, are

directly related to the order γ of the polyharmonic scaling function [12], [13].

B. Quincunx multi-resolution analysis

For the remaining part of this paper, we focus on the 2D quincunx dilation matrix, which is an interesting

configuration for image processing (for which the traditional tensor product B-splines cannot be applied). As

already mentioned in the introduction, the quincunx scheme provides a slower progression through scale than

the traditional dyadic subsampling scheme. In addition, the wavelet space is spanned by only one wavelet,

which simplifies its design and application.

The quincunx subsampling scheme, depicted in Fig. 3, can be represented by several possible dilation

matrices [45]–[47]. For image processing, the most interesting one is based on a symmetry [17], [18], [48],

[49] and is given by

D =

⎡
⎣ 1 1

1 −1

⎤
⎦ . (32)

For an even number of iterations, the subsampled grid exactly coincides with the original cartesian grid at a

twice coarser resolution; i.e., two subsequent scale reductions correspond to D2 = 2I. As expected, the wavelet

space is spanned by |detD| − 1 = 1 wavelet.
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Fig. 3. Quincunx subsampling scheme for two iterations.

H̃(z−1)
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��D
↓ 〈f, ϕ̃i−1,n〉

G̃(z−1)
��

��D
↓

〈
f, ψ̃i−1,n

〉
�

�

�〈f, ϕ̃i,n〉
��

��D
↑ H(z)

��

��D
↑ G(z)�

�

�〈f, ϕ̃i,n〉

Fig. 4. Analysis-synthesis filterbank for the 2D quincunx wavelet transform.

In Fig. 4, we show the wavelet transform algorithm for one iteration. We introduce the following notation:

ϕi,n(x) =
√

2iϕ(Dix − n) and ϕ̃i,n for the synthesis and analysis basis functions, respectively; ψi,n(x) =
√

2iψ(Dix− n) and ψ̃i,n for the wavelets. The approximation of a function f(x) at scale i can be written as

∑
n

〈f, ϕ̃i,n〉ϕi,n(x) =
∑
n

〈f, ϕ̃i−1,n〉ϕi−1,n(x) +
∑
n

〈
f, ψ̃i−1,n

〉
ψi−1,n(x). (33)

For an efficient filterbank implementation, one directly works with the coefficients c(i)(n) = 〈f, ϕ̃i,n〉 and

d(i)(n) =
〈
f, ψ̃i,n

〉
and computes the coefficients at the next coarser scale by filtering and downsampling. The

scaling and wavelet filters are H̃ and G̃ on the analysis side, and H and G on the synthesis side, respectively.

The conditions for perfect reconstruction that need to be satisfied by these filters are

H̃(z−1)H(z) + G̃(z−1)G(z) = 2, (34)

H̃(z−1)H(−z) + G̃(z−1)G(−z) = 0. (35)

C. Polynomial polyharmonic B-spline wavelets

In this section, we will follow the design procedure of [50], where the wavelet is selected orthogonal to all

the integer-shifted versions of the scaling function. This leads to a wavelet transform that is usually refered to

as “semi-orthogonal”. A direct consequence of this strategy is that the wavelet spaces are orthogonal to each

other: WMi ⊥ WMj , for i �= j.

Since we will derive all our scaling functions and wavelets from the isotropic polyharmonic B-splines, we

first show the scaling relation satisfied by these splines for the quincunx dilation matrix. By using Eq. (29)
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Fig. 5. The scaling filter Bγ(ejωωω)/2 associated to the quincunx dilation matrix for γ = 5. (a) Elementary polyharmonic B-splines.

(b) Isotropic polyharmonic B-splines.

with the quincunx dilation matrix (32), we obtain

Bγ(ejωωω) = 21−γ/2

(
sin2

(
ω1+ω2

2

)
+ sin2

(
ω1−ω2

2

)− 2
3 sin2

(
ω1+ω2

2

)
sin2

(
ω1−ω2

2

)
sin2

(
ω1
2

)
+ sin2

(
ω2
2

)− 2
3 sin2

(
ω1
2

)
sin2

(
ω2
2

)
)γ/2

. (36)

Figure 5 (b) shows the frequency response of this filter for order γ = 5. Also shown is the scaling filter for

the elementary polyharmonic B-splines, which exhibits a much less favorable “cross-like” structure and this

for any order γ. This is in contrast with the isotropic filter which becomes more and more Gaussian-like as γ

increases.

1) Polyharmonic B-spline wavelet transform: As first example, we select the isotropic polyharmonic B-spline

βγ as scaling function ϕ. We look for the associated wavelet ψ, included in the function space VD0 at a finer

scale,

ψ(D−1x) =
∑
n

w(n)βγ(x − n), (37)

that also satisfies the orthogonality condition. Indeed, a necesary condition for WD−1 ⊥ VD−1 is

〈
ψ(D−1x), βγ(D−1x − n)

〉
= 0.

This condition can be expressed equivalently in the z-domain as

W (z)Bγ(z)Aγ(z) + W (−z)Bγ(−z)Aγ(−z) = 0. (38)

It can be shown that the general solution of this equation is

W (z) = −z−1
1 Q(zD)Bγ(−z−1)Aγ(−z), (39)

where Q(z) is an arbitrary polynomial in z. Here zD is a shortcut notation for (z1z2, z1z
−1
2 ); the Fourier

transform of Q(zD) corresponds to Q(ejDTωωω). The most obvious choice is Q(z) = 1, which gives us

ψ̂(DTωωω) =
W (ejωωω)

2
β̂γ(ωωω), (40)
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with W (ejωωω) = −e−jω1Bγ(e−j(ωωω+πππ))Aγ(ej(ωωω+πππ)). This wavelet is referred to as the “isotropic polyharmonic

B-spline wavelet”.

Of course, the polynomial Q(z) needs to satisfy certain properties to obtain suitable wavelets that form

a Riesz basis. This is expressed by the following theorem, which is valid for any scaling function and the

quincunx subsampling scheme.

Theorem 1: Let ϕ(x) be a valid scaling function for the quincunx subsampling scheme. Specifically, it has

a scaling filter Bγ(ejωωω) and it forms a Riesz basis; i.e., the autocorrelation filter Aγ(ejωωω) is bounded by two

constants 0 < C0 ≤ Aγ(ejωωω) ≤ C1 < ∞. Then, the wavelet given by

ψ̂(DTωωω) =
W (ejωωω)

2
ϕ̂(ωωω), (41)

with W (ejωωω) = −e−jω1Q(ejDTωωω)Bγ(ej(ωωω+πππ))Aγ(ej(ωωω+πππ)) forms a Riesz basis as well, as long as
∣∣Q(ejωωω)

∣∣2
is also bounded by two constants 0 < C′

0 ≤ ∣∣Q(ejωωω)
∣∣2 ≤ C ′

1 < ∞.

Proof: We compute the autocorrelation filter of the wavelet ψ̂(ωωω):

R(ejωωω) =
∑
k

∣∣∣ψ̂(ωωω + 2πk)
∣∣∣2

=

˛
˛
˛W (ejD−Tωωω)

˛
˛
˛

2

4 Aγ(ejD−Tωωω) +

˛
˛
˛W (ej(D−Tωωω+πππ))

˛
˛
˛

2

4 Aγ(ej(D−Tωωω+πππ))

= Aγ(ejD−Tωωω)Aγ(ej(D−Tωωω+πππ))
∣∣Q(ejωωω)

∣∣2
( ˛

˛
˛Bγ(ejD−Tωωω)

˛
˛
˛

2

4 Aγ(ejD−Tωωω) +

˛
˛
˛Bγ(ej(D−Tωωω+πππ))

˛
˛
˛

2

4 Aγ(ej(D−Tωωω+πππ))

)

= Aγ(ejD−Tωωω)Aγ(ej(D−Tωωω+πππ))Aγ(ejωωω)
∣∣Q(ejωωω)

∣∣2 . (42)

Consequently, the wavelet forms a Riesz basis if we have 0 < C′
0 ≤ ∣∣Q(ejωωω)

∣∣2 ≤ C ′
1 < ∞.

The construction of the wavelet that leads to (40) describes the synthesis side of the wavelet transform. The

complete transform, as indicated by Eq. (33), also requires the analysis scaling function and wavelet. To obtain

the corresponding analysis funtions, we compute the dual scaling function that is given by

ˆ̃ϕ(ωωω) = β̂ γ̊(ωωω) =
β̂γ(ωωω)

Aγ(ejωωω)
, (43)

and we automatically obtain the associated dual scaling filter

B γ̊(ejωωω) =
Aγ(ejωωω)

Aγ(ejDTωωω)
Bγ(ejωωω). (44)

In a way similar to (42), we find the autocorrelation of the polyharmonic B-spline wavelet Rγ(ejωωω). Then, the

dual wavelet can be concisely defined as

ˆ̃
ψ(ωωω) = ψ̂ (̊ωωω) =

ψ̂(ωωω)
Rγ(ejωωω)

. (45)

The corresponding dual wavelet relation,

ψ̂ (̊DTωωω) =
W (̊ejωωω)

2
β̂ γ̊(ωωω), (46)

is obtained from (40) with W (̊ejωωω) = −e−jω1 B γ̊(e−j(ωωω+πππ))

Aγ(ej(ωωω+πππ))
.

In practice, an efficient filterbank implementation will directly rely on the scaling and wavelet filters to process

the coefficients. Table I lists all the filters and functions involved for the isotropic polyharmonic B-spline wavelet

transform. Figure 7 depicts the respective scaling functions and wavelets in the spatial domain.
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TABLE I

OVERVIEW OF ISOTROPIC POLYHARMONIC B-SPLINE WAVELET TRANSFORM

analysis synthesis

scaling function β γ̊(x) ←→ β̂γ(ωωω)

Aγ(ejωωω)
βγ(x)

scaling filter H̃(z) = B γ̊(z) =
Aγ(z)

Aγ(zD)
Bγ(z) H(z) = Bγ(z)

wavelet function ψ (̊x) ←→ ψ̂ (̊ωωω) =
ψ̂(ωωω)

Rγ(ejωωω)
ψ(x) ←→ ψ̂(ωωω) =

W (ejD−Tωωω)
2

β̂γ(ωωω)

wavelet filter G̃(z) = W (̊z) = −z−1
1

Bγ̊(−z−1)

Aγ(−z)
G(z) = W (z) = −z−1

1 Bγ(−z−1)Aγ(−z)
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Fig. 6. Illustration of the tiling of the frequency domain for the polyharmonic B-spline wavelets of order γ = 5 up to the eight iteration.

All contours shows their corresponding iteration number.

The dual isotropic polyharmonic B-spline wavelet transform can be found by interchanging the functions

and filters between the analysis and synthesis part. Depending on the application, it might be desirable to put

the B-spline either on the analysis or the synthesis side. The main feature of this wavelet decomposition is the

excellent space-frequency localization of the B-spline scaling function and its wavelet. We already indicated

that the isotropic polyharmonic B-splines tend to a Gaussian function as the order γ increases. Similarly, the

associated wavelets tend to modulated Gaussians, also known as Gabor functions. In Appendix B, we give a

proof of this convergence. In Fig. 6, we show the tiling of these wavelets in the frequency domain for eight

consecutive iterations.

Indeed, Gabor wavelet-like decompositions have been found to be useful in many applications, as shown by

the vast literature dealing with these functions [51]–[57]. Some examples include edge detection [58], [59],

segmentation, texture analysis [60], modelling of primate’s visual systems [61]–[63], statistical analysis of

time-series (e.g., as in fMRI [64]), image analysis [65]–[67], hierarchical reconstruction [68], and so on. So the

refinement filters of the isotropic polyharmonic B-spline wavelet transform might be good candidates to build

a proper scale-space decomposition with a continuously-tunable order parameter.
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2) Orthonormal polyharmonic B-spline wavelet transform: Another important wavelet transform is the

orthonormal one, in which the scaling function and wavelets are orthonormal with regard to their own shifts.

Note that for this transform, there will be no difference between the isotropic polyharmonic B-splines and

the elementary ones: since both span the same space, their orthonormalized forms are equivalent. We note,

however, that we have not yet seen these functions applied in the quincunx case, not to mention their fractional

extensions.

The orthonormal polyharmonic B-spline is given by Eq.(20) and its corresponding scaling filter is

B⊥
γ (ejωωω) =

√
Aγ(ejωωω)

Aγ(ejDTωωω)
Bγ(ejωωω). (47)

Similarly, the orthonormal polyharmonic B-spline wavelet reads

ψ̂⊥(ωωω) =
ψ̂(ωωω)√
Rγ(ejωωω)

, (48)

with corresponding wavelet filter

W⊥(ejωωω) = −e−jω1B⊥
γ (ej(ωωω+πππ)). (49)

Some examples of such functions are shown in Fig. 7 (c)-(d).

In Appendix C, we prove the convergence of the orthonormal polyharmonic B-spline to the sinc function.

As for every linear orthonormal transform, the L2-norm is conserved and white noise will remain white after

transformation—a useful property for image denoising.

3) Generalized polyharmonic B-spline wavelet transforms: The B-spline, dual, and orthonormal flavor of

the polyharmonic wavelet transforms are probably the most interesting candidates for applications. The design

procedure for semi-orthogonal wavelet can also lead to other wavelets. In particular, the choice of Q(zD) in

Eq. (39) is a degree of freedom that can be further explored. For example, we could select the interpolating

polyharmonic B-spline at the synthesis side. This would eliminate the need of the initialization procedure that

is needed to compute the initial values of the coefficients.

An interesting property of every polyharmonic wavelet is the behavior for low frequencies.

Proposition 3: The polyharmonic wavelets, obtained for any admissible choice of Q(zD), behave as the

γ/2-th iterate of the Laplacian operator for low frequencies.

Proof: We consider Eqs. (39) and (40) for ωωω → 0. The only term that tends to zero, and as such dominates

the behavior of ψ̂(ωωω) for ωωω → 0, is Bγ(e−j(ωωω+πππ)). Using (36), we can conclude that ψ̂(ωωω) ∝ ||ωωω||γ for low

frequencies.

This proposition shows how the operator that is related to the fundamental property of the polyharmonic B-

splines gets transplanted to the wavelet functions.

In Fig. 8 (b), we show an example wavelet decomposition of the “zoneplate” image of (a). The subbands are

organized in a way that is standard for the quincunx subsampling scheme; i.e., for odd iterations the odd lines

are shifted by one pixel and then odd columns are subsampled (see also Sect. IV). The intensity values within

each subband of Fig. 8 (b) have been rescaled to improve visualization. In the first subband, we only capture

high frequency components at the corners of the frequency sweep. In fact, the local spatial frequency at these

corners is close to the center frequency of the corresponding Gabor atoms depicted in Fig. 6. As we progress
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Fig. 7. Various brands of scaling functions and wavelets based on isotropic polyharmonic B-splines of order γ = 5.0. (a) Isotropic

polyharmonic B-spline. (b) Isotropic polyharmonic B-spline wavelet. (c) Orthonormalized polyharmonic B-spline. (d) Orthonormalized

polyharmonic B-spline wavelet. (e) Dual isotropic polyharmonic B-spline. (f) Dual isotropic polyharmonic B-spline wavelet.
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through scale, the “sensitive” regions detected by the wavelet have lower spatial frequencies. Interestingly, at

some juncture, we switch from “Gabor regime” to “Laplacian regime”.

IV. IMPLEMENTATION OF THE POLYHARMONIC B-SPLINE WAVELET TRANSFORM

All filters encountered in our construction are non-separable and infinitely supported. Therefore, a spatial

implementation based on truncation turns out to be difficult and costly. However, the proposed polyharmonic

wavelet transform can be advantageously implemented in the Fourier domain using FFTs, using the knowledge

of the frequency response of the filters. Our Fourier-based implementation will also automatically take care of the

boundaries by imposing periodic boundary conditions. Fourier-based implementations of the wavelet transform

have been proposed before [22], [48], [49]. Using the same principle, we propose a slightly simplified version

that is straightforward to implement and still performs very well.

To obtain the scaling and wavelet filters in the frequency domain, we need to compute the autocorrelation

filter Aγ(ejωωω). This can be done in two dimensions by evaluating the sum of Eq. (18) for a sufficient number

of terms. Another approach is to use a numerical algorithm in the spatial domain, for example see [69]. It is

also possible to use a fastly converging method in the Fourier domain, as proposed in [70].

A. Fast Fourier-based discrete wavelet transform

The filterbank implementation of the wavelet transform directly deals with the coefficients c(i)(n) and d(i)(n),

as defined before. However, all filters involved with the polyharmonic wavelet transform are infinitely supported.

Because of this and also because our filters are characterized in the frequency domain, we propose the use of

a Fourier-based implementation, ensuring perfect reconstruction for any choice of the order γ.

1) Initialization: At initialization, the signal is characterized by the coefficients c(0)(n) = 〈f, ϕ̃0,n〉, for a

given support S = {n|n1, n2 = 0, . . . ,M − 1}. Under the assumption that we only have access to the sample

values f(n), the data needs to be prefiltered such that the interpolating condition is satisfied; i.e.,

f(n) =
∑
m

c(0)(m)βγ(n − m). (50)

The proper interpolation prefilter is given by

P (ejωωω) =

(∑
k

β̂γ(ωωω + 2πk)

)−1

. (51)

The same iterative numerical algorithm as used for the computation of the autocorrelation filter can be deployed

to calculate this filter.

In practice, we first compute the Fourier coefficients of the data samples, for which we introduce the notation

F [k] = F (ej2πk/M ) =
∑

n∈S f(n)e−j2π〈n,k〉/M , k ∈ S. Note that the use of such a sampled Fourier

representation corresponds to a periodic extension of the data in the spatial domain. The initial coefficients

after prefiltering are

C(0)[k] = F [k]P [k]. (52)
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(a) (b)

(c) (d)

Fig. 8. (a) Test image “zoneplate”. (b) Decomposition of “zoneplate” for 8 iterations and order γ = 5, B-splines at analysis. (c) Test

image “Matteo”. (d) Decomposition of “Matteo” after 6 iterations and order γ = 5, orthonormal flavor.

2) Analysis: An efficient implementation of the wavelet transform in the Fourier domain for the quincunx

subsampling scheme can be obtained by pooling together two levels of the decomposition tree. Figure 9 shows

a flowchart illustrating this approach. The indications F and F−1 mark where the data is respectively converted

to and from the Fourier domain. The main steps of the algorithms are as follows.

1) The Fourier coefficients C(0)[k] are filtered and then down- and upsampled, introducing redundancy in

the Fourier domain. Taken together, such an operation results into

C(−1)[k′] =
1
2

(
H̃[k′]C(0)[k′] + H̃[k′ + (M/2,M/2)]C(0)[k′ + (M/2,M/2)]

)
,

D(−1)[k] =
1
2

(
G̃[k]C(0)[k] + G̃[k + (M/2,M/2)]C(0)[k + (M/2,M/2)]

)
,

where the index k′ for the lowpass filter can be limited to S′ = {n|n1 = 0, . . . ,M/2 − 1;n2 =

0, . . . , M − 1}. The easiest way to generate the highpass output d(−1)[k′] is by computing the inverse
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Fig. 9. Two levels of the quincunx wavelet decomposition stacked together. The symbols F and F−1 show where respectively the Fourier

transform and the inverse Fourier transform is computed.

Fourier transform of D(−1)[k] and performing the subsampling in the spatial domain.4

2) Next, the lowpass Fourier coefficients C(−1)[k′] are processed for the next iteration by the rotated filters,

defined as H̃r[n] = H̃[Dn mod (M,M)], G̃r[n] = G̃[Dn mod (M,M)]. So we get

C(−2)[k′′] =
1
2

(
H̃r[k′′]C(−1)[k′′] + H̃r[k′′ + (0,M/2)]C(−1)[k′′ + (0,M/2)]

)
,

D(−2)[k′′] =
1
2

(
G̃r[k′′]C(−1)[k′′] + G̃r[k′′ + (0,M/2)]C(−1)[k′′ + (0,M/2)]

)
,

where k′′ ∈ S′′ = {n|n1, n2 = 0, . . . , M/2 − 1}. The outputs c(−2)[k′′] and d(−2)[k′′] are now directly

obtained by applying the inverse Fourier transform to C(−2)[k′′] and D(−2)[k′′]. Depending on the number

of iterations, the remaining lowpass signal can be kept in the Fourier domain and further decomposed.

A convenient way to arrange the coefficients is shown in Fig. 8 (b) and (d).

The filters H̃ , G̃, and their rotated versions H̃r, G̃r are precomputed at the size of the original data and

subsampled after each other iteration. We also silently assumed that the analysis filters are reversed; i.e., their

discrete Fourier transform corresponds to H̃[k] = H̃(e−j2πk/M ).

3) Synthesis: Using the same principles, one can obtain the synthesis algorithm as the flow graph transpose

of the analysis algorithm. Again, all filters are precomputed.

B. Benchmark

The proposed algorithm can be translated seemlessly into a Matlab implementation. We compared the speed

of our Fourier-based implementation in Matlab against the classical wavelet transform implementation which is

available in the latest Matlab Wavelet Toolbox [71]. For this purpose, the image size is taken M ×M where M

varies from 128 to 1024 in steps of 16. This step size ensures a decomposition depth of 16 quincunx iterations

or 8 separable iterations. In Fig. 10, we show timings obtained on an 2 GHz PowerPC processor (Apple G5).

The fluctuations of the Fourier-based method are due to the specific implementation of the FFT [72] as used

by Matlab. However, the general trend shows that the Fourier-based implementation appears to be competitive

for image sizes up to about 512 × 512.

4It is also possible to exploit the redundancy of D(−1)[k] in the Fourier domain, see [22].
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Fig. 10. Execution times in seconds corresponding to the Fourier-based wavelet transform algorithm (blue lines) for the polyharmonic

B-spline wavelet transform and Matlab’s Wavelet Toolbox (red lines) for the Daubechies 9/7 (JPEG2000) wavelet transform. The size of

the test image is M × M and varies from 128 to 1024 with a step of 16. The fluctuations of the Fourier-based algorithm are due to the

specific implementation of the FFT algorithm.

Finally, we note that the current algorithm can be somewhat further improved at the cost of a slightly more

complicated implementation. In particular, the analysis phase can be made as fast as the synthesis one by

reducing the size of the high-pass inverse FFT at odd iterations [22].

V. CONCLUSION

In this paper, we have proposed to use isotropic polyharmonic B-splines to build a new family of wavelet

bases. These B-splines are non-separable basis functions that are localized versions of generalized thin plate

splines, and that converge towards a Gaussian as the order increases due to an improved localization operator that

we have introduced. In the second part of the paper, we focused on the two-dimensional quincunx subsampling

scheme to construct wavelet decompositions. Based on the function design in the continuous domain, we derived

the suitable scaling and wavelet filters that we need for a fast discrete wavelet transform. Three flavors of semi-

orthogonal designs were presented: orthonormal, B-spline, dual. The B-spline type wavelets converge to a sum

of four Gabor atoms as the order increases. We also highlighted a fast implementation using FFTs.
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APPENDIX A

UPPER RIESZ BOUND

We want to evaluate an upper bound over ωωω ∈ R
N for the the autocorrelation (18). First, we can restrict

the values of ωωω to [−π, π]N since the autocorrelation is 2π-periodic in every component ωk of ωωω. Second, we

easily check from (10) that β̂γ(ωωω) ≤ 1 which means that Vγ(ejωωω) ≤ ‖ωωω‖γ ≤ (
√

N π)γ .

Moreover, when |ωk| ≤ π, the inequality |ωk − 2πnk| ≥ π|nk| is valid for all nk ∈ Z. This implies that

‖ωωω − 2πn‖ ≥ π‖n‖ (53)

and finally

Aγ(ejωωω) = |β̂γ(ωωω)|2 +
∑

n∈ZN\{0}

V2γ(ejωωω)
‖ωωω + 2nπ‖2γ

≤ 1 +
∑

n∈ZN\{0}

(
√

N π)2γ

‖ωωω + 2nπ‖2γ

≤ 1 + Nγ
∑

n∈ZN\{0}

1
‖n‖2γ

which is known to be bounded whenever 2γ > N . Note that this bound is not sharp as it tends to increase

when γ increases.

APPENDIX B

CONVERGENCE OF THE ISOTROPIC POLYHARMONIC B-SPLINE WAVELET TO GABOR WAVELET

In this appendix, we derive the asymptotic form of the bidimensional (i.e., N = 2) isotropic polyharmonic

B-spline wavelet. Before showing that it converges to the sum of four Gabor atoms, symmetrically placed in

the frequency domain, we introduce the following lemma.

Lemma 1: For γ ≥ 3, the autocorrelation filter Aγ(ejωωω) of the bidimensional isotropic polyharmonic B-spline

is bounded over R
2 as follows:

∑
‖n‖2≤2

∣∣∣β̂γ([ωωω] + 2πn)
∣∣∣2 ≤ Aγ(ejωωω) ≤ (1 + ε)

∑
‖n‖2≤2

∣∣∣β̂γ([ωωω] + 2πn)
∣∣∣2 , (54)

where ε = 12
√

3 (2/3)γ tends to zero exponentially fast as γ → ∞.

The notation [ωωω] stands for the unique 2D vector in [−π, π[2 such that ωωω − [ωωω] = 2nπ for some 2D integer n.

Proof: We first observe that we can restrict the range of values of ωωω to [−π, π]2 because the autocorrelation

filter is 2π-periodic. Since the lower bound is trivial we concentrate on the upper bound. We use (53) over the

autocorrelation sum restricted to ‖n‖2 ≥ 3, and find:

Aγ(ejωωω) ≤
∑

‖n‖2≤2

∣∣∣β̂γ(ωωω + 2πn)
∣∣∣2 +

∑
‖n‖2≥3

V2γ(ejωωω)
‖πn‖2γ

≤
∑

‖n‖2≤2

∣∣∣β̂γ(ωωω + 2πn)
∣∣∣2 +

∣∣∣β̂γ(ωωω)
∣∣∣2 ∑

‖n‖2≥3

‖ωωω‖2γ

‖πn‖2γ

≤
∑

‖n‖2≤2

∣∣∣β̂γ(ωωω + 2πn)
∣∣∣2

⎛
⎝1 +

∑
‖n‖2≥3

‖ωωω‖2γ

‖πn‖2γ

⎞
⎠

≤
∑

‖n‖2≤2

∣∣∣β̂γ(ωωω + 2πn)
∣∣∣2

⎛
⎝1 +

∑
‖n‖2≥3

2γ

‖n‖2γ

⎞
⎠ .
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We thus have to evaluate the quantity 2γ
∑

‖n‖2≥3 ‖n‖−2γ . We denote by νN the number of (signed) integer

solutions to the Diophantine equation: n2
1 + n2

2 = N . Obviously, νN ≤ 2 × 2
√

N because n1 is necessarily in

[−√
N,

√
N ] and n2 is uniquely determined by n1 up to a sign. Then, we find:

2γ
∑

‖n‖2≥3

‖n‖−2γ = 2γ
∑
N≥3

νN

Nγ

≤ 2γ+2
∑
N≥3

1
Nγ−1/2

,

which is convergent because γ − 1/2 > 1. Now, it is well-known (see [73]) that the remainder of the Riemann

zeta function is bounded according to
∑

N≥N0
N−s ≤ N−s+1

0 /(s − 1). Applying this formula with N0 = 4

and s = γ − 1/2, and taking into account that γ ≥ 3, we find

2γ
∑

‖n‖2≥3

‖n‖−2γ ≤ 2γ+2
( 1

3γ−1/2
+

1
(γ − 3/2)3γ−3/2

)
≤ 12

√
3
(2

3

)γ

which proves the lemma.

Armed with this lemma, we can now proceed to the proof of our convergence theorem. The isotropic

polyharmonic B-spline wavelet has been defined as

2ψ̂(DTωωω) = −e−jω1Bγ(ej(ωωω+πππ))Aγ(ej(ωωω+πππ))β̂γ(ωωω). (55)

Thanks to Lemma 1, the autocorrelation filter can be replaced by a finite sum when γ → ∞; i.e.,

2ψ̂(DTωωω) = −e−jω1
∑

‖n‖2≤2

(
β̂2([ωωω + πππ] + 2πn)B1(ej(ωωω+πππ))β̂1(ωωω)︸ ︷︷ ︸

rn(ωωω)

)γ(
1 + O(

(2/3)γ
))

.

By inspection, we observe that

sup
ωωω∈R2

rn(ωωω) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.05 for n = (−1,−1), (−1, 1), (1,−1), (1, 1)

0.16 for n = (−1, 0), (0,−1), (0, 1), (1, 0)

0.4 for n = (0, 0)

which shows that, as γ → ∞, r0(ωωω)γ dominates the other rn(ωωω)γ terms; i.e.,

ψ̂(ωωω) ≈ −1
2
e−j

ω1+ω2
2 r0(D−Tωωω)γ . (56)

As one can readily observe, r0(ωωω) has a fourfold symmetry: r0(ω1, ω2) = r0(−ω1, ω2) = r0(ω1,−ω2) =

r0(−ω1,−ω2). By inspection again, r0(ωωω) reaches its maximum M ≈ 0.4 at ωωω = (ω′, ω′) and at its other three

symmetric positions (−ω′, ω′), (ω′,−ω′) and (−ω′,−ω′), where ω′ ≈ 5.074. This means that ψ̂(ωωω) reaches its

maximum at ωωω = (ω′, 0), (−ω′, 0), (0, ω′) and (0,−ω′).

In the neighborhood of ωωω′ = (ω′, 0) we consider the Taylor development

ln r(0,0)(D−Tωωω) = lnM − 1
2

(
ω1 − ω′

s1

)2

− 1
2

(
ω2

s2

)2

+ O(||ωωω −ωωω′||3), (57)

with

s1 ≈ 2.7, s2 ≈ 2.36. (58)

Using the central limit theorem, we obtain

ψ̂(ωωω) ≈ −Mγ

2
e−j

ω1+ω2
2 (ĝ(ω1, ω2) + ĝ(−ω1, ω2) + ĝ(ω2, ω1) + ĝ(ω2,−ω1)) , (59)
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with

ĝ(ωωω) = e
− γ

2

“
ω1−ω′

s1

”2
− γ

2

“
ω2
s2

”2

←→ s1s2

2πγ
ejω′x1e−

s21x2
1+s22x2

2
2γ . (60)

Finally, we state that the inverse Fourier transform of both sides is equivalent for large γ, providing

ψ(x) ≈ −Mγs1s2

2πγ

(
cos

(
ω′x1 − ω′

2

)
e−

s21(x1− 1
2 )2+s22(x2− 1

2 )2

2γ + cos
(

ω′x2 − ω′

2

)
e−

s21(x2− 1
2 )2+s22(x1− 1

2 )2

2γ

)
.

(61)

APPENDIX C

CONVERGENCE OF THE ORTHONORMAL POLYHARMONIC B-SPLINE TO THE SINC FUNCTION

We want to show that β̂⊥
γ (ωωω) tends to the function rect(ω1

2π ) · rect(ω2
2π ) indicator of the square [−π, π]2.

Assume that ωωω belongs to [−π(1 − η), π(1 − η)]2 where η is some small positive quantity. Then according to

the definition (20) and Lemma 1 we have

1 ≥ |β̂⊥
γ (ωωω)|2 ≥ |β̂γ(ωωω)|2∑

‖n‖2≤2

∣∣∣β̂γ(ωωω + 2πn)
∣∣∣2

+ O(2/3)γ

≥ 1

1 +

√
2∑

‖n‖=1

|ωωω|2γ

|ωωω + 2πn|2γ

+ O(2/3)γ .

Moreover, using the obvious inequality |n1| + |n2| ≤ ‖n‖2 and the hypothesis that |ωk| ≤ π(1 − η), we find

‖ωωω + 2nπ‖2 = ‖ωωω‖2 + 4πnTωωω + 4π2‖n‖2

≥ ‖ωωω‖2 − 4π2(1 − η)(|n1| + |n2|) + 4π2‖n‖2

≥ ‖ωωω‖2 + 4π2η‖n‖2

≥ ‖ωωω‖2 + 4π2η‖n‖2 · ‖ωωω‖2

2π2(1−η)2

≥ 1+η2

(1−η)2 ‖ωωω‖2 whenever ‖n‖ ≥ 1.

This means that, ωωω ∈ [−π(1 − η), π(1 − η)]2

1 ≥ |β̂⊥
γ (ωωω)|2 ≥ 1

1 + O
(( (1 − η)2

1 + η2

)γ
) + O(2/3)γ

︸ ︷︷ ︸
−→

γ→∞ 1

.

Since this is true for all η > 0 we have that

|β̂⊥
γ (ωωω)|2 −→

γ→∞ 1 for all ωωω ∈] − π, π[2.

Thanks to the orthonormality relation 1 =
∑

n∈Z2 |β̂⊥
γ (ωωω + 2nπ)|2, we also find that |β̂⊥

γ (ωωω)|2 → 0 in every

square ωωω ∈ 2nπ+] − π, π[2 with n ∈ Z \ {0}. Finally, because of the inequality
∣∣∣β̂γ([ωωω])

∣∣∣2 ≤ Aγ(ejωωω) (see

Lemma 1) we also have that |β̂⊥
γ (ωωω)|2 ≤ ‖[ωωω]‖2γ/‖ωωω‖2γ which implies that |β̂⊥

γ (nπ)|2 ≤ (2π2)γ/‖nπ‖2γ ≤
(2/3)γ when ‖n‖2 ≥ 3. Since this expression tends to 0 as γ → ∞, we can now conclude that |β̂⊥

γ (ωωω)|2 tends

to zero when ωωω ∈ R
2 \ [−π, π]2, which proves the convergence of β̂⊥

γ (ωωω) to rect(ω1
2π ) · rect(ω2

2π ). Figure 11

illustrates the convergence.
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(a) (b)

Fig. 11. Frequency responses
˛
˛
˛β̂⊥

γ

˛
˛
˛ for (a) γ = 4, (b) γ = 10.
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